Designation: A847/A847M - 14 A847/A847M - 20 # Standard Specification for Cold-Formed Welded and Seamless High-Strength, Low-Alloy Structural Tubing with Improved Atmospheric Corrosion Resistance¹ This standard is issued under the fixed designation A847/A847M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval. ## 1. Scope* - 1.1 This specification covers cold-formed welded and seamless high-strength, low-alloy round, square, rectangular, or special shaped structural tubing tubular shapes for welded, riveted, or bolted construction of bridges and buildings and for general structural purposes where high strength and enhanced atmospheric corrosion resistance are required (Note 1). The atmospheric corrosion resistance of this steel in most environments is substantially better than carbon steel with or without copper addition (Note 2). When properly exposed to the atmosphere, this steel can be used bare (unpainted) for many applications. When this steel is used in welded construction, the welding procedure shall be suitable for the steel and the intended service. - 1.2 This tubing is produced in welded sizes with a maximum periphery of 6488 in. [1626[2235] mm] and a maximum wall of 0.6251 in. [15.9[25.4] mm], and in seamless with a maximum periphery of 32 in. [813] mm] and a maximum wall of 0.500 in. [12.7] mm]. Tubing having other dimensions may be furnished provided such tubing complies with all other requirements of this specification. - Note 1—Products manufactured to this specification may not be suitable for those applications where low temperature notch toughness properties may be important, such as dynamically loaded elements in welded structures, unless ordered with toughness tests. See the Supplementary Requirements. - Note 2—For methods of estimating the atmospheric corrosion resistance of low alloy steels, see Guide G101 or actual data. - 1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. - Note 1—Products manufactured to this specification may not be suitable for those applications where low temperature notch toughness properties may be important, such as dynamically loaded elements in welded structures, etc. - Note 2—For methods of estimating the atmospheric corrosion resistance of low alloy steels, see Guide G101 or actual data. - 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.09 on Carbon Steel Tubular Products. Current edition approved May 1, 2014 Nov. 1, 2020. Published May 2014 November 2020. Originally approved in 1985. Last previous edition approved in 2012 as A847/A847MA847/A847M – 14.—12. DOI: 10.1520/A0847_A0847M-14.10.1520/A0847_A0847M-20. #### 2. Referenced Documents 2.1 ASTM Standards:² A370 Test Methods and Definitions for Mechanical Testing of Steel Products A700 Guide for Packaging, Marking, and Loading Methods for Steel Products for Shipment A751 Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products A1058 Test Methods for Mechanical Testing of Steel Products—Metric G101 Guide for Estimating the Atmospheric Corrosion Resistance of Low-Alloy Steels ### 3. Ordering Information - 3.1 Orders for material under this specification should include the following, as required, to describe the desired material adequately: - 3.1.1 ASTM specification number, - 3.1.2 Quantity (feet, metres, or number of lengths), - 3.1.3 Name of material (cold-formed tubing), - 3.1.4 Method of manufacture (welded or seamless), - 3.1.5 Size (outside diameter and nominal wall thickness for round tubing and the outside dimensions and nominal wall thickness for square and rectangular tubing), - 3.1.6 Length (specific or random, see 10.3), ITeh Standards - 3.1.7 End condition (see 14.2), https://standards.iteh.ai) - 3.1.8 Burr removal (see 14.2), - **Document Preview** - 3.1.9 Certification (see Section 17), ASTM A847/A847M-20 - 3.1.10 Specific weld location, alog/standards/sist/ab9c2253-63f6-4909-9453-75fe961b30e4/astm-a847-a847m-20 - 3.1.11 End use, and - 3.1.12 Special or supplementary requirements. #### 4. Process 4.1 The steel shall be made by one or both of the following processes: basic oxygen or electric furnace. #### 5. Manufacture - 5.1 The tubing shall be made by a welded or seamless process. - 5.2 Welded tubing shall be made from flat-rolled steel by the electric-resistance welding or electric-fusion welding process. The longitudinal butt joint shall be welded across its thickness in such a manner that the structural design strength of the tubing section is assured. The weld shall not be located within the radius of the corners of any shaped tube square, rectangular, or other tubular shapes unless specified by the purchaser. - 5.2.1 Structural tubing welded by the electric-resistance method is normally furnished without removal of inside flash. ² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website. 