
Designation: E3023 − 21

Standard Practice for
Probability of Detection Analysis for â Versus a Data1

This standard is issued under the fixed designation E3023; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice defines the procedure for performing a
statistical analysis on Nondestructive Testing (NDT) â versus a
data to determine the demonstrated probability of detection
(POD) for a specific set of examination parameters. Topics
covered include the standard â versus a regression
methodology, POD curve formulation, validation techniques,
and correct interpretation of results.

1.2 Units—The values stated in inch-pound units are to be
regarded as standard. The values given in parentheses are
mathematical conversions to SI units that are provided for
information only and are not considered standard.

1.3 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety, health, and environmental practices and deter-
mine the applicability of regulatory limitations prior to use.

1.4 This international standard was developed in accor-
dance with internationally recognized principles on standard-
ization established in the Decision on Principles for the
Development of International Standards, Guides and Recom-
mendations issued by the World Trade Organization Technical
Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:2

E178 Practice for Dealing With Outlying Observations
E456 Terminology Relating to Quality and Statistics
E1316 Terminology for Nondestructive Examinations
E1325 Terminology Relating to Design of Experiments
E2586 Practice for Calculating and Using Basic Statistics
E2782 Guide for Measurement Systems Analysis (MSA)
E2862 Practice for Probability of Detection Analysis for

Hit/Miss Data

E3080 Practice for Regression Analysis with a Single Pre-
dictor Variable

2.2 Department of Defense Document:3

MIL-HDBK-1823A Nondestructive Evaluation System Re-
liability Assessment

3. Terminology

3.1 Definitions of Terms Specific to This Standard:
3.1.1 analyst, n—the person responsible for performing a

POD analysis on â versus a data resulting from a POD
examination.

3.1.2 decision threshold, âdec, n—the value of â above
which the signal is interpreted as a find and below which the
signal is interpreted as a miss.

3.1.2.1 Discussion—A decision threshold is required to
create a POD curve. The decision threshold is always greater
than or equal to the noise threshold and is the value of â that
corresponds with the flaw size that can be detected with 50 %
POD.

3.1.3 demonstrated probability of detection, n—the calcu-
lated POD value resulting from the statistical analysis of the â
versus a data.

3.1.4 false call, n—the perceived detection of a discontinu-
ity that is identified as a find during a POD examination when
no discontinuity actually exists at the inspection site.

3.1.4.1 Discussion—A synonym for “false call” is “false
positive.”

3.1.5 noise, n—signal response containing no useful target
characterization information.

3.1.6 noise threshold, ânoise, n—the value of â below which
the signal is indistinguishable from noise.

3.1.6.1 Discussion—The noise threshold is always less than
or equal to the decision threshold. The noise threshold is used
to determine left censored data.

3.1.7 probability of detection (POD), n—the fraction of
nominal discontinuity sizes expected to be found given their
existence.

1 This practice is under the jurisdiction of ASTM Committee E07 on Nonde-
structive Testing and is the direct responsibility of Subcommittee E07.10 on
Specialized NDT Methods.
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3.1.8 regression analysis, n—a statistical procedure used to
characterize the association between two or more numerical
variables for prediction of the response variable from the
predictor variable. E456, E3080

3.1.8.1 Discussion—This practice focuses on (but is not
limited to) regression analysis with a single predictor variable.
Appendix X1 in this standard includes details on this topic as
applied to Probability of Detection. See also Practice E3080 for
an overview of linear regression with a single predictor
variable.

3.1.9 saturation threshold, âsat, n—the value of â associated
with the maximum output of the system or the largest value of
â that the system can record.

3.1.9.1 Discussion—The saturation threshold is used to
determine right censored data.

3.2 Symbols:
3.2.1 a—discontinuity size.

3.2.2 â—the measured signal response for a given disconti-
nuity size, a.

3.2.2.1 Discussion—The measured signal response is as-
sumed to be continuous in nature. Units depend on the NDT
inspection system and can be, for example, scale divisions,
number of contiguous illuminated pixels, or millivolts.

3.2.3 ap—the discontinuity size that can be detected with
probability p.

