

Edition 2.0 2023-01

TECHNICAL REPORT

Optical amplifiers - STANDARD PREVIEW Part 6: Distributed Raman amplification (Standards.iteh.ai)

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2023 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11

info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublishedStay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC TR 61292-6

Edition 2.0 2023-01

TECHNICAL REPORT

Optical amplifiers - STANDARD PREVIEW

Part 6: Distributed Raman amplification

IEC TR 61292-6:2023

https://standards.iteh.ai/catalog/standards/sist/376310e9-5569-4369-9925-ac16e8c524dc/iec-tr-61292-6-2023

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.160.10; 33.180.30 ISBN 978-2-8322-6340-2

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

		KU	
IN	TRODU	ICTION	6
1	Scop	e	7
2	Norm	native references	7
3	Term	s, definitions, and abbreviated terms	7
	3.1	Terms and definitions	7
	3.2	Abbreviated terms	
4	Background		
	4.1	General	8
	4.2	Raman amplification process	
	4.3	Distributed vs. lumped amplification	
	4.4	Tailoring the Raman gain spectrum	
	4.5	Forward and backward pumping configuration	
	4.6	Typical performance of DRA	
5	Appli	cations of distributed Raman amplification	
	5.1	General	14
	5.2	All-Raman systems	
	5.3	Hybrid EDFA Raman systems	
	5.3.1	General	15
	5.3.2		
	5.3.3	Long span masking in multi-span links	16
	5.3.4	High capacity long haul and ultra-long-haul systems	16
6	Perfc	ormance characteristics and test methods	16
	6.1	General	24ac/iec-tr- 16
	6.2	Performance of the Raman pump module	16
	6.2.1		
	6.2.2	Pump wavelengths	17
	6.2.3	Pump output power	17
	6.2.4	Pump degree-of-polarization (DOP)	17
	6.2.5	Pump relative intensity noise (RIN)	18
	6.2.6	Insertion loss	18
	6.2.7	Other passive characteristics	19
	6.3	System level performance	19
	6.3.1	General	19
	6.3.2	On-off signal gain	19
	6.3.3		
	6.3.4	, ,	
	6.3.5	,	
	6.3.6	,	
7	Operational issues		22
	7.1	General	22
	7.2	Dependence of Raman gain on transmission fibre	22
	7.3	Fibre line quality	23
	7.4	High pump power issues	23
	7.4.1		
	7.4.2	Laser safety	24

7.4.3 Damage to the fibre line	24
8 Conclusions	25
Bibliography	26
Figure 1 – Stimulated Raman scattering process and Raman gain spectrum for silica fibres	g
Figure 2 – Distributed vs. lumped amplification	10
Figure 3 – The use of multiple pump wavelengths to achieve flat broadband gain	11
Figure 4 – Simulation results showing pump and signal propagation along an SMF span	12
Figure 5 – On-off gain and equivalent NF for SMF using a dual pump backward DRA with pumps at 1 424 nm and 1 452 nm	13
Figure 6 – Typical configuration of an amplification site in an all-Raman system	15
Figure 7 – Typical configuration of a Raman pump module used for counter-propagating DRA	17
Figure 8 – Model for signal insertion loss (IL) of a Raman pump module used for counter-propagating DRA	18
Figure 9 – Typical configuration used to measure on-off gain of DRA	20
Figure 10 – Variations of Raman on-off gain for different transmission fibres	23

(standards.iteh.ai)

IEC TR 61292-6:2023

https://standards.iteh.ai/catalog/standards/sist/376310e9-5569-4369-9925-ac16e8c524dc/iec-tr-61292-6-2023

INTERNATIONAL ELECTROTECHNICAL COMMISSION

OPTICAL AMPLIFIERS –

Part 6: Distributed Raman amplification

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TR 61292-6 has been prepared by subcommittee 86C: Fibre optic systems and active devices, of IEC technical committee 86: Fibre optics. It is a Technical Report.

This second edition cancels and replaces the first edition published in 2010. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) correction of the formula for noise figure;
- b) correction of errors in Figure 10.

The text of this Technical Report is based on the following documents:

Draft	Report on voting
86C/1822/DTR	86C/1831/RVDTR

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Report is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

A list of all parts of the IEC 61292 series, published under the general title *Optical amplifiers*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed, Teh STANDARD PREVIEW
- withdrawn,
- replaced by a revised edition, or nd ards.iteh.ai)
- amended.

IEC TR 61292-6:2023

https://standards.iteh.ai/catalog/standards/sist/376310e9-5569-4369-9925-ac16e8c524dc/iec-tr-

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

Distributed Raman amplification (DRA) describes the process whereby Raman pump power is introduced into the transmission fibre, leading to signal amplification within the transmission fibre though stimulated Raman scattering. This technology has become increasingly widespread in recent years due to many advantages that it offers to optical system designers, including improved system optical signal-to-noise ratio (OSNR) and the ability to tailor the gain spectrum to cover any or several transmission bands.

