

Designation: A753 - 08 (Reapproved 2013) A753 - 21

Standard Specification for Wrought Nickel-Iron Soft Magnetic Alloys (UNS K94490, K94840, N14076, N14080)¹

This standard is issued under the fixed designation A753; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This specification covers commonly used wrought nickel-iron soft magnetic alloys produced or supplied expressly for use in magnetic cores and other parts requiring high magnetic permeability, high electrical resistivity, low coercive field strength, and low core loss.
- 1.2 This specification covers materials supplied by a producer or converter to the form and physical condition desired for fabrication into parts that will later be given a final heat treatment to achieve the desired magnetic characteristics. It covers materials supplied in the form of forging billet; hot-rolled plate, strip, and bar; cold-finished bar; cold-rolled and annealed sheet and strip; shaped bar and wire; and wire.
- 1.2.1 This specification does not cover either powder metallurgically produced or cast parts.
- 1.2.2 This specification lists requirements for strip products having isotropic or semi-isotropic magnetic properties but does not include requirements for anisotropic or square hysteresis loop alloys or alloys processed to yield flattened hysteresis loops by use of heat treatments in an applied magnetic field.
- 1.2.3 This specification does not cover alloys modified by the addition of elements such as sulfur and selenium to enhance machinability.
- 1.3 The values stated in <u>inch-poundSI</u> units are to be regarded as standard. The values given in parentheses are mathematical conversions to <u>SI units thatcustomary (cgs-emu and inch-pound) units which</u> are provided for information only and are not considered standard.
- 1.3.1 There are selected values presented in two units, both of which are in acceptable SI units. These are differentiated by the word ", or," as in "g/cm³, or, (kg/m³)." In addition, values for mean linear coefficient of expansion in Table X1.1 are shown solely in μm/m/°C in keeping with prior versions of this standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

¹ This specification is under the jurisdiction of ASTM Committee A06 on Magnetic Properties, and is the direct responsibility of Subcommittee A06.02 on Material Specifications.

Current edition approved May 1, 2013Feb. 1, 2021. Published July 2013February 2021. Originally approved in 1978. Last previous edition approved in 20082013 as A753A753 – 08 (2013).—08. DOI: 10.1520/A0753-08R13:10.1520/A0753-21.

2. Referenced Documents

2.1 ASTM Standards:²

A34/A34M Practice for Sampling and Procurement Testing of Magnetic Materials

A340 Terminology of Symbols and Definitions Relating to Magnetic Testing

A341/A341M Test Method for Direct Current Magnetic Properties of Soft Magnetic Materials Using D-C Permeameters and the Point by Point (Ballistic) Test Methods

A480/A480M Specification for General Requirements for Flat-Rolled Stainless and Heat-Resisting Steel Plate, Sheet, and Strip

A484/A484M Specification for General Requirements for Stainless Steel Bars, Billets, and Forgings

A555/A555M Specification for General Requirements for Stainless Steel Wire and Wire Rods

A596/A596M Test Method for Direct-Current Magnetic Properties of Materials Using the Point by Point (Ballistic) Method and Ring Specimens

A772/A772M Test Method for AC Magnetic Permeability of Materials Using Sinusoidal Current

A773/A773M Test Method for Direct Current Magnetic Properties of Low Coercivity Magnetic Materials Using Hysteresigraphs

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

E1019 Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Inert Gas Fusion Techniques

3. Terminology

- 3.1 The Except as noted in 3.1.1 below, the terms and symbols used in this specification are defined in Terminology A340.
- 3.1.1 Permeability values listed in Table 4 and Table 5, are relative permeabilities, that is, the absolute value divided by the magnetic constant. Permeability values will not make further reference to the qualifying term, "relative."

4. Classification

4.1 Four specific alloy types are covered in Table 1.

TABLE 1 Specific Alloy Types

Alloy Type	e UNS Number ^A	Nickel Range, % ^B
1	K94490/ A753_	43.5 to 46.5
2	K94840	47.0 to 49.0
catalog/ s tan	dards/sist N140768 b 95-48	d9-4 75.0 to 78.0 0-25
4	N14080	79.0 to 82.0

⁴ N14080 79.0 to 82.0

A UNS refers to the Unified Numbering System, an alloy identification system

4.2 Alloy Type 2 in thin-strip form (thickness less than or equal to 0.020 in. (0.51 mm))0.51 mm (0.020 in.)) is available in two different grades. Grade 1 is semi-isotropic and is recommended for use in transformer laminations. Grade 2 is isotropic and is recommended for use in rotating machinery laminations and magnetic shielding parts. These grades are the result of different mill processing (that is, cold-rolling and annealing) practices and cannot be created by changes in the final heat treatment given to the laminations or parts.