3.2.3.1 Discussion—Each discontinuity size has an indepen-
dent probability of being detected and corresponding probabil-
ity of being missed. For example, being able to detect a specific
discontinuity size with probability p does not guarantee that a
larger size discontinuity will be found.

3.2.4 ap/c—the discontinuity size that can be detected with
probability p with a statistical confidence level of c.

3.2.4.1 Discussion—According to the formula in MIL-
HDBK-1823A, ap/c is a one-sided upper confidence bound on
ap. ap/c represents how large the true ap could be given the
statistical uncertainty associated with limited sample data.
Hence ap/c > ap. Note that POD is equal to p for both ap/c and
ap. ap is based solely on the observed relationship between the
â and a data and represents a snapshot in time, whereas ap/c

accounts for the uncertainty associated with limited sample
data.

4. Summary of Practice

4.1 In general, the POD examination process is comprised
of a specimen set design, study design, examination
administration, statistical analysis of examination data, docu-
mentation of analysis results, and specimen set maintenance.
This practice is focused only on and describes, step-by-step,
the process for analyzing nondestructive testing â versus a data
resulting from a POD examination, including minimum re-
quirements for validating the resulting POD curve, and docu-
menting the results.

4.2 This practice also includes definitions and discussions
for results of interest (for example, a90/95) to provide for
correct interpretation of results.

4.3 Definitions of statistical terminology used in the body of
this practice can be found in Annex A1.

4.4 A more general discussion of the POD analysis process
can be found in Appendix X1.

4.5 A mathematical overview of the underlying model
commonly used with â versus a data resulting from a POD
examination can be found in Practice E3080.

5. Significance and Use

5.1 The POD analysis method described herein is based on
well-known and well-established statistical methods. It shall be
used to quantify the demonstrated POD for a specific set of
examination parameters and known range of discontinuity
sizes under the following conditions.

5.1.1 The initial response from a nondestructive evaluation
inspection system is measurable and can be classified as a
continuous variable.

5.1.2 Discontinuity size is the predictor variable and can be
accurately quantified.

5.1.3 The relationship between discontinuity size (a) and
measured signal response (â) exists and is best described by a
linear regression model with an error structure that is normally
distributed with mean zero and constant variance, σ2. (Note
that in linear regression, “linear” means linear with respect to
the model coefficients. Though a quadratic model ŷ5β01β1·x
1β2·x2 does not have a linear shape when plotted, for example,
it is classified as a linear model in regression analysis since it
is linear with respect to the model coefficients.)

5.2 This practice does not limit the use of a linear regression
model with more than one predictor variable or other statistical
models if justified as more appropriate for the â versus a data.

5.3 This practice is not appropriate for data resulting from a
POD examination on nondestructive evaluation systems that
generate an initial response that is binary in nature (for
example, hit/miss). Practice E2862 is appropriate for systems
that generate a hit/miss-type response (for example, fluorescent
penetrant).

5.4 Prior to performing the analysis, it is assumed that the
discontinuity of interest is clearly defined; the number and
distribution of induced discontinuity sizes in the POD speci-
men set is known and well documented; the POD examination
administration procedure (including data collection method) is
well designed, well defined, under control, and unbiased (see
X1.2.2 for more detail); the initial inspection system response
is measurable and continuous in nature; the inspection system
is calibrated; and the measurement error has been evaluated
and deemed acceptable. The analysis results are only valid if
the â versus a data are accurate and precise and the linear
model adequately represents the â versus a data.

5.5 The POD analysis method described herein is consistent
with the analysis method for â versus a data described in
MIL-HDBK-1823A and is included in several widely utilized
POD software packages to perform a POD analysis on â versus
a data. It is also found in statistical software packages that have
linear regression analysis capability. This practice requires that
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the analyst has access to either POD software or other software
with linear regression analysis capability.

6. Procedure

6.1 The POD analysis objective shall be clearly defined by
the responsible engineer or by the customer.

6.2 The analyst shall obtain the â versus a data resulting
from the POD examination, which shall include at a minimum
the documented known induced discontinuity sizes, the asso-
ciated measured signal response, and any false calls.