5.3 The tubing may be stress relieved or annealed, as is considered necessary by the tubing manufacturer, to conform to the requirements of this specification. # 6. Chemical Composition 6.1 The choice and use of alloying elements combined with carbon, manganese, phosphorus, sulphur, and copper shall be within the limits prescribed in Section 7 to give the mechanical properties prescribed in Table 1 and to provide the atmospheric corrosion resistance of 1.1. The choice and use of these elements shall be made by the manufacturer and included and reported in the heat analysis to identify the type of steel applied. Elements commonly added include chromium, nickel, silicon, vanadium, titanium, and zirconium. For Specification A847/A847M material, the atmospheric corrosion-resistance index, calculated on the basis of the chemical composition of the steel as described in Guide G101, shall be 6.0 or higher. The amount of nickel, silicon, and chromium present shall be reported due to their use calculating the atmospheric corrosion index. Note 3—The user is cautioned that the Guide G101 predictive equation for calculation of an atmospheric corrosion-resistance index has been verified only for the composition limits stated in that guide. #### 7. Heat Analysis 7.1 Each heat analysis shall conform to the requirements given in Table 2 for heat analysis. # 8. Product Analysis - 8.1 The tubing shall be capable of conforming to the requirements given in Table 2 for product analysis. - 8.2 If product analyses are made, they shall be made using test specimens taken from two lengths of tubing from each lot of 500 lengths, or a fraction thereof, or two pieces of flat-rolled stock from each lot of a corresponding quantity of flat-rolled stock. Methods and practices relating to chemical analysis shall be in accordance with Test Methods, Practices, and Terminology A751. Such product analyses shall conform to the requirements specified in Table 2 for product analysis. - 8.3 If both product analyses representing a lot fail to conform to the specified requirements, the lot shall be rejected. - 8.4 If only one product analysis representing a lot fails to conform to the specified requirements, product analyses shall be made using two additional test specimens taken from the lot. Both additional product analyses shall conform to the specified requirements or the lot shall be rejected. #### 9. Tensile Requirements 9.1 The material, as represented by the test specimen, shall conform to the tensile property requirements prescribed in Table 1. #### 10. Permissible Variations and Dimensions - 10.1 Outside Dimensions: - 10.1.1 Round Structural Tubing—The outside diameter shall not vary from the specified outside diameter by more than \pm 0.5 %, rounded to the nearest 0.005 in. [0.1 mm], for specified outside diameters 1.900 in. [48.3 mm] and smaller; \pm 0.75 %, rounded to the nearest 0.005 in., for specified outside diameters 2 in. [50 mm] and larger. The outside diameter measurements shall be made at positions at least 2 in. [50 mm] from either end of the tubing. TABLE 1 Tensile Requirements for Round and Shaped Tubing | Tensile strength, min, psi [MPa] | 70 000 [485] | |---------------------------------------|-------------------------| | Tensile strength, min, psi [MPa] | 70 000 [485] | | Yield strength, min, psi [MPa] | 50 000 [345] | | Yield strength, min, psi [MPa] | 50 000 [345] | | Elongation in 2 in. or [50 mm] min, % | 19 ^A | ^AApplies to specified wall thicknesses 0.120 in. [3.0 mm] and over. For lighter wall thicknesses, elongation shall be by agreement with the manufacturer. **TABLE 2 Chemical Requirements** | Elements | Heat Analysis | Product Analysis | |-----------------|---------------|-------------------| | | | | | Carbon, max | 0.20 | 0.24 | | Manganese, max | 1.35 | 1.40 | | Phosphorus, max | 0.04 | 0.04 | | Sulphur, max | 0.035 | 0.045 | | Copper, min | 0.20^{A} | 0.18 ^A | | Nickel | ^B | ^B | | Silicon | <i>B</i> | <i>B</i> | | Chromium | ^B | <i>B</i> | $^{^{\}rm A}$ If chromium and silicon contents are each 0.50 minimum, then the copper minimums do not apply. - 10.1.2 Square and Rectangular Structural Tubing—The specified dimensions, measured across the flats at a position at least 2 in. [50 mm] from either end of the tubing and including an allowance for convexity or concavity, shall not exceed the plus and minus tolerances shown in Table 3. - 10.2 Wall Thickness—The minimum wall thickness at any point of measurement on the tubing