5. Ordering Information

- 5.1 Orders for material conforming to this specification shall include the following information:
- 5.1.1 Reference to this specification and year of issue or revision.
- 5.1.2 Alloy type (Section 4) and grade where appropriate.

supported by ASTM. Refer to Practice E527 for details. $^{\mathcal{B}}$ Alloy Types 3 and 4 have additions of molybdenum, copper, and chromium to improve magnetic performance.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

- 5.1.3 Dimensions and tolerances (Section 12).
- 5.1.4 Quantity (weight or number of pieces as appropriate).
- 5.1.5 Form and condition (Section 7).
- 5.1.6 Magnetic property requirements if they are other than those listed in this specification.
- 5.1.7 Certification of chemical analysis and magnetic quality evaluation.
- 5.1.8 Marking and packaging requirements.
- 5.1.9 *End Use*—Whenever possible, the user should specify whether the material will be machined, blanked into flat pieces, blanked and formed, deep drawn to shape, wound into a core, punched into laminations, or photo-etched. This will help the producer to provide the most suitable material for the user's fabricating practices.
- 5.1.10 Exceptions to this specification or special requirements such as mechanical property requirements.

6. Chemical Composition

- 6.1 The alloys shall conform to the requirements prescribed in Table 2. Since magnetic performance is paramount, analysis variations are permitted by mutual agreement between the user and producer.
- 6.2 Determination of metallic constituents and phosphorus shall be by a method(s) acceptable to both producer and user. Analysis of carbon and sulfur shall be done in accordance with Test Methods E1019.

7. Form and Condition

- 7.1 These materials are capable of being produced in a wide variety of forms and conditions suitable for further manufacture into specific magnetic articles. The desired form and condition shall be specified and should be discussed with the producer before ordering to assure receiving the appropriate product. Available forms and conditions are:
- 7.1.1 Forging Billet—Hot worked; hot worked with surfaces prepared by grinding. bcb-256b77784d[4/astm-a753-2]
- 7.1.2 *Hot-Rolled Plate, Strip, and Bar*—Hot-rolled; hot-rolled and acid cleaned; hot-rolled and annealed; hot-rolled, annealed, and acid cleaned; hot-rolled and mechanically cleaned; mechanical properties as specified.
- 7.1.3 *Cold-Finished Bars*—Cold-drawn; cold-drawn and centerless ground; cold-drawn and annealed to specified mechanical properties.

TABLE 2 Chemical Requirements (Weight Percent)

	Alloy 1 UNS	Alloy 2 UNS	Alloy 3 UNS	Alloy 4 UNS
	K94490	K94840	N14076	N14080
Carbon, max.	0.05	0.05	0.05	0.05
Manganese, max.	0.80	0.80	1.5	0.80
Silicon, max.	0.50	0.50	0.50	0.50
Phosphorus, max.	0.03	0.03	0.02	0.02
Sulfur, max.	0.01	0.01	0.01	0.01
Chromium	0.30 max.	0.30 max.	2.0-3.0	0.30 max.
Nickel	43.5-46.5	47.0-49.0	75.0-78.0	79.0-82.0
Molybdenum	0.30 max	0.30 max.	0.50 max	3.5-6.0
Cobalt, max.	0.50	0.50	0.50	0.50
Copper	0.30 max	0.30 max.	4.0-6.0	0.30 max.
Iron ^A	balance	balance	balance	balance

 $^{^{\}it A}$ Iron is the balance by difference. Quantitative analysis of this element is not required.

- 7.1.4 *Cold-Rolled Sheet and Strip*—Strip—Cold-rolled; deep draw quality; cold-rolled and annealed to specified mechanical properties.
 - 7.1.5 Wire—Cold-drawn; cold-drawn and annealed to specified mechanical properties.
 - 7.1.6 Shaped Bar and Wire—Cold-worked; cold-worked and annealed to specified mechanical properties.