6.3 The analyst shall also obtain specific information about
the POD examination, which shall include at a minimum the
specimen standard geometry (for example, flat panels), speci-
men standard material (for example, Nickel), examination date,
number of inspectors, type of inspection method (for example,
Eddy Current Inspection), pertinent information about the
instrument and instructions for use (for example, settings,
probe type, scan path), and pertinent comments from the
inspector(s) and test administrator.

6.3.1 In general, the results of an experiment apply to the
conditions under which the experiment was conducted. Hence,
the POD analysis results apply to the conditions under which
the POD examination was conducted.

6.4 Prior to performing the analysis, the analyst shall
conduct a preliminary review of the POD examination proce-
dure to identify any issues with the administration of the
examination. The analyst shall identify and attempt to resolve
any issues prior to conducting the POD analysis. Identified
issues and their resolution shall be documented in the report.
Examples of examination administration issues and possible
resolutions are outlined in the following subsections.

6.4.1 If problems or interruptions occurred during the POD
examination that may bias the results, the POD examination
should be re-administered.

6.4.2 If the examination procedure was poorly designed or
executed, or both, the validity of the resulting data is question-
able. In this case, the examination procedure design and
execution should be reevaluated. For design guidelines, see
MIL-HDBK-1823A.

6.5 Prior to performing the analysis, the analyst shall
conduct a preliminary review of the â versus a data to identify
any data issues. The analyst shall identify and attempt to
resolve any issues prior to conducting the POD analysis.
Identified issues and their resolution shall be documented in the
report. Examples of data issues and possible resolutions are
outlined in the following subsections.

6.5.1 Any apparent outlying observations shall be reviewed
for correctness. If a typo is identified, the typo shall be
corrected prior to performing the analysis. If the value is
correct, it shall be retained in the analysis and its influence on
the â versus a model shall be evaluated during the model
diagnostic assessment. The analyst should also reference Prac-
tice E178.

6.5.2 POD cannot be modeled as a continuous function of
discontinuity size if all the measured signal responses are
below the noise threshold or above the saturation threshold. If
this occurs, the adequacy of the nondestructive testing system
should be evaluated.

6.6 Only â versus a data for induced discontinuities shall be
used in the development of the linear regression model. False
call data shall not be included in the development of the linear
model when using standard linear regression analysis methods.

6.7 The analyst in conjunction with the responsible engineer
shall determine the value of the noise threshold, ânoise, and
saturation threshold, âsat, prior to performing the analysis.

6.7.1 The value of ânoise is determined by performing a
noise analysis. A noise analysis is typically accomplished by
assessing the distribution of measured signal responses from
sites with no known discontinuity (false calls) or measured
signal responses, or both, that are not influenced by the size of
the discontinuities (noise). Details on performing a noise
analysis can be found in MIL-HDBK-1823A.

6.8 The analyst shall select an appropriate linear regression
model to establish the relationship between â and a. Selection
of a linear model may be an iterative process as the significance
of the predictor variable(s) and the appropriateness of the
selected model are typically assessed after the model has been
developed.

6.8.1 “Linear” refers to linear with respect to the model
coefficients. For example, ŷ i5b01b1·~x2! and ŷ i5b01b1·x1

1b2·ln~x2! are linear regression models. (For more detail, see
definition in Annex A1 and discussion in Practice E3080
Annex A1.1.)

6.8.2 In general, only significant and uncorrelated predictor
variables are included in a regression model. If more than one
predictor variable is being considered for inclusion in the
model, a preliminary graphical analysis of the response vari-
able against each predictor variable may help identify which
predictor variables appear to influence the response and the
type of relationship (for example, direct, inverse, quadratic). In
addition, a preliminary graphical analysis of all possible
pairings of predictor variables shall be performed to verify
independence of the predictor variables. When plotted against
each other, there should be no apparent relationship between
any two predictor variables.

6.8.3 The appropriateness of a selected model is determined
by how well the model fits the observed data and how well the
underlying regression analysis assumptions are met.

