

Edition 3.0 2024-10 REDLINE VERSION

INTERNATIONAL STANDARD

Semiconductor devices – Discrete devices Part 15: Discrete devices – Isolated power semiconductor devices

Document Preview

IEC 60747-15:2024

https://standards.iteh.ai/catalog/standards/iec/21c5530f-591b-4846-a662-2de47569f368/iec-60747-15-2024

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2024 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need

further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Edition 3.0 2024-10 REDLINE VERSION

INTERNATIONAL STANDARD

Semiconductor devices – Discrete devices Part 15: Discrete devices – Isolated power semiconductor devices

Document Preview

IEC 60747-15:202

https://standards.iteh.ai/catalog/standards/iec/21c5530f-591b-4846-a662-2de47569f368/iec-60747-15-2024

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 31.080.99

ISBN 978-2-8322-9946-3

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

F	OREWC	PRD	5
1	Scop	e	7
2	Norm	native references	7
3	Term	is and definitions	8
4	Lette	r symbols	9
	4.1	General	9
	4.2	Additional subscripts/symbols	9
	4.3	List of letter symbols	9
	4.3.1	5	
	4.3.2	,	
	4.3.3	5	
5	Esse	ntial ratings (limiting values) and characteristics	10
	5.1	General	10
	5.2	Ratings (limiting values)	
	5.2.1	Isolation voltage or isolation test voltage (V _{isol})	10
	5.2.2	Peak case non-rupture current _(/_{RSMC} or /_{CNR}) (where appropriate)	10
	5.2.3	Terminal current (<i>I</i> tRMS) (where appropriate)	11
	5.2. 4		
	5.2.4		
	5.2.5		
	5.2.6		
	5.3	Characteristics.	
	5.3.1	Mechanical characteristics	12
	5.3.2	Parasitic inductance (<i>L</i> _p)6074715:2024	12
	5.3.3		747-12-2
	5.3.4		
	0.01	appropriate)	13
	5.3.5		
		appropriate)	13
	5.3.6		
	5.3.7	Transient thermal impedance (Z _{th})	13
6	Meas	surement methods	14
	6.1	Verification of isolation voltage rating	14
	6.1.1		
	6.1.2	Verification of isolation voltage rating between temperature sensor and terminals (<i>V</i> _{isol1})	15
	6.2	Methods of measurement	16
	6.2.1	Partial discharge inception and extinction voltages (V _i) (V _e)	16
	6.2.2		
	6.2.3	·	
	6.2.4	, , , , , , , , , , , , , , , , , , ,	
	-		
7		ptance and reliability	

7.2 List of endurance tests	23
7.3 Acceptance defining criteria	24
7.4 Type tests and routine tests	
7.4.1 Type tests	
7.4.2 Routine tests	
Annex A (informative) Test method of peak case non-rupture current	
A.1 Purpose	
A.2 Circuit diagram	
A.3 Test procedure	
A.4 Post test measurements and criteriaA.5 Specified conditions	
A.5 Specified conditions Annex B (informative) Measuring method of the thickness of thermal compound paste	
B.2 Measuring method Annex C (informative) Intelligent power semiconductor modules (IPMs)	
C.1 General	
C.2 Control terminals of IPM	
C.3 Essential ratings (limiting value) and characteristics	
C.3.1 General	
C.3.2 Ratings (limiting value) and testing method	
C.3.3 Characteristics and measuring method	
Bibliography	
pot test") with V_{isol} Figure 2 – Basic circuit diagram for isolation voltage test between temperature sensor	
and terminals (<i>V</i> isol1)	
Figure 3 – Circuit diagram for measurement of parasitic inductances (L_p)	17
Figure 4 – Wave forms	18
Figure 5 – Circuit diagram for measurement of parasitic capacitance (C_p)	19
Figure 6 – Cross-section of an isolated power device with reference points for temperature measurement of $T_{\rm C}$ and $T_{\rm S}$	20
Figure A.1 – Circuit diagram for test of peak case non-rupture current	
Figure B.1 – Example of a measuring gauge for a layer of thermal compound paste of a thickness between 5 μm and 150 μm	
Figure C.1 – Example of internal circuit configuration block diagram of IPM	
Figure C.2 – Testing circuit for supply voltage, input voltage / input signal voltage, and fault output voltage / alarm signal voltage	34
Figure C.3 – Testing circuit for fault output current / alarm signal current	35
Figure C.3 – Testing circuit for fault output current / alarm signal current	
Figure C.3 – Testing circuit for fault output current / alarm signal current Figure C.4 – Testing circuit for main circuit DC bus voltage at short circuit	37
 Figure C.3 – Testing circuit for fault output current / alarm signal current Figure C.4 – Testing circuit for main circuit DC bus voltage at short circuit Figure C.5 – Waveforms of short circuit protection function Figure C.6 – Measurement circuit for switching times and switching energy at inductive 	37 38
 Figure C.3 – Testing circuit for fault output current / alarm signal current Figure C.4 – Testing circuit for main circuit DC bus voltage at short circuit Figure C.5 – Waveforms of short circuit protection function Figure C.6 – Measurement circuit for switching times and switching energy at inductive load (lower arm device measurement) 	37 38 39
 Figure C.3 – Testing circuit for fault output current / alarm signal current Figure C.4 – Testing circuit for main circuit DC bus voltage at short circuit Figure C.5 – Waveforms of short circuit protection function Figure C.6 – Measurement circuit for switching times and switching energy at inductive 	37 38 39 40