8. Magnetic Property Requirements—General Requirements

- 8.1 *Test Methods*—Because of the extremely high magnetic permeabilities developed in these alloys after heat treatment, the use of permeameters (Test Method A341/A341M) is expressly forbidden. Allowable test methods are those using ring-type specimens.
- 8.2 Test Specimen—Whenever possible, test specimen size and shape shall conform to those listed in Practice A34/A34M. Specimen shapes such as stacked laminations, solid rings, and spirally wound tape and wire cores are necessary for the most accurate results. If, however, the product form or dimensions precludes the use of a preferred test specimen, the specimen shape and size shall be mutually agreed upon between the producer and user.
- 8.3 Density—The assumed densities of these materials for purposes of magnetic testing shall be as in Table 3:
- 8.4 *Heat Treatment*—The heat treatment applied to the test specimen shall be mutually agreed upon between the producer and user. If no such agreement exists, the heat treatment applied to the test specimen shall be chosen by the producer to exceed the magnetic property requirements listed in Tables 4 and 5 of this specification. Refer to Appendix X2 for information on heat treatment of these alloys.

9. dc Magnetic Property Requirements

- 9.1 dc magnetic testing shall be the only magnetic test method used for all product forms and sizes other than thin strip and sheet. Thin sheet and strip is defined as flat-rolled product having a thickness of 0.020 in. (0.51 mm)0.51 mm (0.020 in.) or less.
- 9.2 Testing shall be conducted using either Test Method A596/A596M or Test Method A773/A773M.
- 9.3 The dc magnetic property requirements after appropriate heat treatment are shown in Table 4. The symbol d refers to the minimum dimension such as thickness or diameter.

10. ac Magnetic Property Requirements (Thin Sheet and Strip Only)

- 10.1 ac magnetic testing shall be used for all strip and sheet with a thickness of 0.020 in. (0.51 mm)0.51 mm (0.020 in.) or less.
 - 10.2 Testing shall consist of impedance permeability measured at 60Hz and shall be conducted using Test Method A772/A772M.
 - 10.3 The ac magnetic property requirements after appropriate heat treatment are shown in Table 5.
 - 10.3.1 For thicknesses not listed, the requirements shall be determined by linear interpolation of data shown in Table 5.

TABLE 3 Assumed Density

		Assumed Density				
Alloy Type	UNS No.	g/cm ³	, or,	(kg/m ³)		
1	K94490	8.17	8170			
1	K94490	8.17		(8170)		
2	K94840	8.25	8250			
2	K94840	8.25		(8250)		
3	N14076	8.58	8580			
3	N14076	8.58		(8580)		
4 (4 % Mo)	N14080	8.74	8740			
4 (4 % Mo)	N14080	8.74		(8740)		
4 (5 % Mo)	N14080	8.77	8770			
4 (5 % Mo)	N14080	<u>8.77</u>		<u>(8770)</u>		

TABLE 4 dc Magnetic Property Requirements

Note 1—The coercive field strength for Alloy Types 1 and 2 is determined from a maximum induction of 10 kG (1.0 T); magnetic flux density of 1.0 T (10 kG), while for Alloy Types 3 and 4 the coercive field strength is determined from a maximum induction of 5 kG (0.5 T): magnetic flux density of 0.5 T (5 kG).

