INTERNATIONAL STANDARD

First edition 1994-09-01

Acoustics — Hearing protectors —

Part 2:

iTeh SEstimation of effective A-weighted sound pressure levels when hearing protectors are worndards.iteh.ai

<u>ISO 4869-2:1994</u>

https://standards.iteh.ai/catalog/standards/sist/38785b6d-8fc7-4927-9a97-Acoustique 12c/stotecteurs individuels contre le bruit —

Partie 2: Estimation des niveaux de pression acoustique pondérés A en cas d'utilisation de protecteurs individuels contre le bruit

ΙΝΙΤΓΟΝΙΑΤΙΟΝΙΑΙ

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting.

(standards.iteh.ai) International Standard ISO 4869-2 was prepared by Technical Committee ISO/TC 43, *Acoustics*, Subcommittee SC 1, *Noise*. ISO 4869-2:1994

ISO 4869 consists of the^{htt}following parts, cunder tanlard set and state a

- Part 1: Subjective method for the measurement of sound attenuation
- Part 2: Estimation of effective A-weighted sound pressure levels when hearing protectors are worn
- Part 3: Simplified method for the measurement of insertion loss of ear-muff type protectors for quality inspection purposes [Technical Report]
- Part 4: Methods for the measurement of sound attenuation of amplitude-sensitive hearing protectors

Annexes A, B, C, D and E of this part of ISO 4869 are for information only.

Printed in Switzerland

[©] ISO 1994

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Introduction

Ideally, the A-weighted sound pressure level effective when a hearing protector is worn should be estimated on the basis of both the octaveband sound attenuation data of the hearing protector (measured in accordance with ISO 4869-1) and the octave-band sound pressure levels of the noise. It is recognized, however, that in many situations information on the octave-band sound pressure levels of the noise might not be available. Therefore, for many practical purposes, there is a need for simpler methods to determine the effective A-weighted sound pressure levels of the noise. This part of ISO 4869 addresses both of these situations by specifying an octave-band calculation method as well as two alternative simplified procedures, the HML method and the SNR method.

iTeh STANDARD PREVIEW The octave-band method is a straightforward calculation method involving the workplace octave-band sound pressure levels and the octave-band sound attenuation data for the hearing protector which is being assessed. Although it can be thought of as an "exact" reference method, it has its own inherent inaccuracies, since it is based upon *mean* sound attenuation https://standards.ite/values.and.istandard3deviations_and2not_the specific sound attenuation values.for the individual person in guestion.

> The HML method specifies three attenuation values, H, M and L, determined from the octave-band sound attenuation data of a hearing protector. These values, when combined with the C- and A-weighted sound pressure levels of the noise, are used to calculate the effective A-weighted sound pressure level when the hearing protector is worn.

> The SNR method specifies a single attenuation value, the single number rating reduction, determined from the octave-band sound attenuation data of a hearing protector. This value is subtracted from the C-weighted sound pressure level of the noise to calculate the effective A-weighted sound pressure level when the hearing protector is worn.

> Due to the large spread of the sound attenuation provided by hearing protectors when worn by individual persons, all three methods are nearly equivalent in their accuracy in the majority of noise situations. Even the simplest method, the SNR method, will provide a reasonably accurate estimate of the effective A-weighted sound pressure level to aid in the selection and specification of hearing protectors. In special situations, for example especially high- or low-frequency noises, it may, however, be advantageous to use either the HML or the octave-band method.

> Depending on the choice of a certain parameter in the calculation process, various protection performances can be obtained. It should be noted that the protection performance values for all three methods are only valid when:

 the hearing protectors are worn correctly and in the same manner as they were worn by subjects when carrying out the ISO 4869-1 test;

- the hearing protectors are properly maintained;
- the anatomical characteristics of the subjects involved in the ISO 4869-1 test are a reasonable match for the population of actual wearers.

Thus, the principal source of potential inaccuracy in use of the three methods described in this part of ISO 4869 is the basic ISO 4869-1 input data. If the input data do not accurately describe the degree of protection achieved by the target population, then no calculation method will provide sufficient accuracy.

NOTES

1 Differences of 3 dB or less in the determination of the effective sound pressure level for comparable hearing protectors are insignificant for the purposes of distinguishing between the hearing protectors.