shall be not more than 10 % less than the specified wall thickness. The maximum wall thickness, excluding the weld seam of welded tubing, shall be not more than 10 % greater than the specified wall thickness. The wall thickness on square and rectangular tubing is to be measured at the center of the flat. - 10.3 Length—Structural tubing is normally produced in random mill lengths 5 ft [1.5 m] and over, in multiple lengths, and in specified mill lengths (see Section 3). When specified mill lengths are ordered, the length tolerance shall be in accordance with Table 4. - 10.4 Straightness—The permissible variation for straightness of structural tubing shall be ½ in. times the number of feet [10.4 mm times the number of metres] of total length divided by 5. - 10.5 Squareness of Sides—For square and rectangular structural tubing, adjacent sides may deviate from 90° by a tolerance of \pm 2° maximum. - 10.6 *Radius of Corners*—For square or rectangular structural tubing, the radius of any outside corner of the section shall not exceed three times the specified wall thickness. - 10.7 Twist—The tolerances for twist, or variation with respect to axial alignment of the section, for square and rectangular structural tubing shall be as shown in Table 5. Twist is measured by holding down on a flat surface plate one end of a square or rectangular tube, with the bottom side of the tube parallel to the surface plate and either (1) noting the difference in height above the surface plate of the two corners at the opposite end of the bottom side of the tube, or (2) by measuring this difference on the heavier sections by a suitable measuring device. The difference in the height of the corners shall not exceed the values of Table 5. Twist measurements are not to be taken within 2 in. [50 mm] of either end of the product. TABLE 3 Outside Dimension Tolerances for Square and Rectangular Tubing | Largest outside dimension across flats, in. [mm] | Tolerance, ± in. [mm] ^A | | |---|--|--| | 2½ [63.5] and under
Over 2½ [63.5] to 3½ [88.9], incl
Over 3½ [88.9] to 5½ [139.7], incl
Over 5½ [139.7] | 0.020 [0.5]
0.025 [0.6]
0.030 [0.7]
1 % | | $^{^{\}rm A}$ Tolerances include allowance for convexity or concavity. For rectangular sections, the tolerance calculated for the larger flat dimension shall also apply to the smaller flat dimension. This tolerance may be increased 50 % when applied to the smaller dimension if the ratio of the external sides is in the range of 1.5 to 3, inclusive; the tolerance may be increased 100 % when the ratio exceeds 3. ^BThe amount of nickel, silicon, and chromium present must be reported, but there are no minimum requirements. #### **TABLE 4 Specified Mill Length** | | Tolerances for Structural Tubing | | | | |--|----------------------------------|--------------------------|---------------------------------------|--------------------------| | | 22 ft [6.7 m] and under | | Over 22 | ft [6.7 m] | | | Over | Under | Over | Under | | | 47 | 47 | 2/ | 47 | | Length tolerance
for specified mill
length, in. [mm] | ½
[12.7] | 1/ ₄
[6.4] | ³ / ₄
[19.0] | 1/ ₄
[6.4] | TABLE 5 Twist Tolerances for Square and Rectangular Structural Tubing | 9 | | | | |---|---|-----|--| | Specified dimension of longest side, in. [mm] | Maximum twist in the first 3 ft [1 m] and in each additional 3 ft | | | | | in. | mm | | | 1½ [38.1] and under | 0.050 | 1.4 | | | Over 1½ [38.1] to 2½ [63.5], incl | 0.062 | 1.7 | | | Over 21/2 [63.5] to 4 [101.6], incl | 0.075 | 2.1 | | | Over 4 [101.6] to 6 [152.4], incl | 0.087 | 2.4 | | | Over 6 [152.4] to 8 [203.2], incl | 0.100 | 2.8 | | | Over 8 [203.2] | 0.112 | 3.1 | | # 11. Special Shaped Structural Tubing Tubular Shapes 11.1 The dimensions and tolerances of special shaped structural tubing tubular shapes are available by inquiry and negotiation with the manufacturer. # 12. Flattening Test, Flaring Test, and Wedge Crush Test 12.1 The flattening test shall be made on round structural tubing. A flattening test is not required for shaped structural tubing. flaring test or a wedge crush test on round tubing up to and including 10 in. in diameter can be made if stated in the purchase order. Either a flattening test, a flaring test, or a wedge crush test shall be made on square, rectangular, or other tubular shapes with a maximum side up to and including 10 in. except when the customer specifies the weld to be located in the corner. 