(C RO).						
		Alloy	Alloy	Alloy	Alloy	
		Type 1	Type 2	Type 3	Type 4	
Product Form and Size	Magnetic Property	UNS	UNS	UNS	UNS	
		K94490	K94840	N14076	N14080	
		104490	1134040	1414070		_
	(Relative) Permeability at 40 G (14 mT), min				35 000	
Billet (all sizes)		Permeability at 4 mT				35 000
ar, Wire, Plate, Plate Coil	Billet (all sizes)	(40 G), min	<u></u>	····	<u>· · · ·</u>	00 000
-0.500 in. (12.7 mm)	(Florial Wise), Fred at the call states of the state of t	4500	6000		42 000	
	Øermla∂ihittyna(0.15000mih.≬100 G), min	<u>4500</u>	<u>6000</u>	<u></u>	42 000	
	(Relative) Maximum Permeability, min	35 000	50 000		175-000	
	Maximum Permeability, min	35 000	50 000	<u></u>	175 000	
	Coercive Field	0.000	0.075		0.005	
	Strength, Oe (A/m),	0.080			0.025	
	max.	(6.4)	(6.0)		(2.0)	
	Coercive Field	0.4	0.0		0.0	
	Strength A/m	6.4	6.0		2.0	
	(Oe), max	(0.080)	<u>(0.075)</u>	····	(0.025)	
	(00),					
	(Relative)					
	Permeability at 40 G				35 000	
	(4 mT), min	• • •			55 000	
	(7 1111 /, 111111	Permeability				
		at 4 mT				35 000
, Wire, Plate, Plate Coil		(40 G), min	· · · ·	· · ·	· · · ·	33 000
$d \le 0.500$ in.	(Polotivo)	(40 G), IIIII				
(12.7 mm)	(Relative) Bar, Wird & International Mayor Color G	5000	7500		42.000	
		9000	7500		42 000	
	$\frac{d \le 12.7 \text{(fl0mmT)}, \text{ min}}{\text{CP}_{\text{TSO}} + \text{TP}_{\text{TSO}}}$					
	(Cesting aim)ity	1001600	7500		40.000	
	at 10 mT	5000	<u>7500</u>	<u></u>	<u>42 000</u>	
	(100 G), min					
	(Relative) Maximum	40 000	60 000		175 000	
	Permeability, min	amusanen	. 2111			
	Maximum	40 000	60 000		175 000	
	Permeability, min	40 000	00 000	<u></u>	170 000	
	Coercive Field	0.080	0.070		0.025	
	Strength, Oe (A/m),	(6.4)	(5.6)		(2.0)	
	max.	(0.4)	(5.0)		(2.0)	
	Coercive Field	6.4	E 6		2.0	
	Strength A/m	6.4	(0.070)	<u></u>	(0.005)	
	(Oe), max	53-21 (0.080)	(0.070)	_	(0.025)	
						
	(Relative)					
	Permeability at 40 G				35 000	
	——————————————————————————————————————		* *	· •		
	· · · · · / · · · · · ·	Permeability				
		at 4 mT				35 000
Sheet and Strip		(40 G), min	· · ·	····	· · ·	55 555
0.000 - 1 - 0.407 '		(-0 a), min				
$0.060 \le d \le 0.187$ in.	(Polativo)				40.000	
$-0.060 \le a \le 0.187 \text{ in.}$ $-(1.52 \le d \le 4.75 \text{ mm})$	(Relative)	6000	9000			
	Sheet an Dostripability at 100 G	6000	8000	• • • •	42 000	
	Sheet an locating pability at 100 G 1.52 ≤ d(±04m75),mmin	6000	8000		42 000	
	Sheet an Baconipability at 100 G 1.52 ≤ d(104m/5),mmin Reo@@ability≤ 0.187 in.)					
	Sheet an ide@thipability at 100 G 1.52 ≤ d(104m/b),mmin (Reo@@abilidy≤ 0.187 in.) at 10 mT	6000 6000	8000 8000	 	42 000 42 000	
	<u>Sheet an de@tripability at 100 G</u> <u>1.52 ≤ of(104m/5),mmin</u> <u>Reo@@abilidy≤</u> 0.187 in.) <u>at 10 mT</u> (100 G), min					
	Sheet an @c@tnipability at 100 G 1.52 ≤ d(±0.4n75),mmin (2.00@abilidy≤ 0.187 in.) at 10 mT (100 G), min (Relative) Maximum	6000	8000	<u></u>	42 000	
	<u>Sheet an de@tripability at 100 G</u> <u>1.52 ≤ of(104m/5),mmin</u> <u>Reo@@abilidy≤</u> 0.187 in.) <u>at 10 mT</u> (100 G), min	<u>6000</u> 50 000	8000 90 000		<u>42 000</u> 200 000	
	Sheet an destripability at 100 G 1.52 ≤ d(10.4n75),mmin Redo@ability≤ 0.187 in.) at 10 mT (100 G), min (Relative) Maximum Permeability, min	6000	8000	<u></u>	42 000	
	Sheet an @c@tnipability at 100 G 1.52 ≤ d(±0.4n75),mmin (2.00@abilidy≤ 0.187 in.) at 10 mT (100 G), min (Relative) Maximum	6000 50 000 50 000	8000 90 000 90 000	 	42 000 200 000 200 000	
	Sheet an destripability at 100 G 1.52 ≤ d(10.4n75),mmin Redo@ability≤ 0.187 in.) at 10 mT (100 G), min (Relative) Maximum Permeability, min	6000 50 000 50 000 0.080	8000 90 000 90 000 0.070	 	42 000 200 000 200 000 0.025	
	Sheet an destripability at 100 G 1.52 ≤ d(±0.4m75),mmin Res000ability≤ 0.187 in.) at 10 mT (100 G), min (Relative) Maximum Permeability, min Coercive Field	6000 50 000 50 000	8000 90 000 90 000	 	42 000 200 000 200 000	
	Sheet an destripability at 100 G 1.52 ≤ d(\$104n75),mmin Rec00eability≤ 0.187 in.) at 10 mT (100 G), min ————————————————————————————————————	6000 50 000 50 000 0.080 (6.4)	8000 90 000 90 000 0.070 (5.6)	 	42 000 200 000 200 000 0.025 (2.0)	
	Sheet an destripability at 100 G 1.52 ≤ d(10 4m/b),mmin (teo@eability≤ 0.187 in.) at 10 mT (100 G), min (Relative) Maximum Permeability, min Coercive Field Strength, Oe (A/m), max. Coercive Field	6000 50 000 50 000 0.080 (6.4) 6.4	8000 90 000 90 000 0.070 (5.6) 5.6	 	42 000 200 000 200 000 0.025 (2.0) 2.0	
	Sheet an destripability at 100 G 1.52 ≤ d(\$104m7b),mmin Res06e ability ≤ 0.187 in.) at 10 mT (100 G), min (Relative) Maximum Permeability, min Coercive Field Strength, Oe (A/m), max.	6000 50 000 50 000 0.080 (6.4)	8000 90 000 90 000 0.070 (5.6)	 	42 000 200 000 200 000 0.025 (2.0)	