2 Caution should be exercised to avoid the selection of hearing protectors which provide unnecessarily high attenuation. Such devices might cause communication difficulties or be less comfortable than ones with lower sound attenuation and therefore they might be worn for less of the time.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 4869-2:1994</u> https://standards.iteh.ai/catalog/standards/sist/38785b6d-8fc7-4927-9a97c743e1ee812c/iso-4869-2-1994

Acoustics — Hearing protectors —

Part 2:

Estimation of effective A-weighted sound pressure levels when hearing protectors are worn

1 Scope

IEC 651:1979, Sound level meters.

This part of ISO 4869 describes three methods (the **RD3 Periods**) of estimating **RD3 Periods** (the **A**-weighted sound pressure levels effective when hearing protectors are worn. The methods are applied in the purposes of this part of ISO 4869, the definitions given in ISO 4869-1 and the following deficable to either the sound pressure level or the equivalent continuous sound pressure level of the Inoise69-2:1994

Although primarily intended storar steady i/onoise/steady/onoise/steads/sist3.178 protection2 performance: The percentage of posures, the methods are also applicable to noise so-486 situations for which the A-weighted sound pressure level effective when the hearing protector is worn is equal to or less than the predicted value.

The octave-band, H, M, L or SNR values are suitable for establishing sound attenuation criteria for selecting or comparing hearing protectors, and/or setting minimum acceptable sound attenuation requirements.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 4869. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 4869 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 4869-1:1990, Acoustics — Hearing protectors — Part 1: Subjective method for the measurement of sound attenuation.

The value is designated by adding a subscript to the attenuation values according to the different methods, e.g. H_{80} , M_{80} , L_{80} , SNR_{80} .

NOTES

3 The value of protection performance is often chosen to be 84 % [corresponding to the constant $\alpha = 1$ (see clause 5)]. In this case, the subscripts to the attenuation values may be omitted.

4 A situation is a combination of a particular individual wearing a given hearing protector in a specific noise environment.

3.2 effective A-weighted sound pressure level, L'_{Ax} : For a specified protection performance, x, and a specific noise situation, the A-weighted sound pressure level effective when a given hearing protector is worn, calculated in accordance with any of the three methods specified in this part of ISO 4869.

3.3 predicted noise level reduction, PNR_x : For a specified protection performance, x, and a specific noise situation, the difference between the A-

weighted sound pressure level of the noise, L_A , and the effective A-weighted sound pressure level, L'_{Ax} , when a given hearing protector is worn.

3.4 high-frequency attenuation value, H_x : For a specified protection performance, *x*, and a given hearing protector, a value representing the predicted noise level reduction, PNR_x, for noises with $(L_C - L_A) = -2 \text{ dB}.$

3.5 medium-frequency attenuation value, M_x : For a specified protection performance, x, and a given hearing protector, a value representing the predicted noise level reduction, PNR_x , for noises with $(L_C - L_A) = + 2 \text{ dB}.$

3.6 low-frequency attenuation value, L_x : For a specified protection performance, x, and a given hearing protector, a value representing the predicted noise level reduction, PNR_x , for noises with $(L_C - L_A) = +10 \text{ dB}.$

3.7 single number rating, SNR_x : For a specified protection performance, *x*, and a given hearing protector, the value which is subtracted from the meas **DARTabl** ured C-weighted sound pressure level, L_c , in order to estimate the effective A-weighted sound pressure **arcs prot** level, L'_{Ax} .

3.8 pink noise: Noise whose power spectral density 4869-2:1994 is inversely proportional to frequency. c743e1ee812c/isp-4869-2-1994

NOTE 5 A consequence of this property of pink noise is that its unweighted octave-band sound pressure levels are the same for all octave bands.

4 Measurement of sound attenuation of hearing protectors

The one-third-octave band attenuation values of the hearing protector to be used in the calculation methods specified in this part of ISO 4869 shall be measured in accordance with ISO 4869-1.

5 Calculation of the assumed protection value, APV_{fx} , of a hearing protector for a selected protection performance

The calculation begins with the selection of the desired protection performance, x, and the associated constant α (see table 1).

The assumed protection value, APV_{fx} , of the hearing protector is calculated for each octave band, in the range 63 Hz to 8 000 Hz, using the following equation:

$$\mathsf{APV}_{fx} = m_f - \alpha s_f \qquad \dots (1)$$

where

subscript f	represents the centre frequency of the octave band;
subscript x	represents the selected protection performance;
m _f	is the mean sound attenuation de- termined in accordance with ISO 4869-1;
Sf	is the standard deviation deter- mined in accordance with ISO 4869-1;
α	is a constant, having the values given in table 1.