6.9 The analyst shall use software that has the appropriate
linear regression analysis capabilities to perform a linear
regression analysis on the â versus a data.

6.9.1 If censored data are present, the analyst shall do the
following:

6.9.1.1 Include and identify the censored data in the analysis
(according to the notation required by the software).

6.9.1.2 Use the method of maximum likelihood to estimate
the model coefficients.

6.9.1.3 Verify that convergence was achieved. If conver-
gence is not achieved, the resulting â versus a model shall not
be used to develop a POD curve.

6.9.1.4 Check the number of iterations it took to converge,
provided that information on convergence and the number of
iterations it took to converge is included in the analysis
software output. If more than 20 iterations were needed to
reach convergence, the model may not be reliable.
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6.9.1.5 Include a statement in the report indicating that
convergence was achieved and the number of iterations needed
to achieve convergence.

6.9.2 If no censored data are present, the method of maxi-
mum likelihood or the method of least squares shall be used.

6.10 If included in the analysis software output, the analyst
shall assess the significance of the predictor variables in the
model. Only significant predictor variables should be included
in the model. (See X1.2 for more detail.)

6.11 Once the â versus a model is estimated, the analyst
shall use, at a minimum, the model diagnostic methods listed
below to assess the underlying linear regression analysis
assumptions. The methods listed below shall be performed
using only non-censored data. If available, other formal diag-
nostic methods (noted in X1.2) should be used to assess the
linear regression analysis assumptions.

6.11.1 There are three main underlying assumptions in a
linear regression analysis: (1) residuals are normally distrib-
uted with mean 0 and constant variance, σ2, (2) the residuals
are independent, and (3) the relationship is in fact linear. The
residual is calculated as ei = yi – ŷi and represents the
difference between the observed result, yi, and the predicted
value, ŷi, for the ith case. In general, the results of a linear
regression analysis are not valid unless these assumptions hold.
At a minimum, the following analyses of the residuals shall be
performed to verify the assumptions.

6.11.1.1 A histogram of the residuals shall be constructed to
assess the normality assumption and centering of the residuals.
A histogram of the residuals should be roughly bell-shaped and
symmetric around zero. In general, bell shape and symmetry
around zero are more important than strict normality since
traditional estimation procedures are typically only sensitive to
large departures from normality (particularly with respect to
skewness).

6.11.1.2 The constant variance and linearity assumptions
shall be verified by plotting the residuals (y-axis) against the
predicted values (x-axis). If the residuals fall in a horizontal
band centered around zero, with no systematic preference for
being positive or negative, then the assumption of constant
variance and a linear relationship holds. (See Fig. X1.2 in
Appendix X1.) In general, meeting the constant variance
assumption is more important than meeting the normality
assumption.

6.12 The analyst shall use at a minimum the methods listed
below to assess the goodness-of-fit, influential points, and
multicollinarity among predictor variables. If available, more
formal methods (noted in Appendix X1) should be used.

6.12.1 A plot of predicted values versus actual values shall
be used to assess goodness-of-fit. The plotted points should fall
roughly on the y = x line. Plotted points deviating from the y =
x line in a systematic way may be an indication of poor fit.

6.12.2 The analyst shall assess the influence of data that
appears to be outlying on the established â versus a model. The
histogram of the residuals and plot of the residuals versus
predicted values can help identify outlying values. The influ-
ence of a suspected outlying value shall at a minimum be
evaluated by removing the outlying value from the data and

re-running the analysis to assess its influence on the â versus a
model. A data point is said to be influential (or have high
leverage) if its exclusion from the analysis has a relatively
large effect on the â versus a model. Both analysis results (with
and without the outlying data) shall be included in the report
along with a discussion of the impact to the resulting POD
curve and confidence bound (if applicable).

6.12.3 If the model includes more than one predictor
variable, a graphical analysis shall be performed to verify
independence of the predictor variables. (This step may be
done during model selection as described in Appendix X1.)

6.13 The responsible engineer shall determine the value of
âdec that is most appropriate with respect to end use of the POD
analysis results. A value for the decision threshold is required
to create a POD curve. The value must be greater than or equal
to the value of the noise threshold. That is, âdec≥ ânoise.