10.3.2 For thicknesses outside the ranges shown in Table 5, the ac magnetic property requirements shall be as mutually agreed between the producer and user.

Product Form and Size	Magnetic Property	Alloy Type 1 UNS K94490	Alloy Type 2 UNS K94840	Alloy Type 3 UNS N14076	Alloy Type 4 UNS N14080	
	(Relative) Permeability at 40 g			55 000	55 000	
	(4 mT), min	Permeability			FF 000	FF 000
Sheet and Strip	(Relative)	at 4 mT (40 G), min	····	····	<u>55 000</u>	<u>55 000</u>
(0.51 < d < 1.52 mm)	Sheet and compability at 100 G 0.51 < d (40.502) mmin	7500	9000	70 000	70-000	
	Re022@abitty 0.060 in.) at 10 mT (100 G), min	<u>7500</u>	9000	70 000	<u>70 000</u>	
	(Relative) Maximum Permeability, min	55 000	100-000	250-000	250-000	
	Maximum Permeability, min	<u>55 000</u>	100 000	250 000	250 000	
	Coercive Field	0.070	0.060	0.015	0.015	
	Strength, Oe (A/m), max.	(5.6)	(4.8)	(1.2)	(1.2)	
	Coercive Field Strength A/m (Oe), max	<u>5.6</u> (0.070)	4.8 (0.060)	<u>1.2</u> (0.015)	<u>1.2</u> (0.015)	

11. Typical Physical and Mechanical Properties

11.1 Typical physical and mechanical properties are listed in Appendix X1.

12. Dimensions and Tolerances

- 12.1 Dimensions and tolerances for all product forms and sizes shall be as mutually agreed upon between the producer and user. In lieu of such agreement, the tolerances listed in the latest issue of the following specifications shall apply.
- 12.1.1 Bars and Billets—Specification A484/A484M.
- 12.1.2 Plate, Sheet, and Strip—Specification A480/A480M. A753-21
- 12.1.3 Wire and Wire Rod—Specification A555/A555M.

13. Rejection and Rehearing

- 13.1 Material that fails to conform to the requirements of this specification may be rejected by the user. The rejection shall be reported to the producer promptly and in writing. The rejected material shall be set aside, adequately protected and correctly identified.
- 13.2 The producer may make claim for a rehearing. In this event, the user shall make samples that are representative of the rejected material available to the producer for evaluation.

14. Certification

14.1 When specified in the purchase order or contract, the user shall be furnished certification that samples representing each lot have been either tested or inspected as directed in this specification and the requirements have been met. When specified in the purchase order or contract, a report of the test results shall be furnished to the user from the producer.