NOTE 6 If any values are not available at 63 Hz, then the values of m_f and s_f for 125 Hz should be used.

A R Table RE Values of α for various protection performances x

riotection performance	Value of α
<i>x</i> , %	
ndards/sist/38785b6 75 8fc7-4927-9a97	- 0,67
c/iso-4869-2-1994 ₈₀	0,84
84	1,00
85	1,04
90	1,28
95	1,64

An example of the calculation of the assumed protection values, APV_{fx} , is given in annex A.

6 Octave-band method

This method requires octave-band sound pressure levels of the noise and assumed protection values, APV_{fx} . Since the method is noise specific, the calculation shall be made for each noise situation.

The A-weighted sound pressure level effective when the hearing protector is worn, $L'_{Ax'}$ is calculated using the following equation:

$$L'_{Ax} = 10 \text{ lg } \sum_{k=1}^{8} 10^{0,1(L_{f(k)} + A_{f(k)} + APV_{f(k)x})} \text{ dB}$$
 ... (2)

where

subscripts f(k) represent the octave-band midfrequency;

$$f(1) = 63 \text{ Hz}; f(2) = 125 \text{ Hz}; f(3) = 250 \text{ Hz} \dots$$

 $f(8) = 8\ 000\ \text{Hz};$

- $L_{f(k)}$ is the sound pressure level of the noise in the octave band;
- $A_{f(k)}$ is the frequency weighting A in accordance with IEC 651 at the octave-band mid-frequencies (see table B.1).

NOTE 7 If 63 Hz octave-band data for the noise are not available, then the summation in equation (2) begins at 125 Hz.

The resulting L'_{Ax} value shall be rounded to the nearest integer.

An example of the calculation of the A-weighted sound pressure level effective when a given hearing protector is worn in a specific noise is given in annex B.

values (see table 2) and the assumed protection values, APV_{fx} , of the hearing protector. The values are independent of the actual noise situation to which they are applied, and are calculated using the following equations:

$$H_x = 0.25 \sum_{i=1}^{4} PNR_{xi} - 0.48 \sum_{i=1}^{4} d_i PNR_{xi}$$
 (3)

$$M_{x} = 0.25 \sum_{i=5}^{8} PNR_{xi} - 0.16 \sum_{i=5}^{8} d_{i} PNR_{xi} \qquad \dots (4)$$

$$L_{x} = 0.25 \sum_{i=5}^{8} PNR_{xi} + 0.23 \sum_{i=5}^{8} d_{i} PNR_{xi} \qquad \dots (5)$$

where

$$PNR_{xi} = 100 \text{ dB} - 10 \text{ Ig} \sum_{k=1}^{8} 10^{0,1(L_{AV(k)i} - APV_{f(k)x})} \text{ dB}$$
....(6)

 $L_{Af(k)i}$ and d_i values are given in table 2;

7 HML method

subscript *i* represents the number of the reference (standards.ite noise spectrum.

This method requires C- and A-weighted sound pressure levels of the noise and H, M and L values (150-4869-2:1994) The total A-weighted sound pressure level of each of the pressure levels of the noise and H, M and L values (150-4869-2:1994)

7.1 Calculation of H, M and L values

Calculation of the H_x , M_x and L_x values is based on eight reference noise spectra with different $(L_C - L_A)$

The resulting H_x , M_x and L_x values shall be rounded to the nearest integer.

An example of the calculation of the H, M and L values is given in annex C.

