

Edition 1.0 2024-02

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Measurement of internal electric field in insulating materials – Pressure wave propagation method

Mesurage du champ électrique interne dans les matériaux isolants – Méthode de l'onde de pression

IEC 62836:2024

https://standards.iteh.ai/catalog/standards/iec/0f3e7cc5-e44b-4186-8ce4-7cb603055c08/iec-62836-2024

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2024 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IFC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.jec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

http://centre.sales@iec.ch.al/catalog

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications, symboles graphiques et le glossaire. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 500 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 25 langues Egalement appelé additionnelles. Vocabulaire Electrotechnique International (IEV) en ligne.

Edition 1.0 2024-02

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Measurement of internal electric field in insulating materials – Pressure wave propagation method

Mesurage du champ électrique interne dans les matériaux isolants – Méthode de l'onde de pression

IEC 62836:2024

https://standards.iteh.ai/catalog/standards/iec/0f3e7cc5-e44b-4186-8ce4-7cb603055c08/iec-62836-2024

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 17.220.99, 29.035.01

ISBN 978-2-8322-8338-7

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FO	REWC	RD	5
INT	RODU	ICTION	7
1	Scop	e	8
2	Norn	native references	8
3	Term	s, definitions and abbreviated terms	8
:	3.1	Terms and definitions	8
:	3.2	Abbreviated terms	8
4	Princ	iple of the method	9
5	Sam	oles	12
6	Elec	rode materials	12
7	Pres	sure pulse wave generation	12
8	Set-ı	of the measurement	13
9	Calib	rating the electric field	
10	Mea		14
11	Data	processing for experimental measurement	15
10	Space	processing for experimental measurement	10
12	Spac	e charge distribution measurement	10
13	Impa	ct of coaxial geometry	10
	13.1	Measuring set-up of pressure wave propagation method for the coaxial geometry sample	16
	13.2	Physical model in coaxial geometry	
	13.3	Measuring conditions	18
	13.4	Calibration of electric field for a coaxial sample	19
	13.4	1 Summary	19
	13.4	2 Linearity verificationEC 62836:2024	19
	13.4	3 Validity verification of the ratio between two current peaks	⁵²⁸³ 19 ²⁰²
	13.4	4 Method for retrieving internal electric field from the measured current signal	20
Anr	nex A	informative) Preconditional method of the original signal for the PWP	
me	thod o	n a planar sample	22
4	A.1	Simple integration limitation	22
	A.2	Analysis of the resiliency effect and correction procedure	23
1	A.3	Example of the correction procedure on a PE sample	24
	A.4	Estimation of the correction coefficients	25
A	A.5	MAILAB® code	27
Anr		Informative) Linearity verification of the measuring system	29
	B.1	Linearity verification	29
	Б.Z Б 2	Sample conditions	29 20
	D.J R 1	Example of linearity verification	29 20
Anr	D.4 Dex C.	(informative) Measurement examples for planar plaque samples	29 32
	C 1	Samilae	20 20
	C 2	Pressure pulse generation	32 32
	C.3	Calibration of sample and signal	
	C.4	Testing sample and experimental results	
	C.4.	Measurement results	33

C.4.2	Internal electric field distribution in the testing sample	34	
C.4.3	Distribution of space charge density in the testing sample	36	
Annex D (info	rmative) Measurement examples for coaxial geometry samples	38	
D.1 Exa	mple of linearity verification of coaxial geometry		
D.1.1	Sample conditions		
D.1.2	Linearity verification procedure		
D.1.3	Example of linearity verification		
D.2 Ver	ification of the current peak area ratio between the outer and inner		
electrodes			
D.2.1	Verification principle		
D.2.2	Example of verification of the current peak area ratio	40	
D.3 Tes	ting sample and experimental results	40	
D.3.1	Raw results of measurements	40	
D.3.2	Electric field distribution in the coaxial sample	42	
D.3.3	Space charge distribution in the coaxial sample	44	
Bibliography			