A fundamental difference between distributed Raman amplification and amplification using discrete amplifiers, such as erbium-doped fibre amplifiers (EDFAs), is that the latter can be described using a black box approach, while the former is an inherent part of the transmission system in which it is deployed. Thus, a discrete amplifier is a unique and separate element with well-defined input and output ports, allowing rigorous specifications of the amplifier performance characteristics and the methods used to test these characteristics. On the other hand, a distributed Raman amplifier is basically a pump module, with the actual amplification process taking place along the transmission fibre. This means that many of the performance characteristics of distributed Raman amplification are inherently coupled to the transmission system in which a Raman amplifier is deployed.

This document provides an overview of DRA and its applications. It also provides a detailed discussion of the various performance characteristics related to DRA, as well as some of the methods that can be used to test these characteristics. Information is also provided on some of the operational issues related to the distributed nature of the amplification process, such as the sensitivity to transmission line quality and eye-safety.

The material provided is intended to provide a basis for future development of specifications and test method standards related to DRA.

IEC TR 61292-6:2023

https://standards.iteh.ai/catalog/standards/sist/376310e9-5569-4369-9925-ac16e8c524dc/iec-tr-61292-6-2023

OPTICAL AMPLIFIERS -

Part 6: Distributed Raman amplification

1 Scope

This part of IEC 61292, which is a Technical Report, relates to distributed Raman amplification (DRA). Its main purpose is to provide background material for future standards related to DRA, such as specifications, test methods and operating procedures. This document covers the following aspects:

- general overview of Raman amplification;
- applications of DRA;
- performance characteristics and test methods related to DRA;
- operational issues relating to the deployment of DRA.

As DRA is a relatively new technology, and still rapidly evolving, some of the material in this document can become obsolete or irrelevant in a fairly short period of time. This document will be updated frequently to minimize this possibility.

2 Normative references

There are no normative references in this document.

3 Terms, definitions, and abbreviated terms 5569-4369-9925-ac16e8c524de/lec-tr-

3.1 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp

3.2 Abbreviated terms

For the purposes of this document, the following abbreviated terms apply.

APR automatic power reduction

DCF dispersion compensating fibre

DOP degree of polarization

DRA distributed Raman amplification
DRB double Rayleigh backscattering

DWDM dense wavelength division multiplexing

EDFA erbium-doped fibre amplifier
ESA electrical spectrum analyzer

FBG fibre Bragg grating
FWHM full width half maximum

GFF gain flattening filter

LRFA lumped Raman fibre amplifier

MPI multi-path interference

NZDSF non-zero dispersion shifted fibre

OA optical amplifier

OFA optical fibre amplifier

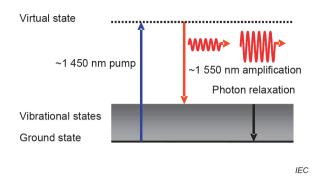
OSA optical spectrum analyzer
OSC optical supervisory channel
OSNR optical signal-to-noise ratio
PDG polarization dependent gain
PMD polarization mode dispersion

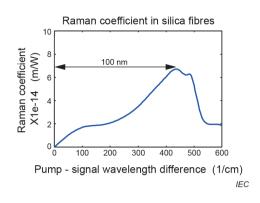
RIN relative intensity noise

ROADM reconfigurable optical add drop multiplexer

SMF single mode fibre

4 Background


4.1 General


Clause 4 provides a brief introduction to the main concepts of Raman amplification. Further information can be found in IEC TR 61292-3 and ITU-T G.665 as well as in the Bibliography.

4.2 Raman amplification process

Raman scattering, first discovered by Sir Chandrasekhara Raman in 1928, describes an inelastic scattering process whereby light is scattered by matter molecules and transferred to a longer wavelength (lower energy). In this interaction between light and matter, a photon excites the matter molecules to a high (virtual) energy state, which then relaxes back to the ground state by emitting another photon as well as vibration (i.e., acoustic) energy. Due to the vibration energy, the emitted photon has less energy than the incident photon, and therefore a longer wavelength.