Table 2 — A-weighted octave-band sound pressure levels, $L_{Af(k)i}$, of eight reference noises normalized to
an A-weighted sound pressure level of 100 dB, $(L_C - L_A)$ values and constants d_i
Values in decibels

d _i	$(L_{\rm C}-L_{\rm A})$	Octave-band centre frequency, Hz									
u _i	$(L_{C} - L_{A})$	8 000	4 000	2 000	1 000	500	250	125	63	ı	
- 1,20	- 1,2	92,3	94,7	96,2	90,4	. 81,0	70,8	62,6	51,4	1	
- 0,49	- 0,5	90,0	94,0	96,3	92,8	84,3	78,3	68,9	59,5	2	
0,14	0,1	89,0	94,1	94,4	95,0	88,0	80,8	71,1	59,8	3	
1,56	1,6	88,8	92,5	94,3	95,5	89,8	84,5	77,2	65,4	4	
- 2,98	2,3	83,7	90,4	93,0	96,4	92,5	86,5	77,4	65,3	5	
- 1,01	4,3	83,0	90,1	93,0	95,6	93,3	89,3	82,0	70,7	6	
0,85	6,1	81,9	87,9	91,3	96,2	93,6	90,1	84,2	75,6	7	
3,14	8,4	79,9	87,9	91,4	94,2	93,8	93,4	88,0	77,6	8	

NOTE — The value of 100 dB for the total A-weighted sound pressure level, L_A , is arbitrary and was chosen for computational simplicity.

7.2 Application of HML method for estimation of the effective A-weighted sound pressure level

The effective A-weighted sound pressure level, $L'_{Ax'}$ is calculated in two steps as follows.

a) The predicted noise level reduction, PNR_x , is calculated from the H_x , M_x and L_x values and the Cand A-weighted sound pressure levels of the noise. The calculations are as follows.

For noises with $(L_{\rm C} - L_{\rm A})$ values \leq 2 dB

$$PNR_{x} = M_{x} - \frac{H_{x} - M_{x}}{4} (L_{C} - L_{A} - 2 \text{ dB})$$
...(7)

For noises with $(L_{\rm C} - L_{\rm A})$ values $\geq 2 \, {\rm dB}$

$$PNR_x = M_x - \frac{M_x - L_x}{8} (L_C - L_A - 2 dB)$$

. . . (8)

(star

b) L'_{Ax} is calculated from the following equation: NDA 8.2 Application of SNR method for estimation of the effective A-weighted sound

$$L'_{Ax} = L_A - PNR_x$$

The resulting L'_{Ax} value shall be rounded to the nearest integer. ISO 4

NOTES

https://standards.iteh.ai/catalog/standards/sist/38 /2506d-8ic/-4927-9a97c743e1ee812c/iso-4869-2-1994

pressure level

9 The difference
$$(L_{\rm C} - L_{\rm A})$$
 may be determined from sound pressure level measurements, or may be provided in tabulated form for typical noise situations.

10 Instead of the C-weighted sound pressure level, the unweighted sound pressure level may be used. For very low frequency noises, this procedure can result in higher values of $L'_{\rm Ax}$.

An example of the calculation of the A-weighted sound pressure level effective when a given hearing protector is worn in a specific noise is given in annex C.

8 SNR method

This method requires the C-weighted sound pressure level of the noise and the SNR value.

8.1 Calculation of SNR values

Calculation of SNR_x values is based on a pink noise spectrum (see table 3) and the assumed protection

values, $APV_{f(k)x}$ of the hearing protector. SNR_x is independent of the actual noise spectrum to which it is applied and is calculated using the following equation:

$$SNR_x = 100 \text{ dB} - 10 \text{ lg} \sum_{k=1}^{8} 10^{0,1(L_{Af(k)} - APV_{f(k)x})} \text{ dB}$$

....(10)

where $L_{Af(k)}$ is given in table 3.

NOTE 11 In equation (10) the value of 100 dB represents the total C-weighted sound pressure level of the reference pink noise in table 3.

The resulting SNR_x value shall be rounded to the nearest integer.

An example of the calculation of SNR is given in annex D.

$$L'_{Ax} = L_{C} - SNR_{x} \qquad \dots (11)$$

 L'_{Ax} is calculated from SNR_x and the C-weighted

When only the total A-weighted sound pressure level of a given noise is available, SNR may still be used if the difference $(L_{\rm C} - L_{\rm A})$ is known (see notes 12 and 13). $L'_{\rm Ax}$ is then given by:

$$L'_{Ax} = L_{A} + (L_{C} - L_{A}) - SNR_{x} \qquad \dots (12)$$

NOTES

12 The difference $(L_{\rm C} - L_{\rm A})$ can be estimated from sound pressure level measurements, or may be provided in tabulated form for typical noise situations.

13 Instead of the C-weighted sound pressure level, the unweighted sound pressure level may be used. For very low frequency noises, this procedure can result in higher values of L'_{Ax} .