- 4 - IEC 60747-15:2024 RLV © IEC 2024

Figure C.10 – Measuring circuit for over current protection level/short circuit trip level	.46
Figure C.11 – Waveforms during over current protection / short circuit protection	.47
Figure C.12 – Measurement circuit for over current protection delay time/Short circuit current delay time	.49
Figure C.13 – Waveforms of protection delay time during over current protection / short circuit protection	.50
Figure C.14 – Measurement circuit for over temperature protection and its hysteresis	.52
Figure C.15 – Waveforms during the overheating protection operation and the fault output	.54
Figure C.16 – Waveforms during the under-voltage protection operation and the fault output	.55
Figure C.17 – Measurement circuit for fault output current	.56
Figure C.18 – Measurement circuit for common mode noise withstand capability	.58
Figure C.19 – Waveforms during the common mode noise withstand capability measurement	.59

Table 1 – Endurance tests	23
Table 2 – Acceptance defining characteristics for endurance and reliability tests	24
Table 3 – Minimum type and routine tests for isolated power semiconductor devices	
Table C.1 – Acceptance defining criteria for the IPM control circuit after rating tests	38

(https://standards.iteh.ai) Document Preview

IEC 60747-15:2024

https://standards.iteh.ai/catalog/standards/iec/21c5530f-591b-4846-a662-2de47569f368/iec-60747-15-2024

– 5 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SEMICONDUCTOR DEVICES – DISCRETE DEVICES –

Part 15: Discrete devices – Isolated power semiconductor devices

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
 - 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

This redline version of the official IEC Standard allows the user to identify the changes made to the previous edition IEC 60747-15:2010. A vertical bar appears in the margin wherever a change has been made. Additions are in green text, deletions are in strikethrough red text.

IEC 60747-15 has been prepared by subcommittee 47E: Discrete semiconductor devices, of IEC technical committee 47: Semiconductor devices. It is an International Standard.

This third edition cancels and replaces the second edition published in 2010. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) The intelligent power semiconductor modules (IPM), which was previously excluded from the first and second edition, is now included in this document (Annex C);
- b) The thermal resistance is described for each switch (6.2.4);
- c) Added isolation test between temperature sensor and terminals, in case there is an agreement with the user (6.1.2).

The text of this International Standard is based on the following documents:

Draft	Report on voting
47E/832/FDIS	47E/844/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

This International Standard is to be used in conjunction with IEC 60747-1:2006 and Amendment 1: 2010.

A list of all parts in the IEC 60747 series, published under the general title *Semiconductor devices*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

SEMICONDUCTOR DEVICES – DISCRETE DEVICES –

Part 15: Discrete devices – Isolated power semiconductor devices

1 Scope

This part of IEC 60747 gives the requirements for isolated power semiconductor devices excluding devices with incorporated control circuits. These requirements are additional to those given in other parts of IEC 60747 for the corresponding non-isolated power devices and parts of IEC 60748 for ICs.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60068-2-1:2007, Environmental testing – Part 2-1: Tests – Test A: Cold

IEC 60270:2015, High-voltage test techniques – Partial discharge measurements

IEC 60664-1:20072020, Insulation coordination for equipment within low-voltage systems – Part 1: Principles, requirements and tests

IEC 60721-3-3:19942019, Classification of environmental conditions – Part 3-3: Classification of groups of environmental parameters and their severities – Stationary use at weather 2024 protected locations

IEC 60747-1:2006, *Semiconductor devices – Part 1: General* IEC 60747-1:2006/AMD1:2010

IEC 60747-2:2016, Semiconductor devices – Discrete devices and integrated circuits – Part 2: Rectifier diodes

IEC 60747-6:2016, Semiconductor devices – Part 6: Thyristors

IEC 60747-7:2019, Semiconductor discrete devices and integrated circuits – Part 7: Bipolar transistors

