

Designation: $D6416/D6416M - 16D6416/D6416M - 16^{\epsilon 1}$

Standard Test Method for Two-Dimensional Flexural Properties of Simply Supported Sandwich Composite Plates Subjected to a Distributed Load¹

This standard is issued under the fixed designation D6416/D6416M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

 ε^1 NOTE—Editorial corrections were made to the adjunct information in April 2021.

1. Scope

- 1.1 This test method determines the two-dimensional flexural properties of sandwich composite plates subjected to a distributed load. The test fixture uses a relatively large square panel sample which is simply supported all around and has the distributed load provided by a water-filled bladder. This type of loading differs from the procedure of Test Method C393, where concentrated loads induce one-dimensional, simple bending in beam specimens.
- 1.2 This test method is applicable to composite structures of the sandwich type which involve a relatively thick layer of core material bonded on both faces with an adhesive to thin-face sheets composed of a denser, higher-modulus material, typically, a polymer matrix reinforced with high-modulus fibers.
- 1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety safety, health, and health environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

C365/C365M Test Method for Flatwise Compressive Properties of Sandwich Cores

C393 Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure

D792 Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement

D2584 Test Method for Ignition Loss of Cured Reinforced Resins

¹ This test method is under the jurisdiction of ASTM Committee D30 on Composite Materials and is the direct responsibility of Subcommittee D30.09 on Sandwich Construction.

Current edition approved April 1, 2016. Published April 2016. Originally approved in 1999. Last previous edition approved in 2012 as D6416D6416/D6416M – 01 / D6416M – 01 (2012). (2012). DOI: 10.1520/D6416_D6416M-16.10.1520/D6416_D6416M-16E01.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

D2734 Test Methods for Void Content of Reinforced Plastics

D3171 Test Methods for Constituent Content of Composite Materials

D3878 Terminology for Composite Materials

E4 Practices for Force Verification of Testing Machines

E6 Terminology Relating to Methods of Mechanical Testing

E251 Test Methods for Performance Characteristics of Metallic Bonded Resistance Strain Gages

E1237 Guide for Installing Bonded Resistance Strain Gages

2.2 ASTM Adjunct:

Sandwich Plate Test Fixture and Hydromat Pressure Bladder, ASTM D6416/D6416M³

3. Terminology

- 3.1 Terminology D3878 defines terms relating to high-modulus fibers and their composites, as well as terms relating to sandwich constructions. Terminology E6 defines terms relating to mechanical testing. In the event of a conflict between terms, Terminology D3878 shall have precedence over the other terminology standards.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 bending stiffness, n—the sandwich property which resists bending deflections.
- 3.2.2 *core*, *n*—a centrally located layer of a sandwich construction, usually low density, which separates and stabilizes the facings and transmits shear between the facings and provides most of the shear rigidity of the construction.
- 3.2.3 *face sheet, n*—the outermost layer or composite component of a sandwich construction, generally thin and of high density, which resists most of the edgewise loads and flatwise bending moments: synonymous with face, skin, and facing.
- 3.2.4 *footprint*, *n*—the enclosed area of the face sheet surface of a sandwich panel in contact with the pressure bladder during loading.
- 3.2.5 *hydromat*, *n*—a pressure bladder with a square perimeter fabricated from two square pieces of industrial belting which are superposed and clamped at the edges with through-bolted, mild steel bar stock.
- 3.2.6 isotropic material, n—a material having essentially the same properties in any direction.
- 3.2.7 orthotropic material n—a material in which a property of interest, at a given point, possesses three mutually perpendicular
- 3.2.7 *orthotropic material*, *n*—a material in which a property of interest, at a given point, possesses three mutually perpendicular planes of symmetry, which taken together define the principal material coordinate system.
- 3.2.8 *pressure bladder*, *n*—a durable, yet pliable closed container filled with water, or other incompressible fluid, capable of conforming to the contour of a normally loaded test panel when compressed against its face sheet surface by a test machine.
- 3.2.9 shear stiffness, n—the sandwich property which resists shear distortions: synonymous with shear rigidity.
- 3.2.10 *test panel*, *n*—a square coupon of sandwich construction fabricated for two-dimensional flexural testing: synonymous with sandwich panel, sandwich composite plate, sandwich composite panel, and panel test specimen.
 - 3.3 Symbols:
- 3.3.1 a = support span of the test fixture or the length and width of the test panel structure between supports.
- $3.3.2 A_{eff}$ = effective contact area of the pressure bladder when compressed against the test panel.
- 3.3.3 B = test panel bending stiffness.
- 3.3.4 c = core thickness.

³ Detailed drawings for the fabrication of the 500-mm test fixture and pressure bladder shown in Fig. 3 and Fig. 4 are available from ASTM Headquarters. Headquarters, www.astm.org. Order Adjunct No. ADJD6416ADJD6416-E-PDF.