6.14 The analyst shall use the decision threshold to deter-
mine a POD value for each discontinuity size given the
established relationship between â and a, the formula for which
can be found in Appendix X1. The resulting POD values shall
be plotted against discontinuity size to produce a POD Curve.

6.14.1 POD curves tend to be s-shaped when a simple linear
regression model is selected.

6.14.2 If more than one predictor variable is included in the
model, POD is a response surface rather than a single curve.

6.14.3 The analyst shall determine the most appropriate way
to plot the results.

6.15 If a c% level of confidence is specified by the respon-
sible engineer or the customer, the analyst shall put a c% lower
confidence bound on the POD curve by calculating a c% lower
confidence bound on the â versus a model fit. Methods for
constructing a confidence bound around a regression fit can be
found in MIL-HDBK-1823A as well as statistics text books on
linear regression.4

6.15.1 If, for example, the objective of the analysis is to
determine the discontinuity size that can be detected with 90 %
probability and 95 % confidence, denoted a90/95, then the
analyst shall put a 95 % lower confidence bound on the POD
curve by calculating a 95 % lower confidence bound on the â
versus a model fit. The formula for the 95 % lower confidence
bound on the POD curve, which is based on the 95 % lower
confidence bound around the regression fit, can be found in
Appendix X1.

6.16 The analyst shall analyze any false call data and shall
report the false call rate.

6.16.1 The responsible engineer or the customer shall
clearly define what constitutes a false call.

6.16.2 A distributional analysis of false call or noise data, or
both, is typically performed to assess the false call rate, a
discussion of which can be found in MIL-HDBK-1823A.

6.17 Acceptable false call rates shall be determined by the
responsible engineer or by the customer.

4 Neter, J, Kutner, M, Nachtsheim, C, Wasserman, W. Applied Linear Statistical
Models, The McGraw-Hill Companies.
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7. Report

7.1 At a minimum the following information about the POD
analysis shall be included in the report.

7.1.1 The specimen standard geometry (for example, flat
panels).

7.1.2 The specimen standard material (for example, nickel).
7.1.3 Examination date.
7.1.4 Number of inspectors.
7.1.5 Type of inspection (for example, Eddy Current).
7.1.6 Pertinent information about the instrument and in-

structions for use (for example, settings, probe type, scan path).
7.1.7 Any comments from the inspector(s) or test adminis-

trator.
7.1.8 The documented known induced discontinuity sizes.
7.1.9 The associated measured signal responses, including

information about censored data.
7.1.10 Any false calls.
7.1.11 The linear regression model describing the relation-

ship between the observed â versus a data and confidence
bound (if applicable).

7.1.12 A statement indicating that convergence was
achieved and the number of iterations to convergence, if
maximum likelihood estimation was used.

7.1.13 A statement about the model diagnostic methods
used and conclusions.

7.1.14 The estimate of the error around the regression fit
(calculated as the square root of the mean square error, which
is typically included in the software output).

7.1.15 Summary of the noise analysis and rationale for
selection of the decision threshold.

7.1.16 A plot of the resulting POD curve and confidence
bound (if applicable).

7.1.17 Specific results of interest as required by the analysis
objective (for example, a90/95).

7.1.18 Any deviations from the POD examination proce-
dure or standard POD analysis.

7.1.18.1 If the POD examination was re-administered, the
original results and rationale for re-administration shall be
documented in the report.

7.1.18.2 If a discontinuity is removed from the analysis, the
specific discontinuity and rationale for removal shall be docu-
mented in the final report.

7.1.18.3 If the impact of outlying data was assessed, the
results shall be included in the report along with an explana-
tion.

7.1.19 Summary of false call analysis, including a definition
of what constitutes a false call, the false call rate, and the
method used to estimate the false call rate.

7.1.20 Name of analyst and company responsible for the
POD calculation.

8. Keywords

8.1 â versus a; eddy current inspection; eddy current POD;
linear regression; POD; POD analysis; probability of detection;
regression

ANNEX

(Mandatory Information)

A1. TERMINOLOGY

A1.1 Definitions:

A1.1.1 a90—the discontinuity size that can be detected with
90 % probability.