An example of the calculation of the A-weighted sound pressure level effective when a given hearing protector is worn in a specific noise is given in annex D.

Table 3 — A-weighted octave-band sound pressure levels, $L_{Af(k)}$, of a pink noise which has a C-weighted sound pressure level of 100 dB

Octave-band centre frequency, f, Hz	63	125	250	500	1 000	2 000	4 000	8 000
$L_{A\!f(k)}$, dB	65,3	75,4	82,9	88,3	91,5	92,7	92,5	90,4
		L			L	L		L

NOTE — The values in this table are derived from a pink noise with an overall C-weighted sound pressure level of 100 dB. The magnitude of the level was chosen for computational simplicity and does not affect the resulting SNR. Frequency weighting C is defined in IEC 651.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 4869-2:1994

https://standards.iteh.ai/catalog/standards/sist/38785b6d-8fc7-4927-9a97c743e1ee812c/iso-4869-2-1994

Values in decibels

Annex A

(informative)

Example of the calculation of the assumed protection values, $\mathsf{APV}_{\mathit{fx}}$

In this example, the APV_{J80} values for a hearing protector are calculated; i.e. a protection performance of 80 % is selected, with a corresponding constant $\alpha = 0.84$ (see table 1). These APV_{J80} values are then used in calculations for all illustrative examples.

Table A.1 —	Calculation	of APV _{f80}
-------------	-------------	-----------------------

	Octave-band centre frequency, f, Hz										
	63	63 125 250 500 1 000 2 000 4 000 8 000									
m _f	7,4	10,0	14,4	19,6	22,8	29,6	38,8	34,1			
Sf	3,3	3,6	3,6	4,6	4,0	6,2	7,4	5,2			
$\alpha s_f \left(\alpha = 0,84 \right)$	2,8	3,0	3,0	3,9	3,4	5,2	6,2	4,4			
$APV_{f^{80}} = m_f - \alpha s_f$	4,6 👔	reto S	T 1 A 4 N	D14R	DPRE	24,4	32,6	29,7			

(standards.iteh.ai)

<u>ISO 4869-2:1994</u> https://standards.iteh.ai/catalog/standards/sist/38785b6d-8fc7-4927-9a97c743e1ee812c/iso-4869-2-1994

Annex B

(informative)

Example of the calculation of L'_{Ax} according to the octave-band method

In this example, a protection performance of 80 % is selected. The APV_{f80} values are taken from table A.1.

-				A80				/alues in decibels			
	Octave-band centre frequency, f, Hz										
	63	125	250	500	1 000	2 000	4 000	8 000			
Measured octave-band sound pressure level of the noise, <i>L</i> _f	75,0	84,0	86,0	88,0	97,0	99,0	97,0	96,0			
Frequency weighting A (according to IEC 651)	- 26,2	- 16,1	- 8,6	- 3,2	0	+ 1,2	+ 1,0	- 1,1			
A-weighted octave-band sound pressure level of the noise, $L_f + A_{f(k)}$	i ^{48,8} eh	Ś ⁷ ł ⁹ A	N ⁷ D ⁴ A ndar	R ^{84,8} P		100,2	98,0	94,9			
APV ₇₈₀ from table A.1	4,6	7,0	11,4	15,7	19,4	24,4	32,6	29,7			
$L_f + A_{f(k)} - APV_{f^{B0}}$	44,2 tos://standa	60,9 ds.iteh.ai/ca	ISO 486 66,0 Italog/stands	9-2:1994 69,1 urds/sist/38	77,6 85b6d-8fc7-49	75,8 127-9a97-	65,4	65,2			

Table B.1 — Calculation of L'_{A80} using the octave-band method

c743e1ee812c/iso-4869-2-1994 L'_{A80} is calculated by substituting the values from the last row of table B.1 into equation (2):

 $L'_{A80} = 10 \, \lg \left(10^{0.1 \times 44.2} + ... + 10^{0.1 \times 65.2} \right) \, dB = 80.6 \, dB$

After rounding, $L'_{A80} = 81$ dB.

It can then be stated that the effective A-weighted sound pressure level will be less than or equal to 81 dB in 80 % of the situations when the hearing protector is properly worn by various people in this noise environment.

NOTE 14 The difference between L_A and L'_{A80} is the predicted noise level reduction, PNR₈₀, which in this example is equal to 23 dB.