- 3.3.5 ε_x = normal face sheet strain, x component.
- 3.3.6 ε_{v} = normal face sheet strain, y component.
- 3.3.7 f = face sheet thickness.
- 3.3.8 F_m = total normal force applied to a test panel as measured by the test machine load cell.
- 3.3.9 h = average overall thickness of the test panel.
- 3.3.10 N = the number of included terms of the series.
- 3.3.11 P_m = experimentally measured bladder pressure.
- $3.3.12 \, \varphi$ = width of the unloaded border area of a test panel between the edge supports and the effective footprint boundary.
- 3.3.13 S = test panel shear stiffness.
- 3.3.14 ω_e = experimentally determined deflection at center of test panel.

4. Summary of Test Method

- 4.1 A square test panel is simply supported on all four edges and uniformly loaded over a portion of its surface by a water-filled bladder. Pressure on the panel is increased by moving the platens of the test frame. The test measures the two-dimensional flexural response of a sandwich composite plate in terms of deflections and strains when subjected to a well-defined distributed load.
- 4.2 Panel deflection at load is monitored by a centrally positioned LVDT which contacts the tension-side surface.
- 4.3 Load is monitored by both a crosshead-mounted load cell, in series with the test fixture, and a pressure transducer in the pressure bladder itself. Since the pressure bladder is also at all times in series with the load cell and test fixture, the effective contact area of the pressure field is continuously monitored as the load/pressure quotient.
- 4.4 Strain can be monitored with strategically placed strain gage rosettes bonded to the tension-side face-sheet surface. A typical arrangement has four rosettes equally spaced along one of the axes of symmetry of the plate.

5. Significance and Use

- 5.1 This test method simulates the hydrostatic loading conditions which are often present in actual sandwich structures, such as marine hulls. This test method can be used to compare the two-dimensional flexural stiffness of a sandwich composite made with different combinations of materials or with different fabrication processes. Since it is based on distributed loading rather than concentrated loading, it may also provide more realistic information on the failure mechanisms of sandwich structures loaded in a similar manner. Test data should be useful for design and engineering, material specification, quality assurance, and process development. In addition, data from this test method would be useful in refining predictive mathematical models or computer code for use as structural design tools. Properties that may be obtained from this test method include:
- 5.1.1 Panel surface deflection at load,
- 5.1.2 Panel face-sheet strain at load,
- 5.1.3 Panel bending stiffness,
- 5.1.4 Panel shear stiffness,
- 5.1.5 Panel strength, and
- 5.1.6 Panel failure modes.

6. Interferences

- 6.1 Material and Specimen Preparation—Poor material fabrication practices, lack of control of fiber alignment, and damage induced by improper coupon machining are known causes of high material data scatter in composites in general. Specific material factors that affect sandwich composites include variability in core density and degree of cure of resin in both face sheet matrix material and core bonding adhesive. Important aspects of sandwich panel specimen preparation that contribute to data scatter are incomplete wetout of face sheet fabric, incomplete or nonuniform core bonding of face sheets, the non-squareness of adjacent panel edges, the misalignment of core and face sheet elements, the existence of joints or other core and face sheet discontinuities, out-of-plane curvature, and surface roughness.
- 6.2 Test Fixture Characteristics—Configuration of the panel edge-constraint structure can have a significant effect on test results. Correct interpretation of test data depends on the fixture supporting the test panel in such a manner that the boundary conditions consistent with simple support can be assumed to apply. Panel edge support journals must be coplanar and perpendicular to the loading axis. Given the fixture itself has sufficient rigidity, erroneous conclusions about panel strength and stiffness might be drawn if insufficient torque has been applied to the fasteners securing the lower panel edge support frame. In general, panels with more flexural rigidity and shear rigidity require more bolt torque to approach simple support.
- 6.3 Pressure Bladder Characteristics—When a pressure bladder is used to introduce normal load to a plate, the response of the plate is dependent on the resulting pressure distribution. The true function of the pressure bladder is to convert the absolute load applied by the test machine into a pressure field that can be specified by a relatively simple mathematical model. With the hydromat-style bladder, two simplifying assumptions are permitted: (1) the shape of the contact area is a readily definable geometric shape (or combination of shapes) and (2) the pressure is constant within the boundaries of the contact area. The pressure distribution is then characterized merely by the magnitude of the pressure and the size of the footprint. Obviously, the size and shape of the pressure bladder have a significant effect on test results in terms of the observed strains and deflections. Some errors in data interpretation are possible insofar as the actual pressure distribution differs from the simple mathematical model used in calculations.

Note 1—The error in the hydromat model has mainly to do with details of the footprint shape, since the effective contact area can be calculated at any time by dividing the absolute applied load by the bladder pressure. A secondary error arises from the non-zero bending stiffness of the fiber-reinforced industrial belting fabric that results in a narrow band of varying pressure at the very edge of the footprint. Calibration tests using a steel plate equipped with strain gages are recommended for each bladder unit to verify that the errors in the pressure distribution model are negligible (see Section 9).

