

SLOVENSKI STANDARD SIST ISO 4762:1996

01-april-1996

Vijaki z valjasto glavo in notranjim šestkotnikom - Razred izdelave A

Hexagon socket head cap screws -- Product grade A

Vis à tête cylindrique à six pans creux Grade A PREVIEW

Ta slovenski standard je istoveten z: ISO 4762:1989

SIST ISO 4762:1996

https://standards.iteh.ai/catalog/standards/sist/29c89053-2300-431d-a781-d91c7965cfc2/sist-iso-4762-1996

ICS:

21.060.10 Sorniki, vijaki, stebelni vijaki Bolts, screws, studs

SIST ISO 4762:1996 en

SIST ISO 4762:1996

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 4762:1996</u> https://standards.iteh.ai/catalog/standards/sist/29c89053-2300-431d-a781-d91c7965cfc2/sist-iso-4762-1996 SIST ISO 4/62:1996

INTERNATIONAL STANDARD

ISO 4762

Second edition 1989-05-01

Hexagon socket head cap screws — Product grade A

Vis à tête cylindrique à six pans creux — Grade A
iTeh STANDARD PREVIEW
(standards.iteh.ai)

SIST ISO 4762:1996 https://standards.iteh.ai/catalog/standards/sist/29c89053-2300-431d-a781-d91c7965cfc2/sist-iso-4762-1996

Reference number ISO 4762: 1989 (E)

SIST ISO 4762:1996

ISO 4762: 1989 (E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

International Standard ISO 4762 was prepared by Technical Committee ISO/TC 2, Fasteners.

SIST ISO 4762:1996

This second edition cancels and replaces the first edition (ISQ/4762 a 1977) of which it 2300-431d-a781-constitutes a technical revision.

d91c7965cfc2/sist-iso-4762-1996

© ISO 1989

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Hexagon socket head cap screws — Product grade A

iTeh STANDARD PREVIEW

(standards.iteh.ai

Scope

ISO 898-1: 1988, Mechanical properties of fasteners — Part 1: Bolts, screws and studs.

ISO 4762: 1989 (E)

This International Standard specifies the characteristics of 762 hexagon socket head cap screws with metric dimensions and s/sist/ISO 965-2 239804750 general purpose metric screw threads nominal thread diameters, d, from 1,6 mm upito and including-iso-47 Tolerances — Part 2: Limits of sizes for general purpose bolt

36 mm, of product grade A. If, in special cases, specifications other than those listed in this International Standard are required, they shall be selected from

existing International Standards, for example ISO 261,

ISO 888, ISO 898-1, ISO 965-2, ISO 3506 and ISO 4759-1.

Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards listed below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 225: 1983, Fasteners — Bolts, screws and nuts — Symbols and designations of dimensions.

ISO 261: 1973, ISO general purpose metric screw threads -General plan.

ISO 888: 1976, Bolts, screw and studs — Nominal lengths, and thread lengths for general purpose bolts and screws.

and nut threads - Medium quality.

ISO 3269: 1984, Fasteners — Acceptance inspection.

ISO 3506: 1979, Corrosion-resistant stainless steel fasteners — Specifications.

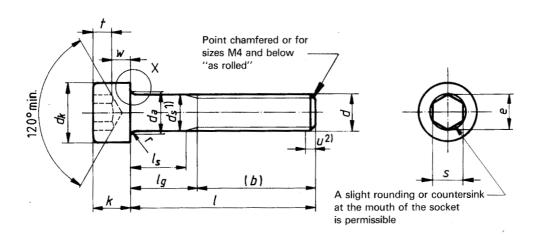
ISO 4042: 1989, Threaded components - Electroplated coatings.

ISO 4753: 1983, Fasteners — Ends of parts with external metric ISO thread.

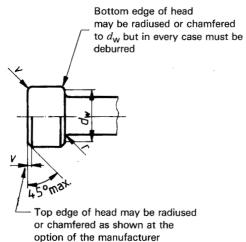
ISO 4759-1: 1978, Tolerances for fasteners — Part 1: Bolts, screws and nuts with thread diameters between 1,6 (inclusive) and 150 mm (inclusive) and product grades A, B and C.

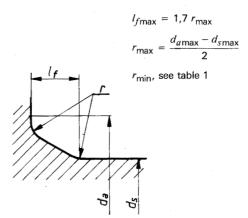
ISO 6157-1: 1988, Fasteners — Surface discontinuities — Part 1: Bolts, screws and studs for general requirements.

ISO 6157-3: 1988, Fasteners — Surface discontinuities — Part 3: Bolts, screws and studs for special requirements.


ISO 8839: 1986, Mechanical properties of fasteners — Bolts, screws, studs and nuts made of non-ferrous metals.

ISO 8992: 1986, Fasteners — General requirements for bolts, screws and nuts.


ISO 4762: 1989 (E)


3 Dimensions

NOTE - Symbols and designation of dimensions are specified in ISO 225.