IEC 60747-8:2021, Semiconductor devices – Part 8: Field-effect transistors

IEC 60747-9:2019, Semiconductor devices – Discrete devices – Part 9: Insulated-gate bipolar transistors (IGBTs)

IEC 60748 (all parts), Semiconductor devices – Integrated circuits

IEC 60749-5:2017, Semiconductor devices – Mechanical and climatic test methods – Part 5: Steady-state temperature humidity bias life test

IEC 60749-6:2017, Semiconductor devices – Mechanical and climatic test methods – Part 6: Storage at high temperature

IEC 60749-10:2003, Semiconductor devices – Mechanical and climatic test methods – Part 10: Mechanical shock

IEC 60749-12:2017, Semiconductor devices – Mechanical and climatic test methods – Part 12: Vibration, variable frequency

IEC 60749-15:2020, Semiconductor devices – Mechanical and climatic test methods – Part 15: Resistance to soldering temperature for through-hole mounted devices

IEC 60749-21:2011, Semiconductor devices – Mechanical and climatic test methods – Part 21: Solderability

IEC 60749-25:2003, Semiconductor devices – Mechanical and climatic test methods – Part 25: Temperature cycling

IEC 60749-34:2010, Semiconductor devices – Mechanical and climatic test methods – Part 34: Power cycling

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at https://www.electropedia.org/
- ISO Online browsing platform: available at https://www.iso.org/obp

nttps://atandards.iteh.ai/catalog/standards/iec/21c5530f-591b-4846-a662-2de47569f368/iec-60747-15-2024

isolated power semiconductor device

semiconductor power device that contains an integral electrical insulator between the cooling surface or base plate and any isolated circuit elements

3.2

constituent parts of the isolated power semiconductor device

3.2.1

switch

any single component that performs a switching function in an electrical circuit, e.g. diode, thyristor, MOSFET, etc.

Note 1 to entry: A switch might be a parallel or series connection of several chips with a single functionality.

3.2.2

base plate

part of the package having a cooling surface that transfers the heat from inside to outside

3.2.3

main terminal

terminal having a high potential of the power circuit and carrying the main current

Note 1 to entry: The main terminal can comprise more than one physical connector.

3.2.4

control terminal

terminal having a low current capability for the purpose of control function, to which the external control signals are applied or from which sensing parameters are taken

3.2.4.1

high voltage control terminal

terminal electrically connected to an isolated circuit element, but carrying only low current for control function

Note 1 to entry: Examples include current shunts and collector sense terminals having the high potential of the main terminals.

3.2.4.2

low voltage control terminal

terminal having a control function and isolated from the high voltage control terminals

Note 1 to entry: Examples include the terminals of isolated temperature sensors and isolated gate driver inputs, etc.

3.2.5

insulation layer

integrated part of the device case that insulates any part having high potential from the cooling surface or external heat sink and any isolated circuit element

3.3

peak case non-rupture current

iTeh Standards

peak current, which will not lead to a rupture of the package, ejecting plasma and massive particles under specified conditions

3.4 Document Preview

thermal interface material

heat conducting material between base plate and external heat sink

https://standards.iteh.ai/catalog/standards/iec/21c5530f-591b-4846-a662-2de47569f368/iec-60747-15-2024

4 Letter symbols

4.1 General

General letter symbols are defined in Clause 4 of IEC 60747-1:2006.

4.2 Additional subscripts/symbols

- p parasitic
- t terminal
- isol isolation

m = mount

4.3 List of letter symbols

4.3.1 Voltages and currents

Terminal current	I_{tRMS}
Isolation voltage	$V_{\sf isol}$
Partial discharge inception voltage	V _i
Partial discharge extinction voltage	V_{e}
Isolation leakage current	I _{isol}

Peak case non-rupture current (for diode and thyristor devices) Peak case non-rupture current (for IGBT and MOSFET devices) I_{CNR}

4.3.2 Mechanical symbols

Mounting torque for screws to heat sink	$M_{\sf s}$
Mounting torque for terminal screws	M_{t}
Mounting force	F
Maximum Acceleration in all 3 axis (x, y, z)	а
Mass	т
Flatness of the case (base plate)	e_{c}
Flatness of the -cooling heat sink surface (heat sink)	es
Roughness of the case (base plate)	$R_{\sf Zc}$
Roughness of the- cooling heat sink surface (heat sink)	R_{Zs}
Thickness of thermal interface material (case – heat sink)	d _(c-s)

4.3.3 Other symbols

Total maximum power dissipation per switch at T _e = 25 °C	–P _{tot}
Parasitic inductance, effective between terminals and chips (to be specified)	L_{p}
Parasitic capacitance between terminals and cooling surface (case, base plate, ground)	C_{p}
Lead resistance between terminal x and- related switch internal device connection x'	r _{xx}
Terminal temperature	Τ _t
IEC 60747-15:2024	

Number of power load cycles until failure of a percentage p of a population of devices $N_{\sf f;p}$

5 Essential ratings (limiting values) and characteristics

5.1 General

Isolated power semiconductor devices should be specified as case rated or heat sink rated devices. The ratings and characteristics should be quoted at a temperature of 25 °C or another specified elevated temperature. Requirements for multiple devices having a common encapsulation are described in 5.12 of IEC 60747-1:2006.