Figure 1 – Principle of the PWP method	11
Figure 2 – Measurement set-up for the PWP method	13
Figure 3 – Sample of circuit to protect the amplifier from damage by a small discharge on the sample	13
Figure 4 – Diagram of the pressure wave propagation method set-up for a coaxial sample	17
Figure 5 – Diagram of wave propagation of PWP for a coaxial geometry sample	17
Figure 6 – Diagram of the propagation of pressure wave on the section of a cylinder	19
Figure 7 – Flowchart for the computation of the electric field in a coaxial sample from PWP measured currents	3. 21 2024
Figure A.1 – Comparison between practical and ideal pressure pulses	22
Figure A.2 – Original signal of the sample free of charge under moderate voltage	23
Figure A.3 – Comparison between original and corrected reference signals with a sample free of charge under moderate voltage	24
Figure A.4 – Electric field in a sample under voltage with space charge calculated from original and corrected signals	25
Figure A.5 – Geometrical characteristics of the reference signal for the correction coefficient estimation	26
Figure A.6 – Reference signal corrected with coefficients graphically obtained and adjusted	26
Figure A.7 – Electric field in a sample under voltage with space charge calculated with graphically obtained coefficient and adjusted coefficient	27
Figure B.1 – Voltage signals obtained from the oscilloscope by the amplifier with different amplifications	30
Figure B.2 – Current signals induced by the sample, considering the input impedance and the amplification of the amplifier	30
Figure B.3 – Relationship between the measured current peak of the first electrode and applied voltage	31
Figure C.1 – Measured current signal under −5,8 kV	32
Figure C.2 – First measured current signal (< 1 min)	33
Figure C.3 – Measured current signal after 1,5 h under −46,4 kV	33

Figure C.4 – Measured current signal without applied voltage after 1,5 h under −46,4 kV	
Figure C.5 – Internal electric field distribution under -5,8 kV	
Figure C.6 – Internal electric field distribution under -46,4 kV, at the initial state	35
Figure C.7 – Internal electric field distribution after 1,5 h under -46,4 kV	35
Figure C.8 – Internal electric field distribution without applied voltage after 1,5 h ur −46,4 kV	1der 36
Figure C.9 – Space charge distribution after 1,5 h under –46,4 kV	
Figure C.10 – Space charge distribution without applied voltage after 1,5 h under −46,4 kV	
Figure D.1 – Measured currents from the LDPE coaxial sample under different app voltages in a few minutes	lied 39
Figure D.2 – Relationships between the peak amplitude of the measured current at outer and inner electrodes and applied voltage	t 39
Figure D.3 – First measured current signal (< 1 min) for the coaxial sample	40
Figure D.4 – Measured current signals for the coaxial sample $$ at beginning and aft 2 h under –90,0 kV	er 41
Figure D.5 – Measured current signals for the coaxial sample after 2 h under -90,0 and without applied voltage after 2 h under high voltage) kV, 41
Figure D.6 – Internal electric field distribution under –22,5 kV for the coaxial sampl	le42
Figure D.7 – Internal electric field distribution under –90,0 kV for the coaxial sampl the initial state	le, at 43
Figure D.8 – Internal electric field distribution after 2 h under –90,0 kV	43
Figure D.9 – Internal electric field distribution without applied voltage after 2 h unc –90,0 kV	der 44
Figure D.10 – Space charge distribution with and without applied voltage after 2 h under −90,0 kV	45
Table A.1 – Variants of symbols used in the text	27
Table D.2 – Analysis of ratio between theoretical and measured peak area for measured current signal	40

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEASUREMENT OF INTERNAL ELECTRIC FIELD IN INSULATING MATERIALS – PRESSURE WAVE PROPAGATION METHOD

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
- other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
 - 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 62836 has been prepared by IEC technical committee 112: Evaluation and qualification of electrical insulating materials and systems. It is an International Standard.

This first edition cancels and replaces IEC TS 62836 published in 2020.

This edition includes the following significant technical changes with respect to IEC TS 62836:

- a) addition of Clause 12 for the measurement of space charge distribution in a planar sample;
- b) addition of Clause 13 for coaxial geometry samples;
- c) addition of Annex D with measurement examples for coaxial geometry samples;
- d) addition of a Bibliography;
- e) measurement examples for a planar sample have been moved from Clause 12 in IEC TS 62836 to Annex C.