A1.1.1.1 Discussion—The value for a90 resulting from a
POD analysis is a single point estimate of the true value based
on the outcome of the POD examination. It represents the
typical value and does not account for variability due to
sampling or inherent variability in the inspection system,
which is always present.

A1.1.2 a90/95—the discontinuity size that can be detected
with 90 % probability with a statistical confidence level of
95 %.

A1.1.2.1 Discussion—The value for a90 resulting from a
POD analysis is an estimate of the true a90 based on the
outcome of the POD examination. If the examination were
repeated, the outcome is not expected to be exactly the same.
Hence the estimate of a90 will not be the same. To account for
variability due to sampling, a statistical confidence bound with
a 95 % level of confidence is often applied to the estimated
value for a90, resulting in an a90/95 value. POD is still 90 %.

The 95 % refers to the ability of the statistical method to
capture (or bound) the true a90. That is, if the examination were
repeated over and over under the same conditions, the value for
a90/95 will be larger than the true a90 95 % of the time. In
practice the POD examination will be conducted once. Using a
95 % confidence level implies a 95 % chance that the a90/95

value bounds the true a90 and a 5 % risk that the true a90 is
actually larger than the a90/95 value.

A1.1.3 a90/50—the discontinuity size that can be detected
with 90 % probability with a statistical confidence level of
50 %.

A1.1.3.1 Discussion—Using a one-sided 50 % confidence
bound implies a 50 % chance that the a90/50 value bounds the
true a90 and a 50 % risk that the true a90 is actually larger than
the a90/50 value. Given this, a90/50 is really the same as a90.

A1.1.4 censored data, n—a censored data point is one in
which the value is not known exactly.

A1.1.4.1 Discussion—The two most common types of cen-
soring encountered in an â versus a POD analysis are right-
censored and left-censored.
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A1.1.4.2 Discussion—A right-censored data point is one in
which there is a lower bound yi for the ith response. That is, the
response value is not known exactly but is known to be some
value above yi. In practice, right-censoring occurs when the
signal generated by a large flaw saturates the system. For
example, suppose that the maximum amplitude that can be
reported by an inspection system is 25. The underlying
assumption is that the measured signal increases as flaw size
increases. In some cases, the measured signal from a large flaw
may be greater than or equal to 25. If the measured signal from
a large flaw exceeds 25, then the exact measured signal is some
amplitude to the “right” of 25 but cannot be measured because
the inspection system cannot report values beyond 25. Note
that the censoring in this case is predetermined by the
limitations of the instrument electronics.

A1.1.4.3 Discussion—A left-censored data point is one in
which there is an upper bound yi for the ith response. That is,
the response value is not known exactly but is known to be
some value below yi. Left-censoring occurs in practice when
the inspection system cannot distinguish the signal generated
by a small flaw from inherent system noise or material noise,
or both. For example, suppose that the noise threshold is 1
division. That is, any signal below 1 division is indistinguish-
able from noise. In some cases, the measured signal from a
small flaw may be less than or equal to 1. If the measured
signal from a small flaw falls below 1, then the exact measured
signal is some amplitude to the “left” of 1, or within the noise.
Hence, it is indistinguishable from noise and cannot be
measured exactly. Note that the censoring in this case is
predetermined by inherent noise in the inspection system.

A1.1.4.4 Discussion—When performing an â versus a POD
analysis with censored data, a means for distinguishing exact
data from censored data is required. Hence, both a response
value and an indicator method (to distinguish exact values from
right-censored and left-censored values) are needed for each
flaw size. For an exact data point, the response value is the
exact value and the indicator method identifies the value as
exact. In the case of a right-censored data, the saturation
threshold is used as the response value and the indicator
method identifies the value as right-censored. In the case of a
left-censored data point, the noise threshold is used as the
response value and the indicator method identifies the value as
left-censored. An example indicator method is to use two
columns for the response. Table A1.1 shows one example of
how data may be formatted when censored data are present.
The specific indicator method and format is dependent on the
software. Hence, the analyst should refer to the software
instructions for the specific data format required when cen-
sored data are present.