12.2 For welded round structural tubing, a <u>test</u> specimen at least 4 in. [100 mm] in length shall be flattened cold between parallel plates in three steps, with the weld located <u>at 90°</u> from the line of direction of force. During the first step, which is a test for ductility of the weld, no cracks or breaks on the inside or outside surfaces <u>shall occur before of the test specimen shall be present until</u> the distance between the plates is less than <u>two thirds-two-thirds</u> of the <u>original specified</u> outside diameter of the tubing. As a second step, the flattening shall be continued. During the second step, which is a test for ductility exclusive of the weld, For the second step, no cracks or breaks on the inside or outside <u>surfaces</u>, parent metal surfaces of the test specimen, except as provided for in 12.412.5, shall occur before be present until the distance between the plates is less than <u>one half one-half</u> of the <u>original specified</u> outside diameter of the tubing, but not less than five times the wall thickness of the tubing. During the third step, which is a test for soundness, <u>continue</u> the flattening <u>shall be continued</u> until the <u>test</u> specimen breaks or the opposite walls of the <u>tubing test specimen</u> meet. Evidence of laminated or unsound material or of incomplete weld that is revealed during the entire flattening test shall be cause for rejection. 12.3 For seamless round structural tubing of 23/8 in. [60.3in. [60] mm] specified outside diameter and larger, a sectionspecimen not less than 2½-in. [60-in. [65] mm] in length shall be flattened cold between parallel plates in two steps. During the first step, which is a test for ductility, no cracks or breaks on the inside or outside surfaces, except as provided for in 12.412.5, shall occur beforeuntil the distance between the plates is less than the value of H; "H" calculated by the following equation: $$H = (1+e)t/(e+t/D)$$ where: H = distance between flattening plates, in. [mm], e = deformation per unit length, 0.06, t = nominal wall thickness of tubing, in. [mm], and t = specified wall thickness of tubing, in. [mm], and D = actual outside diameter of tubing, in. [mm]. - D = specified outside diameter of tubing, in. [mm]. - 12.3.1 During the second step, which is a test for soundness, continue the flattening shall be continued until the specimen breaks or the opposite walls of the tubingspecimen meet. Evidence of laminated or unsound material that is revealed during the entire flattening test shall be cause for rejection. - 12.4 Surface imperfections not found in the test specimen before flattening, but revealed during the first step of the flattening test, shall be judged in accordance with Section 1415. - 12.5 When low *D*-to-*t*-ratio tubulars are tested, <u>because</u> the strain imposed due to geometry is unreasonably high on the inside surface at the 6 to 12 o'clock locations; therefore, <u>and 12 o'clock locations</u>, cracks at these locations shall not be cause for rejection if the *D*-to-*t*-ratio ratio is less than 10. - 12.6 Flaring Test—A section of tube shall stand being flared with a tool having a 60° included angle until the weld area has been expanded a minimum of 15 % of the inside dimension for rounds and squares without any cracking in the weld area. For rectangles, the side containing the weld area and the side opposite the weld area shall be expanded a minimum of 15 % based on the average of the smallest and largest inside dimensions without any cracking in the weld area. The cone tool shall not have a weld relief groove. Cracking in the corners of square, rectangular, or other tubular shapes after flaring is not grounds for rejection. - 12.7 Wedge Crush Test—A test specimen at least 4 in. [100 mm] in length shall be placed under the hydraulic press ram with the weld directly underneath the tapered ram wedge. The tapered ram wedge shall be tapered at 30° and rounded at the contact point to a ½ in. radius. No cracks or breaks on the inside or outside surfaces of the test specimen shall be present until the tube has collapsed to at least one half its specified dimension. - 12.8 Other destructive weld tests may be requested in lieu of or in addition to the tests listed. The purchaser should contact the producer to determine their availability. #### 13. Test Methods - 13.1 The tension specimens required by this specification shall conform to those described in the latest issue of Methods and Definitions A370, Annex A2. A2 or Test Methods A1058. - 13.2 The tension test specimens shall be taken longitudinally from a section of the finished tubing at a location at least 90° from the weld in the case of welded tubing, and shall not be flattened between gauge marks. If desired, the tension tests may be made on the full section of the tubing; otherwise, a longitudinal strip-test