5.2 Ratings (limiting values)

5.2.1 Isolation voltage or isolation test voltage (V_{isol})

Maximum RMS or DC value between main terminals and high voltage control terminals at one side and low voltage control terminals (where appropriate) and base plate at the other side for a specified time.

5.2.2 Peak case non-rupture current (IRSMC or ICNR) (where appropriate)

Maximum value for each main terminal that does not cause the bursting of the case or emission of plasma and particles.

5.2.3 Terminal current (*I*_{tRMS}) (where appropriate)

Maximum RMS value of the current through the main terminal under specified conditions at minimum mounting torque M_t and maximum allowed terminal temperature ($T_{tmax} = T_{stg}$ or $T_{tmax} \le T_{vimax}$).

5.2.4 Total power dissipation (P_{tot})

Maximum value per switch at $T_c = 25 \text{ °C}$ (or $T_c = 25 \text{ °C}$), when $T_{vi} = T_{vimax}$, at d.c. load.

5.2.4 Temperatures

5.2.4.1 Solder temperature (*T*_{sold}) (where appropriate)

Maximum solder temperature T_{sold} during solder process over a specified solder processing time t_{sold} .

5.2.4.2 Storage temperature (T_{stg})

Minimum and maximum storage temperature.

5.2.5 Mechanical ratings

5.2.5.1 Mounting torque for screws to heat sink (M_s)

Minimum and maximum mounting torque that shall be applied to the fixing screws to the heat sink.

5.2.5.2 Mounting torque for screws to terminals (M_t)

Minimum and maximum mounting torque that shall be applied to screwed terminals. https://standards.iteh.ai/catalog/standards/iec/21c5530f-591b-4846-a662-2de47569f368/iec-60747-15-2024

5.2.5.3 Mounting force (F)

Minimum and maximum mounting force for pressure mounted devices, fixed by clips, that shall be applied to the isolated pressure contact device.

5.2.5.4 Terminal pull-out force (F_t)

Maximum force.

5.2.5.5 Acceleration (a)

Maximum value along each axis (x, y, z).

5.2.5.6 Flatness of the heat sink surface (e_s) (where appropriate)

Maximum deviation from flatness for the heat sink surface over the whole mounting area.

5.2.5.7 Roughness of the heat sink surface (R_{ZS}) (where appropriate)

Maximum roughness of the heat sink surface over the whole mounting area.

5.2.6 Climatic ratings (where appropriate)

Limiting values of environmental parameters for the final application as follows:

- ambient temperature;
- humidity;
- speed and pressure of air;
- irradiation by sun and other heat sources;
- mechanical active substances;
- chemically active substances;
- biological issues,

shall be described in classes as specified in IEC 60721-3-3:19942019, Table 1.

5.3 Characteristics

5.3.1 Mechanical characteristics

5.3.1.1 Creepage distance along surface (d_s)

Minimum value of distance along surface of the insulating material of the device between terminals of different potential and to base plate.

NOTE 1 IEC 60112:2020 (details to comparative tracking index "CTI") and IEC 60664-1:20072020, 5.2 apply.

NOTE 2 Air gaps between plastic surface and grounded metal or between terminals of opposite polarity smaller than 1,0 mm (for pollution degree 2), or 1,5 mm (pollution degree 3) shorten the countable creepage distance considerably (details see 60664-1:20072020, examples). This is essential, if dust, moisture or dirt starts to cover the surface and increases the leakage current over surface, which might start burning the plastic encapsulation material.

5.3.1.2 Clearance distance in air (d_a)

Minimum value of distance through air between terminals of different potential of the isolated device and to base plate.

NOTE For details, see IEC 60664-1:20072020, 4.6 and 5.1 which show typical examples of various shapes of clearance distances.

5.3.1.3 Mass (*m*) of the device

Maximum value excluding accessories (mounting hardware).

5.3.1.4 Flatness of the case (base plate) (e_c) (where appropriate)

Maximum and minimum allowed deviation from flatness for the base plate and its direction (convex or concave).

5.3.2 Parasitic inductance (L_p)

Maximum or typical value between the main terminals of each main current path.

5.3.3 Parasitic capacitances (C_p)

Maximum value of parasitic capacitance between the specified main terminal(s) and the cooling surface.