A1.1.5 histogram, n—graphical representation of the fre-
quency distribution of a characteristic consisting of a set of
rectangles with area proportional to the frequency. E456,
E2586

A1.1.5.1 Discussion—While not required, equal bar or class
widths are recommended for histograms according to Practice
E2586. A histogram provides information on the central
tendency of the distribution, reveals the amount of variation in
the data, provides information on the shape of the distribution,
and reveals potential outlying values.

A1.1.6 linear regression model, n—any theoretical model
built of the form Yi5β01β1·x11β2·x2...βp21·xp211ε1, where Yi is
the response for case i; x1, x2, …, xp-1, are the predictor
variables; p is the number of regression coefficients; β0, β1, …,
βp-1 are the regression coefficients; and εi are the random errors
that are assumed to be independently and identically distrib-
uted and follow a normal distribution with mean zero and
constant variance, σ2.

A1.1.6.1 Discussion—“Linear” regression means linear
with respect to the coefficients, β0, β1, …, βp-1. For example,
ŷ i5b01b1·~x!2 and ŷ i5b01b1·x11b2·ln~x2!are linear regression
models. However, ŷ i5b0·exp~β1 · x1! is not a linear regression
model. Simple linear regression refers to any linear model that
includes a single predictor variable. For example, ŷ i5b01b1·x
and ln~ ŷ i!5b01b1·ln~x! are simple linear regression models.
Estimates of linear regression coefficients can be obtained
using the method of least squares or the method of maximum
likelihood. If censored data are present, the method of maxi-
mum likelihood must be used.

A1.1.7 linear regression with censored data, n—a special-
ized linear regression modeling technique used when the
response variable is not known exactly.

A1.1.7.1 Discussion—The method of maximum likelihood
is used to estimate the model coefficients. Failure to treat
censored data correctly can have a significant impact on the
regression model, resulting in a poor model and misleading
predictions.

A1.1.8 measurement systems analysis (MSA), n—any of a
number of specialized methods useful for studying a measure-
ment system and its properties. E456, E2782

A1.1.9 method of least squares, n—a technique of estima-
tion of a parameter which minimizes ∑e2, where e is the
difference between the observed value and the predicted value
derived from the assumed model. E456, E1325

A1.1.9.1 Discussion—See Practice E3080 for a more de-
tailed discussion.

A1.1.10 method of maximum likelihood, n—estimation
method that finds the values of the parameters of interest,
denoted by θ, that maximize the likelihood function, L(θ | x).

A1.1.10.1 Discussion—The method of maximum likelihood
chooses values for the parameters of interest (for example,
regression model coefficients) that are most consistent with the
sample data. The likelihood function is directly derived from
the joint probability function of the observed data, written as a
function of the model parameters: f(x | θ) = L(θ | x). The
method of maximum likelihood finds the parameter values θ

TABLE A1.1 Example Data Format When Censored Data are
Present

Type of Data Data Column 1 Data Column 2
Exact Exact Value Exact Value
Right-Censored Saturation Threshold

Value
(blank)

Left-Censored (blank) Noise Threshold Value
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for which the value of the likelihood function is the largest,
indicating a high probability given the observed data. It has
been shown in theory that maximum likelihood estimates are
optimal in large samples under standard regularity conditions.
Typically the log of the likelihood function, ln(L(θ | x)) is used
instead for computational convenience. While more computa-
tionally intensive than the method of least squares, the method
of maximum likelihood is a more versatile estimation method
since it can handle not only a wide variety of models but also
a wide variety of data types, including censored data. If the
distribution of the error term is specified and follows a
location-scale distribution other than the normal distribution
(for example, Weibull or lognormal), then the method of
maximum likelihood can be used to obtain estimates of the
regression model coefficients. There are two procedures for
finding maximum likelihood estimates: analytical and iterative
numerical search. When censored data are present, the only
option is to use an iterative numerical search procedure since a
closed form solution does not exist with the analytical proce-
dure. The iterative numerical procedure searches for a solution
to the system of equations from which the estimates of the
model coefficients are derived. The procedure iterates until a
convergence criterion is met, at which point estimates of the
model coefficients are obtained from the last iteration. If no
solution exists to the system of equations from which the
model coefficients are derived, then the procedure will not
reach convergence. Some statistical analysis software may
produce estimates of the model coefficients even though the
convergence criterion has not been met. These estimates are
based on the last iteration. However, they are likely to be
erroneous and should not be used. When no censored data are
present, the values obtained for the parameter estimates using
the method of maximum likelihood are the same as those
obtained using the method of least squares and have the
properties of all least squares estimators.