specimen as prescribed in Test Methods and Definitions A370, Annex A2, A2 or Test Methods A1058, shall be used. The specimens shall have all burrs removed and shall not contain surface imperfections which would interfere with proper determination of the tensile properties of the metal. - 13.3 The yield strength corresponding to a permanent offset of 0.2 % of the gauge length of the specimen, or to a total extension of 0.5 % of the gauge length under load, shall be determined. # 14. Workmanship, Finish, and Appearance - 14.1 All tubing shall be free from defects and shall have a workmanlike finish. - 14.1.1 Surface imperfections shall be classed as defects when their depth reduces the remaining wall thickness to less than 90 % of the specified nominal wall thickness. - 14.1.2 Surface imperfections such as handling marks, light die or roll marks, or shallow pits are not considered defects, provided the imperfections are removable within the minimum wall permitted. The removal of such surface imperfections is not required. Welded tubing shall be free of protruding metal on the outside surface of the weld seam. - 14.1.3 Defects having a depth not in excess of 33½ % of the wall thickness may be repaired by welding, subject to the following conditions: - 14.1.3.1 The defect shall be completely removed by chipping or grinding to sound metal. - 14.1.3.2 The repair weld shall be made using a low hydrogen process. - 14.1.3.3 The projecting weld metal shall be removed to produce a workmanlike finish. - 14.2 The ends of structural tubing, unless otherwise specified, shall be finished square cut and the burr held to a minimum. The burr can be removed on the outside diameter, inside diameter, or both, as a supplementary requirement. When burrs are to be removed, it shall be specified on the purchase order. #### 15. Number of Tests - 15.1 One tension test, as specified in Section 13, shall be made from a length of tubing representing each lot. - 15.2 The flattening test, as specified in Section 12, shall be made on one length of round tubing from each lot. - 15.3 The term "lot" applies to all tubes of the same nominal size and wall thickness which are produced from the same heat of steel. #### 16. Retests - 16.1 If the results of the mechanical tests of any lot do not conform to all requirements of Sections 9 and 12, retests may be made on additional tubing of double the original number from the same lot. Each lot shall conform to the requirements specified or the tubing represented by the test is subject to rejection. - 16.2 In case of failure on retest to meet the requirements of Sections 9 and 12, the manufacturer may elect to retreat, rework, or otherwise eliminate the condition responsible for failure. Thereafter, the material remaining from the lot originally represented may be tested and shall comply with all requirements of this specification. #### 17. Certification - 17.1 If specified in the purchase order or contract, the manufacturer shall furnish to purchaser a certificate of compliance stating that the product was manufactured, sampled, tested, and inspected in accordance with this specification and any other requirements designated in the purchase order or contract, and was found to meet all such requirements. Certificates of compliance shall include the specification number and year of issue. - 17.2 If specified in the purchase or contract, the manufacturer shall furnish to the purchaser test reports for the product shipped that contain the heat analyses and the results of the tension tests required by this specification and the purchase order or contract. Test reports shall include the specification number and year of issue. - 17.3 A signature or notarization is not required on certificates of compliance or test reports; however, the documents shall clearly identify the organization submitting them. Notwithstanding the absence of a signature, the organization submitting the document is responsible for its content. - 17.4 A certificate of compliance or test report printed from, or used in electronic form from, an electronic data interchange (EDI) shall be regarded as having the same validity as a counterpart printed in the certifying organization's facility. The content of the EDI transmitted document shall conform to any existing EDI agreement between the purchaser and the manufacturer. #### 18. Inspection 18.1 All tubing shall be subject to inspection at the place of manufacture to ensure conformance to the requirements of this specification. #### 19. Rejection 19.1 Each length of tubing received from the manufacturer may be inspected by the purchaser and, if it does not meet the