The text of this International Standard is based on the following documents:

Draft	Report on voting
112/627/FDIS	112/632/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

IEC 62836:2024

https://standards.iteh.ai/catalog/standards/iec/0f3e7cc5-e44b-4186-8ce4-7cb603055c08/iec-62836-2024

INTRODUCTION

High-voltage insulating structures, especially high-voltage DC cables and capacitors etc., are subjected to charge accumulation and this can lead to electrical breakdown if the electric field produced by the charges exceeds the electrical breakdown threshold. With the trend to multiply power plants, especially green power plants such as wind or solar generators, more cables will be used for connecting these power plants to the grid and share the electric energy between countries. Therefore, a standardized procedure for testing how the internal electric field can be characterized has become essential for the materials used for the cables, and even the structure of these cables when considering electrodes or the junction between cables. The measurement of the internal electric field provides a tool for comparing materials and helps to establish thresholds on the internal electric field for high-voltage applications in order to avoid risks of breakdown as much as possible. The pressure wave propagation (PWP) method has been used by many researchers to measure the space charge distribution and the internal electric field distribution in insulators. However, since experimental equipment, with slight differences, is developed independently by researchers throughout the world, it is difficult to compare the measurement results between the different equipment.

The procedure outlined in this document provides a reliable point of comparison between different test results carried out by different laboratories in order to avoid interpretation errors. The method is suitable for a planar plaque sample as well as for a coaxial sample, with homogeneous insulating materials of thickness from 0,5 mm to 5 mm.

iTeh Standards (https://standards.iteh.ai) Document Preview

IEC 62836:2024

https://standards.iteh.ai/catalog/standards/iec/0f3e7cc5-e44b-4186-8ce4-7cb603055c08/iec-62836-2024

MEASUREMENT OF INTERNAL ELECTRIC FIELD IN INSULATING MATERIALS – PRESSURE WAVE PROPAGATION METHOD

1 Scope

This document provides an efficient and reliable procedure to test the internal electric field in the insulating materials used for high-voltage applications, by using the pressure wave propagation (PWP) method. It is suitable for a planar and coaxial geometry sample with homogeneous insulating materials of thickness larger or equal to 0,5 mm and an electric field higher than 1 kV/mm, but it is also dependent on the thickness of the sample and the pressure wave generator.

2 Normative references

There are no normative references in this document.

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp

3.1.1

EC 62836:2024

pressure wave propagation procedure where a pressure wave is propagated in a material containing electric charges and the induced electric signal from electrodes is measured.

3.1.2

interface charge

net layer of charges between two different materials, either two different insulators or a conductor and an insulator

3.1.3

space charge

net charge inside an insulating dielectric material

3.2 Abbreviated terms

- CB carbon black
- EVA ethylene vinyl acetate
- LDPE low density polyethylene
- LIPP laser induced pressure pulse
- PE polyethylene
- PIPP piezoelectric induced pressure pulse
- PMMA poly methyl methacrylate
- PWP pressure wave propagation
- S/N signal to noise ratio

4 Principle of the method

The principle of the PWP method is shown schematically in Figure 1, which is for a planar sample. Figure 1 a) shows the principle and the relation between the current measured with the PWP method and the electric field distribution in the sample without space charge. Figure 1 b) shows the principle and the relation between the current measured with the PWP method and the space charge distribution in the sample without applied voltage. Figure 1 c) shows the measuring schematics of the PWP method. In Figure 1, x_f is the position of pulse front, d_0 is the original thickness of sample, and $d_0 \approx d$ in the case of a narrow pulse.

The space charge in the dielectric and the interface charge are forced to move by the action of a pressure wave. The charge displacement then induces an electric signal in the circuit which is an image of the charge distribution in short-circuit current measurement conditions. The expression for the short-circuit current signal with time t is

$$i(t) = C_0 \int_0^d BE(x) \frac{\partial p(x, t)}{\partial t} dx$$
(1)

where

E(x) is the electric field distribution in the sample at position x;

d is the thickness of sample; CII Standards

p(x, t) is the pressure wave in the sample, which depends on the electrode materials, dielectric sample material, the condition of coupling on the interface, etc.;

 C_0 is the sample capacitance with the action of a pressure wave. The active area is the area on which the pressure wave acts, and it shall be less than the area of the measuring electrode.

C₀ depends on the thickness of the sample, and its surface area which is equal to the area of action of the pressure wave.

The constant $B = \chi(1-a/\epsilon)$ only depends on the characteristics of the dielectric materials. In this formula, χ is the coefficient of compressibility of the material, ϵ is the permittivity of the material and *a* is the coefficient of electrostriction of the material. For heterogeneous dielectric materials, *B* is a function of position. For homogeneous dielectric materials, *B* is thus put outside the integral as it does not depend on positions. However, *B* depends on the measurement conditions. The measurement is carried out in given environmental conditions so *B* shall be determined during the calibration in the same conditions (temperature, humidity and pressure). In this document, only homogeneous dielectric materials are considered, so *B* is a constant.