¹⁾ d_s applies to positive values of l_s .

²⁾ Incomplete thread $u \le 2P$

ISO 4762: 1989 (E)

Table 1

M3

0,5

18

M4

0,7

20

M5

0,8

22

M2,5

0,45

17

Dimensions in millimetres

M8

1,25

28

M6

1

24

					·														
	max.		3		3,		4,		5	,5	7		8,	5	10		13	-	
d_k	max. ⁴⁾		max. ⁴⁾ 3,14		3,98		4,68		5,68		7,22		8,72		10,22		13,27		
	min.		2,86		3,62		4,32		5,32		6,78		8,28		9,78		12,73		
d_a	max.		2		2,6		3,1		3,6		4,7		5,7		6,8		9,2		
d_s	max.		1,6		2		2,5		3		4		5		6		8		
us	min,		1,46		1,86		2,36		2,86		3,82		4,82		5,82		7,78		
e	min.	5)		73	1,	.73	2,	3	2	.87	3	,44	4,	58	5,	72	6,	86	
l_f	max.			34		51		51	0	.51	0	,6	0,	6	0,	68		02	
k	max.		1,6		2		2,5		3		4		5		6		8		
	min.		1,46		1,86		2,36		2,86		3,82		4,82		5,7		7,64		
r	min.		0,1		0,1		0,1		0,1		0,2		0,2		0,25		0,4		
	nom		1,5		1,5		2		2,5		3		4		5		6		
min.			52		1,52		2,02		2,52		3,02		02	5,02		6,02			
'	s max. 6)		1,545		1,545		2,045		2,56		3,08		4,095		5,095		6,095		
	max.	7)	1,56		1,56		2,06		2,58		3,08		4,095		5,14		6,14		
t	t min.		0,7		1		1,1		1,3		2		2,5		3		4		
V	max.		0,16		0,2		0,25		0,3		0,4		0,5		0,6		0,8		
d_w	l _w min.		2,72		3,48			4,18		5,07		6,53		8,03		9,38		12,33	
w	min.		0,	55	0,	55	0,	85		15		,4	1,	9	2,	3	3,	3	
	1		l					Sh	ank len	gth $l_{\scriptscriptstyle S}$ ai	nd grip	length i	g 8)						
			l_s	T_{Q}	S '	lg	l_s	AlgR	1/5		7.3/	I_g	$V l_s$	l_g	l_s	l_g	l_s	l_g	
nom.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	
2,5	2,3	2,7	1			ctai	rda	rds	ite	h a	<u>i) </u>				L				
3	2,8	3,2			ζ,	, , ,	100			11000									
4	3,76	4,24						10.45											
5	4,76	5,24				.,,	SIST1	SO 470	52:199	2			501						
6	5,76	6,24	https:	/standa	ırds.ite			ndards	/sist/29	c8905.	3-2300	-431d-	a781-						
8	7,71	8,29				d91c7	965cfc	2/sist-1	so-476	2-1996									
10	9,71	10,29							ļ										
12	11,65	12,35														Water			
16	15,65	16,35				L													
20	19,58	20,42			2	4				,									
25	24,58	25,42					5,75	8	4,5	7									
30	29,58	30,42							9,5	12	6,5	10	4	8					
35	34,5	35,5									11,5	15	9	13	6	11			
40	39,5	40,5									16,5	20	14	18	11	16	5,75	12	
45	44,5	45,5							ļ	-			19	23	16	21	10,75	17	
50	49,5	50,5							<u> </u>				24	28	21	26	15,75	22	
55	54,4	55,6				<u> </u>									26	31	20,75	27	
60	59,4	60,6		_											31	36	25,75	32	
65	64,4	65,6							ļ								30,75	37	
70	69,4	70,6															35,75	42	
80	79,4	80,6				<u> </u>											45,75	52	

- 1) P = pitch of the thread.
- 2) For lengths below the thick dashed line.
- 3) For plain heads.

Thread (d)

ref.

P1)

b2)

M1,6

0,35

15

M2

0,4

16

- 4) For knurled heads.
- 5) $e_{\min} = 1.14 s_{\min}$
- 6) For property class 12.9.
- 7) For all other property classes.
- 8) The range of commercial lengths is between the continuous thick lines. Lengths above the thick dashed line are threaded to the head within 3P. Lengths below the thick dashed line have values of l_g and l_s in accordance with the following formulae:

 $l_{gmax} = l_{nom} - b$

 $l_{smin} = l_{gmax} - 5P$

ISO 4762: 1989 (E)

Table 1 (concluded)