15. Packaging and Package Marking

- 15.1 Packaging shall be subject to agreement between the producer and user.
- 15.2 Material furnished under this specification shall be identified by the name or symbol of the producer, alloy type, grade where appropriate, heat number, and product size. Each heat supplied on an order must be identified and packaged separately.

TABLE 5 60-Hz ac Magnetic Property Requirements

Note 1—Alloy Type 2 Grade 1 is not normally produced in thickness greater than 0.014 in. (0.35 mm).0.36 mm (0.014 in.).

Alloy Type and Grade	Thickness in. (mm)		Minimum (Relative) Impedance Permeability (μz) at the Peak Flux Density of:				
Grade	Minimum ac Impedar at a Peak Magr	nce Resmesbilityn(µz) netic Flux, Deasity of:	Thickness mm (in.)	200 G (20 mT)	2000 G (200 mT)	4000 G (400 mT)	— 8000 G (800 mT)
	_	4 mT (40 G)	20 mT (200 G)	200 mT (2000 G)	400 mT (4000 G)	800 mT (8000 G)	(000)
Type 2	0.014 (0.36)	10 500	15 000	32 000			_
UNS K94840	Type 2	0.36 (0.014)	10 500	15 000	32 000	<u></u>	<u></u>
Grade 1	<u>4J0485</u> K 9425 (0	11 000	17-000	40-000			
	G@d5 1 (0.010)	11 000	<u>17 000</u>	40 000	<u></u>	<u></u>	
	0.006	12 000	18 000	44-000			
	(0.15) 0.15 (0.006)	12 000	18 000	44 000	<u></u>	<u></u>	
	(0.006)				_	_	
	0.020 (0.51)	7000	11 500	23 000	27 000	23 500	
		<u>0.51</u> (0.020)	<u>7000</u>	<u>11 500</u>	23 000	<u>27 000</u>	23 500
Type 2	0.014 (0.36)	10 000	17 000	32 000	40 000	45 000	
UNS K94840	<u>0.36</u> (0)(p442)	10 000	<u>17 000</u>	32 000	40 000	<u>45 000</u>	
Grade 2	(U)(N)(S) ((D)(235) ()	10 000	17 000	37 000	47 000	59 000	
	<u>G@252</u> (0.010)	10 000	St 17 000	37 000	<u>47 000</u>	59 000	
		0.008 (0.20)	9500	16 500	39-000	51 000	66 500
<u>0.20</u> (0.008)		9500	16 500	39 000	<u>51 000</u>	66 500	
	0.006 (0.15)	8500	14 500	39 000	55-000	73 000	
	<u>0.15</u> (0.006)	8500	14 500	39 000	<u>55 000</u>	73 000	
	0.004 (0.010)	7000	12 000	35 000	52 000	72 000	
	0.10 (0.004) //catalo	7000 yg/standards/sist/	12 000	35 000	52 000	72 000	
	0.002 (0.05)	5000	8000	26 000	41 000	58 000	
	<u>0.05</u> (0.002)	5000	8000	<u>26 000</u>	41 000	<u>58 000</u>	
	0.020 (0.51)	35 000	40 000	50 000			
		<u>0.51</u> (0.020)	<u>35 000</u>	40 000	<u>50 000</u>	<u></u>	· · ·
	0.014 (0.36)	50 000	60-000	80-000			
Type 4	<u>0.36</u> (0.014)	50 000	60 000	80 000	<u></u>	<u></u>	
UNS N14080	0.010 (0.25) type 4	60 000	75 000	105 000			
1111000	1075 - N14080	60 000	<u>75 000</u>	105 000	<u></u>	<u></u>	
	1414000	0.008 (0.20)	65-000	80-000	120-000		
		<u>0.20</u> (0.008)	<u>65 000</u>	80 000	120 000	<u></u>	<u></u>
	0.006 (0.15)	70-000	90-000	140 000			
	<u>0.15</u> (0.006)	<u>70 000</u>	90 000	140 000	<u></u>	<u></u>	
	0.004 (0.010)	95 000	110 000	190-000			
	0.010 (0.004)	95 000	110 000	190 000	<u></u>	<u></u>	
0.003 (0.076)	100-000	120 000	230 000				