A1.1.11 outlying observations, n—an extreme observation
in either direction that appears to deviate markedly in value
from other members of the sample in which it appears. E178,
E456

A1.1.12 predictor variable, X, n— a variable used to predict
a response variable using a regression model. E456, E3080

A1.1.12.1 Discussion—Also called an independent or ex-
planatory variable.

A1.1.13 probability plot, n—used to assess whether or not a
particular continuous distribution fits continuous data by plot-
ting what is expected under the assumed distribution against
what is actually observed.

A1.1.13.1 Discussion—If the data closely follow the refer-
ence line and are within the 95 % confidence bounds (if
included on the plot), then the assumed distribution is consid-
ered a reasonable fit to the data. This visual assessment holds
for any probability plot. There are also more formal statistical
hypothesis tests, such as the Anderson-Darling (AD) test, that
can be performed to assess the fit of the selected distribution.
More detail on probability plots can be found in Practice E2586

(for the Normal distribution given a data set containing a single
variable) and Practice E3080 (in the context of regression
analysis).

A1.1.14 residual, n—the observed value minus fitted value,
when a regression model is used. E456, E3080

A1.1.15 response variable, Y, n—a variable predicted from
a regression model. E456, E3080

A1.1.15.1 Discussion—Also called a dependent variable.

A1.1.16 statistical confidence, n—the long run frequency
associated with the ability of the statistical method to capture
the true value of the parameter of interest.

A1.1.16.1 Discussion—Statistical confidence is a probabil-
ity statement about the statistical method used to estimate a
parameter of interest—for example, the probability that the
statistical method has captured the true capability of the
inspection system. The opposite of statistical confidence can be
equated to risk. For example, a statistical confidence level of
95 % implies a willingness to accept a 5 % risk of the statistical
method yielding incorrect results—for example, there is a 5 %
risk that the wrong conclusion has been drawn about the
capability of the inspection system. (See also discussion of
“confidence” in Practice E2586.)

A1.1.17 statistical confidence bound, n—a one-sided or
two-sided bound around a single point estimate representing
the variability due to sampling.

A1.1.17.1 Discussion—According to the formula in MIL-
HDBK-1823A, ap/c is a one-sided upper confidence bound on
ap. ap/c represents how large the true ap could be given the
statistical uncertainty associated with limited sample data. In
general, a confidence bound is a function of the amount of data,
the scatter in the data, and the specified level of statistical
confidence. When the sample size increases, statistical uncer-
tainty decreases (all else held constant). That is, given an
infinite amount of data (for example, an infinite number of flaw
sizes adequately distributed across a POD specimen set), ap/c

will approach ap because the statistical uncertainty goes away.
It is important to note that a statistical confidence bound on ap

only accounts for variability due to sampling. It does not
account for inherent process variability. In order to capture
inherent process variability, a tolerance bound should be used.
As opposed to a confidence bound, a tolerance bound will
always differ from the point estimate because process variabil-
ity cannot be eliminated by increasing the sample size.

A1.1.17.2 Discussion—The term “statistical confidence
bound” in this standard is equivalent to the term “confidence
interval” in Terminology E456 and Practice E2586.

A1.1.17.3 Discussion—Three common statistical intervals
are confidence interval, prediction interval, and tolerance
interval. The type of interval selected depends on the type (or
types) of variability being accounted for. Practice E2586
includes a description of all three types as applied to a data set
consisting of a single variable. Practice E3080 includes a
description of confidence interval and prediction interval in a
regression context.
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