In Equation (1), the electric field distribution can be obtained if it is deconvolved.

b) Applied pressure pulse and measured short-circuit current with space charge but without applied voltage

Key

x_f position of pulse front

 d_0 original thickness of sample

 $d_0 \approx d$ in the case of a narrow pulse

Figure 1 – Principle of the PWP method

The applied pressure wave can be generated by different techniques, but the same kind of analysis can be done for any of these techniques. The main practical PWP method can be divided into two ways: a pressure pulse is induced by a powerful laser pulse, a technique called LIPP method, and a pressure pulse generated by a piezoelectric device, a technique called PIPP. The sensibility and resolution of the PWP method depends mainly on the amplitude and duration of the pressure pulse. The advantage of the LIPP method is to produce highly sensitive measurements without contact. The advantage of the PIPP method is to obtain the measurement with a high measuring rate and allow a low-cost measurement system.

In the case of a narrow pulse, for example when the duration of the pressure pulse is much smaller than the transit time of the pressure wave in the sample, τ is the pressure pulse duration 024 with $\tau \ll \left[\min(d_0, d_x)\right] / v_s$,

$$\begin{cases} \int_{0}^{t} i(t')dt' = C_0 B \overline{E(x)} \int_{0}^{d} p(x, t) dx \\ x = v_s t \end{cases}$$
(2)

where

 v_{s} is the sound speed in the sample;

E(x), $x = v_s t$ is the mean electric field during the pressure pulse width at the position x. For simplicity, it is shown as $\overline{E(x = v_s t)}$ in this document.

Because of sound loss and sound dispersion in polymer dielectrics, the amplitude of p(x,t) will decrease, and the width of p(x,t) will increase during the propagation of a pressure pulse in the sample. For polymer dielectrics, the sound dispersion is dominant, therefore, even if p(x,t)

- 12 -

is not a constant in the dielectrics, its integral $\int_{0}^{a} p(x,t) dx$ remains constant during its propagation

in the sample.

From Equation (2), if the signal is obtained with a sample free of charges and submitted to an intermediate voltage U_0 , $B \int_0^d p(x,t) dx$ can be obtained since the electric field $\overline{E(x=v_s t)} = E_0$ is uniform in this case and the sample capacitance C_0 is inversely proportional to the thickness of the sample. This can be used as a calibration base for the other measurements.

5 Samples

A dielectric insulating material is suggested, for example polyethylene, with a thickness of 1 mm or 2 mm planar plaque sample with a diameter sufficiently large to avoid edge discharges, typically larger than 200 mm with 50 mm disc form centred electrodes for 60 kV.

6 Electrode materials

The selection of electrode materials depends on the method of the generation of the pressure pulse wave. Usually, semi-conductive electrodes with ethylene-vinyl acetate (EVA) + carbon black (CB) or polyethylene (PE) + carbon black (CB) are used. For laser PWP (also called LIPP), the suitable thickness of the semi-conductive electrode is about 0,5 mm, and it shall be less than 1 mm. If the acoustic impedances are different for the electrode and the insulator, the transit time of the pressure wave through the electrode should be at least half the one in the insulator to avoid spurious echoes.

nttps://standards.neh.a/Catalog/standards/nec/013e7cc5-e44b-4186-8ce4-7cb603055c08/nec-62836-2024

It is important to keep good contact between the electrode and the insulator. It is recommended to use the hot-press method for marking the electrode on the sample.

NOTE The hot-press method is an effective and simple way for bonding semi-conductive electrode(s) and the PE sample to achieve good interfacial contacts between them. It involves the application of a uniaxial pressure at a temperature in a time duration which depend on the materials of the sample and electrodes.

7 Pressure pulse wave generation

The suggested pressure pulse wave should have a 20 ns to 50 ns duration, and a 1 MPa to 10 MPa amplitude for a sample of 0,5 mm to 5 mm thickness. It can be produced by a piezoelectric driven device, or by a powerful pulsed laser. If a powerful laser is used, the suggested energy is about 300 mJ to 500 mJ per pulse with a 3 ns to 7 ns duration.

NOTE The pressure amplitude, the duration, and the energy of the laser can be adjusted depending on the material tested.