Stimulated Raman scattering describes a similar process whereby the presence of a longer wavelength photon stimulates the scattering process, namely the absorption of the initial shorter wavelength photon, resulting in the emission of a second longer wavelength photon, thus providing amplification. This process is shown in Figure 1 a) for silica fibres, where a ~1 550 nm signal is amplified through absorption of pump energy at ~1 450 nm. Unlike doped OFAs, such as EDFAs, where the gain spectrum is constant and determined by the dopants, with Raman amplification the gain spectrum depends on the pump wavelength, with maximum gain occurring at a frequency of about 13 THz (for silica fibres) below that of the pump. This is shown in Figure 1 b).

a) Stimulated Raman scattering process

b) Raman gain spectrum for silica fibres

Figure 1 – Stimulated Raman scattering process and Raman gain spectrum for silica fibres

In its most basic form, a Raman amplifier consists of a Raman pump laser, a fibre amplification medium, and a means of coupling the Raman pump and input signal into the fibre. The main performance parameter characterizing the Raman amplifier is the on-off gain, which is defined as the ratio of the output signal (i.e., the signal at the fibre output) when the Raman pumps are on to the output signal when the Raman pumps are off (the on-off gain will be further discussed in 6.3.2). Neglecting pump power depletion (i.e., small input signal regime), the on-off gain of a Raman amplifier can be approximated by

$$($$
Standards iteh.ai $)$ $G = 4,34 C_R PL_{eff}$

where

IEC 1R 61292-6:2023

https://standards.iteh.ai/catalog/standards/sist/376310e9-5569-4369-9925-ac16e8c524dc/iec-tr-

G is the on-off gain (in dB);

 C_{R} is the Raman efficiency between pump and signal;

P is the coupled pump power;

Leff is the effective length of the fibre with respect to the Raman process, defined as

$$L_{\text{eff}} \equiv \frac{1 - e^{-\alpha_{\text{p}}L}}{\alpha_{\text{p}}}$$

where

 α_n is the fibre attenuation coefficient at the pump wavelength.

The Raman efficiency $C_{\rm R}$ depends on the separation between the pump and signal wavelengths, as well as their relative polarization. If the pump and signal polarizations are orthogonal, then $C_{\rm R}$ = 0, whereas if they have the same polarization, $C_{\rm R}$ is maximum. In many cases, the pump is depolarized, and then $C_{\rm R}$ is approximately half the maximum value. In other cases, the pump and signal relative polarization changes continuously as they propagate along the fibre amplification medium, so that $C_{\rm R}$ has the same average value as for the depolarized pump case. However, in this case, $C_{\rm R}$ can have some residual dependence on signal polarization, resulting in PDG.

Taking as an example conventional single-mode fibre (SMF) and a depolarized pump with wavelength of 1 450 nm, then $C_{\rm R}$ for a signal located at 1 550 nm is approximately 0,4 W⁻¹km⁻¹. In the limit of a long fibre, where $L_{\rm eff} \approx \alpha_{\rm p}^{-1} \approx$ 17 km, a 500 mW pump provides approximately 15 dB of on-off gain, illustrating the low gain efficiency of the Raman process. The gain efficiency can be increased using highly non-linear fibre (such as DCF); however, a relatively long length of fibre (approximately 10 km) is still needed to achieve reasonably high gain.

4.3 Distributed vs. lumped amplification

Typically, OFAs are deployed as lumped (or discrete) amplifiers, meaning that the amplification occurs within a closed amplifier module. These modules are placed at various points along the optical link (discrete amplification sites at the end of each fibre span), so that the transmission signal, which is attenuated along the fibre span, is amplified back to the desired power level at the discrete site at the end of each span. This is illustrated graphically by the green curve in Figure 2. Raman amplifiers can also be used as discrete amplifiers. However, as shown in 4.2, this requires special highly non-linear fibres. Even then the application of such amplifiers is limited due to multi-path interference (to be discussed in 6.3.6), and other issues, and in most cases other lumped amplifiers, such as EDFAs, are preferable.

While most OFAs require a special doped fibre (such as Erbium doped fibre for EDFAs) to provide amplification, Raman amplification can occur in any fibre, and within the transmission fibre itself. This enables distributed Raman amplification (DRA), i.e., the process whereby the transmission fibre itself is pumped to provide amplification for the signal as it travels along the fibre. The blue curve in Figure 2 shows signal evolution for distributed Raman amplification in counter-propagating ("backward") configuration, where the Raman pump power is introduced at the end of each span and propagates counter to the signal. Since gain occurs along the transmission fibre, DRA prevents the signal from being attenuated to low powers where noise is significant, thus improving the optical signal-to-noise ratio (OSNR) of the transmitted signal. The fact that the net attenuation of the signal along the span is reduced can also be utilized to launch the signal into the transmission fibre with less power, which can be important in applications where signal non-linear effects are an issue. DRA can also be used in a copropagating ("forward") configuration, where the Raman pump power is introduced at the span input and propagates with the signal. The distinction between the two configurations is discussed in more detail in 4.5.

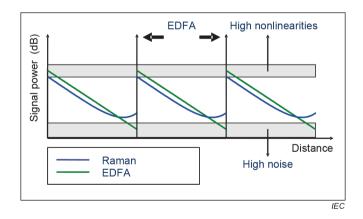


Figure 2 - Distributed vs. lumped amplification