ASTM D6416/D6416M-16e1

- 6.4 *Tolerances*—Test panels need to meet the dimensional and squareness tolerances specified in 8.2 to ensure proper edge support and constraint.
 - 6.5 *System Alignment*—Errors can result if the panel support structure is not centered with respect to the actuator of the test machine, or if the plane defined by the panel edge-bearing surfaces is not perpendicular to the loading axis of the test machine. Errors can also result if the pressure bladder is not centered properly with respect to fixture and actuator or if the edges of the bladder clamping bars are not parallel to the panel edge-support journals.
 - 6.6 Other System Characteristics—When attempting to measure panel surface deflection, an error results which is an artifact of the test. It arises as normal load is applied, to the extent that the edges of the sandwich specimen are compressed from the reactive line loads generated by the upper and lower panel support structure. This direct rigid-body addition affects any LVDT positioned to contact the tension-side panel surface. To minimize the error, the edges of soft-core panels should be reinforced in accordance with 8.3.2.

7. Apparatus

- 7.1 *Procedures A, B, and C*—A schematic diagram illustrating the key components of the test method apparatus appears in Fig. 1.
- 7.1.1 *Testing Machine*—The testing machine shall be in conformance with Practices E4 and shall satisfy the following requirements:
- 7.1.1.1 Testing Machine Heads—The testing machine shall have both an essentially stationary head and a movable head.

D6416/D6416M – 16ε1

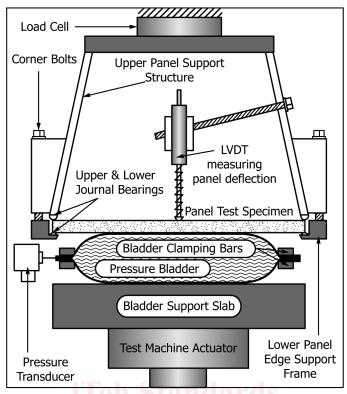


FIG. 1 Elements of the Two-Dimensional Sandwich Plate Flexural Test

(https://standards.iteh.ai)

- 7.1.1.2 *Drive Mechanism*—The testing machine drive mechanism shall be capable of imparting to the movable head a controlled velocity with respect to the stationary head. The velocity of the movable head shall be capable of being regulated in accordance with 11.3.
- 7.1.1.3 Load Indicator—The testing machine load-sensing device shall be capable of indicating the total load being carried by the test specimen. This device shall be essentially free from inertia-lag at the specified rate of testing and shall indicate the load with an accuracy over the load range(s) of interest of within ± 1 % of the indicated value. The load range(s) of interest may be fairly low for bending and shear modulus evaluation or much higher for strength evaluation, or both, as required.
 - 7.1.2 Loading Fixture—As illustrated in the schematic diagram of Fig. 1, the loading fixture has two parts, a rigid, overhead upper panel support structure, which is attached to the load cell on the load frame crosshead, and a rigid lower panel edge support frame which bolts to the upper panel support structure at the corners. A square sandwich composite panel specimen is constrained at the edges when captured from above and below by these two fixture elements. All bearing surfaces are hardened steel rods with a circular cross-section, 12.7 mm [0.5 in.] in diameter. The support span for each dimension of the fixture is defined in Fig. 2. That the loading fixture constrains the test panel at all four edges is shown in the photographs of Figs. 3 and 4. Panel flexural response is thus two-dimensional under normal loading. The length of the support spans should be equal in both dimensions. Simply supported boundary conditions are approached as the lower panel edge support frame is drawn towards the upper panel support structure by tightening the four corner connecting bolts.
 - 7.1.3 *Pressure Bladder*—Normal load is introduced to the test panel by means of a sealed water bladder which is compressed against the lower panel face by the bladder support slab that rests on the upward-moving lower platen. The bladder should be made of industrial belting, or other tough, flexible, waterproof fabric, and be capable of withstanding pressures of the order required to initiate failure in the test panel. Bladder skin should be of sufficient pliability to follow the contour of a test panel under a steadily increasing load, thus ensuring a uniform load distribution for the footprint. In Fig. 1, Fig. 3, and Fig. 4, through-bolted steel flatstock is used to clamp belting edges together to form the seal.

Note 2—The bladder size should be based on the inside dimensions of the test fixture rather than the outer dimensions of the test panel. It is important that during test loading the bladder contacts only the surface of the test panel. There must be no impingement of any part of the bladder on the lower panel edge support frame. It is recommended that the outer dimensions of any bladder clamping bar framework be less than the inside dimensions of the lower panel edge support frame so that clearance between the two will be maintained, even at significant panel deflections.

∰ D6416/D6416M − 16^{ε1}

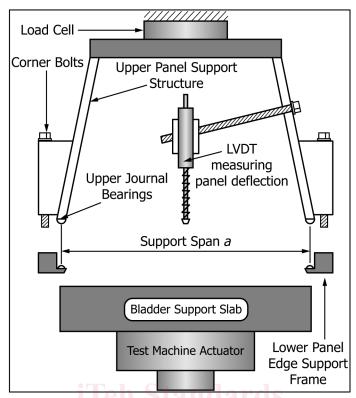


FIG. 2 Definition of Support Span for Specification of Panel Specimen Dimensional Tolerances

FIG. 3 Two-Dimensional Plate Flexural Test Apparatus