Dimensions in millimetres

Threa	d (<i>d</i>)		М	10	М	12	(M	14)	М	16	M	20	M	24	M		M	36	
P1)		1,5		1,		2		2		2,5		3		3,5		4			
b ²⁾			32		36		40		44		52		60		72		84		
	max. ³⁾		16		18		21		24		30		36		45		54		
$d_k = \frac{1}{\max_{k \in \mathbb{N}} d_k}$		16,27		18,27		21,33		24,33		30,33		36,39		45,39		54,46			
Α.	min.		15,73		17,73		20,67		23,67		29,67		35,61		44,61		53,54		
d_a	max.		11,2		13,7		15,7		17,7		22,4		26,4		33,4		39,4		
	max.		10		12		14		16		20		24		30		36		
d_{s}	min.		9,78		11,73		13,73		15,73		19,67		23,67		29,67		35,61		
e	min.	5)	9,15		11,43		13,72		16		19,44		21,73		25,15		30,85		
l_f	max.		1,02		1,45		1,45		1,45		2,04		2,04		2,89		2,89		
/	max.		10		12		14		16		20		24		30		36		
k	min.		9,64		11,57		13,57		15,57		19,48		23,48		29,48		35,38		
r	min.		0,4		0,6		0,6		0,6		0,8		0,8		1		1		
	nom.		8		10		12		14				19		22		27		
	min.			10,025		12,032		14,032		17 17,05		19,065		22,065		27,065			
S		max. ⁶⁾		8,115		10,115		12,142		14,142									
	max. ⁷⁾		8,175		10,175		12,212		14,212		17,23		19,275		22,275		27,275		
t	min.		5		6		7		8		10		12		15,5		19		
v	max.		1		1,2		1,4		1,6		2		2,4		3		3,6		
d_w	min.		15,33		17,23		20,17		23,17		28,87		34,81		43,61		52,54		
w	min.		4		4,8		5,8		6,8		8,6		10,4		13,1		15,3		
	l						•	Sh	ank len	gth l_s a	nd grip l	ength .	/ _g 8)						
			l_{s}	l_{g}	l_s	l_g	l_s	l _o	l_s	l_g	l_s	l_{ϱ}	l_s	l_g	$ l_s $	l_g	l_s	l_g	
nom.	min.	max.	min.	max.	011	max.	min.	max,	min.	max.	min.	l _g max.	lmin.√	max.	min.	max.	min.	ma	
16	15,65	16,35																	
20	19,58	20,42				S	tan	dar	ds.	itel	ı.aı)							
25	24,58	25,42																<u> </u>	
30	29,58	30,42					CI	CT IC	4763	.1006									
35	34,5	35,5	1	nttna://c	tandar	le itoh	oi/catal/	o/eton	darde/e	ct/20~	80053	2300_/	121-1	79.1			<u> </u>	ļ	
40	39,5	40,5	'	щрв//в	tandar	باء.10011. ام	ar Catait 101704	ig stan	uarus/s	4762	1006	2500	toru-a	/01-					
45	44,5	45,5	5,5	13		u	1710790)SCICZ/	515t-180	-4/02-	1990								
50	49,5	50,5	10,5	18	<u></u>	L													
55	54,4	55,6	15,5	23	10,25	19												<u> </u>	
60	59,4	60,6	20,5	28	15,25	24	10	20		<u> </u>								<u></u>	
65	64,4	65,6	25,5	33	20,25	29	15	25	11	21							<u> </u>	_	
70	69,4	70,6	30,5	38	25,25	34	20	30	16	26	i								
80	79,4	80,6	40,5	48	35,25	44	30	40	26	36	15,5	28					<u> </u>		
90	89,3	90,7	50,5	58	45,25	54	40	50	36	46	25,5	38	15					<u> </u>	
100	99,3	100,7	60,5	68	55,25	64	50	60	46	56	35,5	48	25	40	<u> </u>			<u> </u>	
110	109,3	110,7			65,25	74	60	70	56	66	45,5	58	35	50	20,5	38		↓_	
120	119,3	120,7			75,25	84	70	80	66	76	55,5	68	45	60	30,5	48	16	3	
		130,8	J	l	1	ł	80	90	76	86	65,5	78	55	70	40,5	58	26	4	
130	129,2								i oc	0.0	75,5	88	65	80	50,5	~~	36	5	
	129,2 139,2	140,8					90	100	86	96				- 60	50,5	68	- 30	"	
130							90	100	96	106	85,5	98	75	90	60,5	78	46		
130 140	139,2	140,8					90	100										6	
130 140 150	139,2 149,2	140,8 150,8					90	100	96	106	85,5	98	75	90	60,5	78	46	6	

¹⁾ P = pitch of the thread.

$$l_{gmax} = l_{nom} - b$$

$$l_{smin} = l_{gmax} - 5P$$

²⁾ For lengths below the thick dashed line.

³⁾ For plain heads.

⁴⁾ For knurled heads.

⁵⁾ $e_{\min} = 1.14 s_{\min}$

⁶⁾ For property class 12.9.

⁷⁾ For all other property classes.

⁸⁾ The range of commercial lengths is between the continuous thick lines. Lengths above the thick dashed line are threaded to the head within 3P. Lengths below the thick dashed line have values of l_g and l_s in accordance with the following formulae: