Designation: E997 - 15 (Reapproved 2021)

Standard Test Method for Evaluating Glass Breakage Probability Under the Influence of Uniform Static Loads by Proof Load Testing¹

This standard is issued under the fixed designation E997; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This proof load test method is a procedure to determine, with a 90 % confidence level, if the probability of breakage under design loads for a given population of glass specimens is less than a selected value. It is not intended to be a design standard for determining the load resistance of glass. Practice E1300 shall be used for this purpose.
- 1.2 This test method describes apparatus and procedures to select and apply a proof load to glass specimens, to determine the number of glass specimens to be tested, and to evaluate statistically the probability of breakage. This test method may be conducted using the standard test frame specified herein or a test frame of the user's design.
- 1.3 Proper use of this test method requires a knowledge of the principles of pressure measurement and an understanding of recommended glazing practices.
- 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 7.
- 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

E631 Terminology of Building ConstructionsE1300 Practice for Determining Load Resistance of Glass in Buildings

3. Terminology

- 3.1 Definitions:
- 3.1.1 For definitions of general terms related to building construction used in this test method refer to Terminology E631.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *coefficient of variation*, *v*—ratio of the standard deviation of the breakage load to the mean breakage load.
- 3.2.2 design load, n—the specified uniform load and load duration
- 3.2.3 *glass specimen*, *n*—the glass to be tested, for example, a single pane, an insulating glass unit, laminated glass, etc. (does not include test frame).
- 3.2.4 *glass specimen breakage, n*—the fracture or cracking of any glass component of a glass specimen.
- 3.2.5 negative load, n—an outward-acting load that results in the indoor side of a glass specimen being the high-pressure side.
- 3.2.6 *positive load, n*—an inward-acting load that results in the outdoor side of a glass specimen being the high-pressure side
- 3.2.7 *probability of breakage, n*—the probability that a glass specimen will break when tested at a given load.
- 3.2.8 proof load, n—a uniform load at which glass specimens shall be tested.
- 3.2.9 *proof load factor, a, n*—the constant which, when multiplied by the design load, determines the proof load.
- 3.2.10 *specifying authority, n*—professional(s) responsible for determining and furnishing information required to perform the test.

¹ This test method is under the jurisdiction of ASTM Committee E06 on Performance of Buildings and is the direct responsibility of E06.52 on Glass Use in Buildings.

Current edition approved Aug. 1, 2021. Published August 2021. Originally approved in 1984. Last previous edition approved in 2015 as E997–15. DOI: 10.1520/E0997-15R21.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

4. Summary of Test Method

- 4.1 This test method consists of individually glazing glass specimens in a test frame that is mounted into or against one face of a test chamber and supplying air to, or exhausting air from, the test chamber so that each glass specimen is exposed to a proof load. Load-time records shall be kept for each glass specimen. Each glass specimen break shall be recorded.
- 4.2 After testing the required number of glass specimens, it is determined, with a 90 % confidence level, if the probability of breakage under design loads for the given population of glass specimens is less than a specified allowable probability of breakage.

5. Significance and Use

- 5.1 Glass specimens to be tested shall be mounted in a standard test frame with four sides supported, or in a test frame designed to represent specific glazing conditions.
- 5.2 Loads on glass in windows, curtain walls, and doors may vary greatly in magnitude, direction, and duration. Any design load (wind, snow, etc.) that can reasonably be applied to the test specimens or transformed into an equivalent uniform design load can be considered. Load transformation techniques are addressed in the literature (1, 2, 3).
- 5.3 The strength of glass varies with many different factors including surface condition, load duration, geometry, relative humidity, and temperature (4). A thorough understanding of those strength variations is required to interpret results of this test method.

6. Apparatus

- 6.1 The description of apparatus is general in nature. Any equipment capable of performing the test procedure within the allowable tolerances is permitted.
 - 6.2 Major Components:
- 6.2.1 *Test Frame*, in which glass specimens are mounted for testing. The test frame shall provide either standardized support conditions or specified support conditions. Specifications of standardized support conditions are presented in Annex A1.
- 6.2.2 Test Chamber, sealed, with an opening in which or against which the test frame is installed. At least one static pressure tap shall be provided to measure the test chamber pressure and shall be so located that the reading is minimally affected by the velocity of the air supply to or from the test chamber or any air movement. The air supply opening into the test chamber shall be arranged so that the air does not impinge directly on the glass specimen with any significant velocity. A means of access into the test chamber may be provided to facilitate adjustments and observations after the specimen has been installed.
- 6.2.3 *Air System*, a controllable blower, compressed air supply, exhaust system, reversible blower, or other device designed to apply the proof load to the glass specimen with required control.
- ³ The boldface numbers in parentheses refer to a list of references at the end of this standard.

- 6.2.4 Pressure Measuring Apparatus, to record continuous test chamber pressures within an accuracy of $\pm 2\%$.
- 6.2.5 Temperature Measuring Apparatus, to measure the ambient temperature within an accuracy of ± 1 °F (0.6 °C).
- 6.2.6 *Relative Humidity Apparatus*, to measure the relative humidity within an accuracy of $\pm 2\%$.

7. Safety Precautions

7.1 Proper precautions shall be taken to protect observers in the event of glass breakage. At the pressures used in this test method, considerable energy and hazard are involved. In cases of breakage, the hazard to personnel is less with an exhaust system, as the specimen will tend to blow into rather than out of the test chamber. Personnel should not be permitted in such chambers during tests.

8. Sampling and Glass Specimens

- 8.1 Surface condition, cutting, fabrication, and packaging of the glass specimens shall be representative of the glass whose strength is to be evaluated.
- 8.2 All glass specimens shall be visually inspected for edge or surface irregularities prior to testing. All glass specimens with edge or surface irregularities not representative of the glass whose strength is to be evaluated shall not be tested.
- 8.3 Glass specimens shall be handled carefully at all times because the strength of glass is influenced by its surface and edge conditions.

9. Calibration

9.1 Pressure-measuring systems should be verified prior to testing. If calibration is required, the manufacturer's recommendations or good engineering practices shall be followed.

10. Required Information

- 10.1 The specifying authority shall provide the design load (positive or negative), the orientation of the glass specimen to the test chamber, the design load allowable probability of breakage for the glass specimens, and the coefficient of variation of the breakage loads typical of the glass specimens tested.
- 10.2 The specifying authority shall state whether the glass specimens shall be glazed in a standard test frame (see Annex A1) or in a test frame designed to simulate a specific glazing system. If the test frame is to simulate a specific glazing system, complete glazing details and support conditions shall be provided by the specifying authority.

11. Selection of Proof Load and Initial Sample Size

11.1 The glass specimens shall be tested with a proof load that is larger than the design load. The proof load is found by multiplying the design load by the proof load factor, a, as follows:

$$q_p = aq_d \tag{1}$$

where:

 q_p = proof load,

a' = proof load factor, and

 q_d = design load.

11.1.1 If the glass specimens are to be tested in a standard test frame, the proof load factor, a, is found in Table 1 through Table 4, given the design load allowable probability of breakage and the appropriate coefficient of variation, v. The proof load factor, a, is selected with due regard to the maximum capacity of the test apparatus. The tables indicate the initial sample size, n, of glass specimens to be tested. If the sample size entry in Table 1 through Table 4 is blank an alternate proof load factor shall be selected.

11.2 Rationale to develop Table 1 through Table 4 is presented in Appendix X1.

12. Procedure

- 12.1 Measure and record the ambient temperature and the relative humidity.
- 12.2 Install glass specimens in the test frame in accordance with recommendations presented in Annex A1 for standard support conditions or as specified for a specific glazing system.
- 12.3 Apply one half of the proof load to the glass specimen and hold for 10 s. Reduce the test pressure to zero and vent the test chamber for a period from 3 min to 5 min before the pressure-measuring apparatus is adjusted to zero.
- 12.4 If air leakage around the glass specimen is excessive, tape may be used to cover any cracks and joints through which leakage is occurring. However, tape shall not be used when there is a possibility that it will significantly restrict differential movement between the glass specimen and the test frame.
- 12.5 Apply the proof load to the glass specimen as quickly as possible, but no longer than 15 s. Maintain the proof load for the same duration as the specified design load, and then vent the test chamber. Continuous load-time records shall be kept for the duration of the loading.
- 12.6 If the glass specimen does not break, remove it from the test frame. Select a new glass specimen, and repeat procedures in 12.2 through 12.5. If the glass specimen does break, record the break and, if desired, determine from Table 5 through Table 8 (using the design load probability of failure, the appropriate coefficient of variation, and the selected proof load factor) the "one break" sample size, N₁. This sample size represents the total number of tests to be conducted with only one associated specimen break such that there is a 90 % confidence level that the actual probability of breakage at the

TABLE 1 Required Zero Break Sample Size (v = 0.10)

		Proof Load	d Factor, a
		1.2	1.3
	0.010	10	
	0.009	11	
	0.008	12	
	0.007	13	
Design Load	0.006	14	
Probability of Breakage	0.005	16	
-	0.004	19	
	0.003	23	
	0.002	31	
	0.001		14

TABLE 2 Required Zero Break Sample Size (v = 0.15)

		Р	Proof Load Factor, a						
		1.3	1.4	1.5	1.6				
	0.010	14							
	0.009	16							
	0.008	17							
	0.007	19	10						
Design Load	0.006	22	11						
Probability of Breakage	0.005	25	13						
	0.004	31	15						
	0.003	39	19	10					
	0.002		26	13					
	0.001		47	23	13				

design load is less than the allowable probability of breakage. If elected by the specifying authority or other appropriate party, testing may then continue in accordance with procedures in 12.2 through 12.5.

12.7 If, during the course of testing N₁ samples, a second break occurs, record the break and, if desired, determine from Table 9 through Table 12 (using the design load probability of failure, the appropriate coefficient of variation, and the selected proof load factor) the "two break" sample size, N₂. This sample size represents the total number of tests to be conducted with only two associated specimen breaks such that there is a 90 % confidence level that the actual probability of breakage at the design load is less than the allowable probability of breakage. If elected by the specifying authority or other appropriate party, testing may then continue in accordance with procedures in 12.2 through 12.5.

12.8 Inspect the test frame for permanent deformation or other failures of principal members. If failure of the standard test frame occurs, it shall be appropriately stiffened and strengthened and the test restarted. If failure occurs in a user specified test frame, the proof load shall be reduced or the test frame appropriately stiffened or strengthened and the test restarted.

12.9 Rationale used to develop Table 5 through Table 12 is presented in Appendix X1. Guidance for testing a sample of glass specimens with more than two breaks is not given in this test method, but may be determined using the principles described in Appendix X1.

13. Interpretation of Results

- 13.1 If no specimen breaks during the testing of the initial sample size, *n*, given in Table 1 through Table 4, there is a 90 % confidence level that the actual probability of breakage at the design load is less than the allowable probability of breakage.
- 13.2 If one specimen breaks during the testing of sample size, N_1 , given in Table 5 through Table 8, there is a 90 % confidence level that the actual probability of breakage at the design load is less than the allowable probability of breakage.
- 13.3 If two specimens break during the testing of sample size, N_2 , given in Table 9 through Table 12, there is a 90 % confidence level that the actual probability of breakage at the design load is less than the allowable probability of breakage.

TABLE 3 Required Zero Break Sample Size (v = 0.20)

					Proof I	Load Factor, a			
		1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2
- 1	0.010	14							
	0.009	15	10						
	0.008	17	11						
Docian Load	0.007	19	12						
Design Load	0.006	22	14						
Probability of	0.005	26	17	11					
Breakage	0.004	32	21	14	10				
	0.003	43	28	18	13				
	0.002		42	27	19	13	10		
	0.001				38	26	19	14	10

TABLE 4 Required Zero Break Sample Size (v = 0.25)

			Proof Load Factor, a														
		1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
	0.010	33	24	18	14	10											
	0.009	37	27	20	15	12											
	0.008	43	31	23	17	13	10										
Design Load	0.007	49	36	27	20	15	12										
Design Load	0.006		43	32	24	18	14	11									
Probability of Breakage	0.005			40	30	23	18	14	11								
Dieakaye	0.004				39	30	23	18	15	12							
	0.003					43	34	26	21	17	14	11					
	0.002							45	36	29	23	19	16	13	11		
	0.001												44	37	31	26	22

TABLE 5 Required One Break Sample Size (v = 0.10)

		Proof Load Factor, a
		1.2
	0.010	99 ₁₇ / Starre
	0.009	18
	0.008	20 11 11 011 1
	0.007	21 4 11 11 1
Design Load	0.006	24
Probability of Breakage	0.005	27
	0.004	32
	0.003	39 AS IM E99 /-
	0.002	ndard 52 jet /07 a / 8he/-
mps//standards.ncm.a/c	0.001	11dards/5150) / a+1 ₂₄ /54-1

TABLE 6 Required One Break Sample Size (v = 0.15)

		Р	roof Loa	Proof Load Factor, a						
		1.3	1.4	1.5	1.6					
	0.010	24								
	0.009	26								
	0.008	29								
	0.007	32	17							
Design Load	0.006	37	18							
Probability of Breakage	0.005	43	21							
	0.004	51	25							
	0.003	66	32	17						
	0.002		44	23						
	0.001		79	39	22					

14. Report

- 14.1 The report shall include the following information:
- 14.1.1 The date of the test, the date of the report, the ambient temperature, and the relative humidity.

- 14.1.2 Identification of the glass specimens (manufacturer, source of supply, dimensions both nominal and measured, manufacturer's designation, materials, and other pertinent information).
- 14.1.3 Detailed drawings of the glass specimens, test frame, and test chamber indicating orientation of the glass specimen to the test chamber. A complete description of pressure-measuring apparatus, and a statement that the test was conducted using a standard test frame or a test frame of the user's design.
- 14.1.4 Records of start/stop load times and pressure differences exerted across each glass specimen during the test with each specimen being properly identified.
- 14.1.5 Identification or description of any applicable specification.
- 14.1.6 A statement that the tests were conducted in accordance with this test method, or a full description of any deviations.
 - 14.1.7 Interpretation of the test results.

15. Precision and Bias

15.1 Conclusions reached regarding the probability of breakage of the glass specimens tested are based upon statistical inference and assumptions regarding the coefficients of variation of the glass. As a result, there exists a probability that the conclusion reached is incorrect. A full discussion of assumptions made in development of the decision criteria is presented in Appendix X1.

16. Keywords

16.1 curtain walls; destructive testing; doors; exterior windows; glass performance; performance testing; structural performance; uniform static loads

TABLE 7 Required One Break Sample Size (v = 0.20)

					Proof I	_oad Factor, <i>a</i>			
		1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2
	0.010	23							
	0.009	25	17						
	0.008	28	19						
Danis I and	0.007	32	21						
Design Load	0.006	37	24						
Probability of	0.005	44	28	20					
Breakage	0.004	55	35	24	17				
	0.003	73	47	31	22				
	0.002		70	46	31	22	16		
	0.001				65	44	31	23	17

TABLE 8 Required One Break Sample Size (v = 0.25)

								P	roof Load	Factor,	а						
		1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
Danism Land	0.010	56	41	30	23	18											
	0.009	63	46	34	26	20											
	0.008	72	52	39	29	23	18										
	0.007	84	61	45	34	26	20										
Design Load	0.006		73	54	41	31	24	19									
Probability of	0.005			67	50	39	30	24	19								
Breakage	0.004				66	50	39	31	25	20							
	0.003					73	57	45	35	28	23	19					
	0.002							77	61	49	39	32	27	22	19		
	0.001												75	62	52	44	37

TABLE 9 Required Two Break Sample Size (v = 0.10)

		Proof Load Factor, a	
		1.2	
(IIII)5.//Stail	0.010	24	
	0.009	25	
Documer	0.008	27	
Documen	0.007	30	
Design Load	0.006	33	
Probability of Breakage	0.005	38	
A CENT FEO	0.004	43	
<u>ASTM E9</u>	0.003	53	
atalog/standards/sist/97a48be	4-5 <mark>0.002</mark> -4	4e58-V1fb-e740116601b5/astm-e997-1520	
	0.001		

TABLE 10 Required Two Break Sample Size (v = 0.15)

		Р	roof Load	d Factor,	а
		1.3	1.4	1.5	1.6
	0.010	34			
	0.009	36			
	0.008	40			
	0.007	45	23		
Design Load	0.006	50	26		
Probability of Breakage	0.005	59	29		
	0.004	70	34		
	0.003	91	43	23	
	0.002		60	31	
	0.001		108	54	29

TABLE 11 Required Two Break Sample Size (v = 0.20)

					Proof I	_oad Factor, <i>a</i>			
		1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2
	0.010	32							
	0.009	35	23						
Design Load	0.008	39	26						
	0.007	44	29						
Design Load	0.006	51	33						
Probability of Breakage	0.005	60	39	27					
Dreakage	0.004	75	48	33	23				
	0.003	100	64	43	29				
	0.002		97	64	44	30	22		
	0.001				89	61	44	32	24

TABLE 12 Required Two Break Sample Size (v = 0.25)

								Р	roof Load	d Factor,	а						
		1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
	0.010	77	56	42	32	24											
	0.009	86	63	46	36	28											
	0.008	98	71	53	40	31	24										
Design Load	0.007	115	83	62	47	36	28										
Design Load	0.006		100	74	56	43	33	27									
Probability of Breakage	0.005			91	69	53	41	33	26								
Dieakaye	0.004				91	69	54	43	34	28							
	0.003					100	77	61	49	39	32	26					
	0.002							104	83	67	54	44	37	31	26		
	0.001												103	85	71	60	50

iTeh Standards

(https://stananexds.iteh.ai)

(Mandatory Information)

A1. STANDARD GLASS TEST FRAME

A1.1 Introduction

A1.1.1 The standard test frame shall be designed to support a rectangular glass specimen in a vertical plane and expose it to the design load. The test frame consists of two primary systems, a structural support system and a glazing system. The structural support system shall be designed to resist applied loads with limited deflections and provide an interface between the test chamber and the glazing system. The glazing system shall be designed to limit lateral displacements of the glass specimen edges while minimizing rotational and in-plane restraints of the glass specimen edges. This annex presents pertinent details relating to the design and construction of a standard test frame.

A1.2 Structural Support System

A1.2.1 The structural support system consists of four main structural members arranged as shown in Fig. A1.1. The inside rectangular dimensions, a and b, of the support system shall be found by subtracting 1 in. from the corresponding dimensions of the glass specimens. These dimensions shall be maintained within a tolerance $\pm \frac{1}{16}$ in. (1.6 mm).

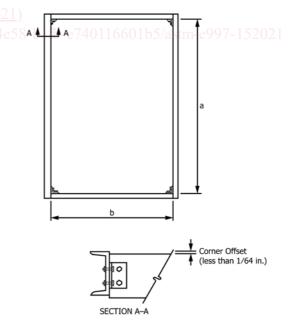


FIG. A1.1 Structural Support System

- A1.2.2 The structural members shall be selected from available American Standard channels with flange widths greater than or equal to 1¾ in. (44 mm). The structural members shall be designed to withstand the appropriate proof load without permanent deformations. In addition, the structural members shall be designed to meet the following deflection criteria:
- A1.2.2.1 The maximum out-of-plane deflection (referenced to glass specimen) of the structural members shall not exceed L/750 where L is the length of the shorter side of the glass specimen,
- A1.2.2.2 The maximum rotation of the structural members shall not exceed 1°, and
- A1.2.2.3 The maximum in-plane deflection (referenced to the glass specimen) of the structural members shall not exceed L/2000, where L is the length of the shorter side of the glass specimen.
- A1.2.3 The corner connections of the support system shall be designed using angle braces and bolts to minimize racking or twisting during testing.
- A1.2.4 In addition to the above criteria, the following fabrication tolerances shall be met:
- A1.2.4.1 The maximum out-of-plane offset at the corners shall not exceed ½ in. (0.4 mm) (see Fig. A1.1),
- A1.2.4.2 The maximum planar variation of the outside edges of the structural members shall not exceed ½ in. (1.6 mm),
- A1.2.4.3 The maximum difference in the measured diagonals of the interior rectangular opening shall not exceed 1/8 in. (3.2 mm), and
- A1.2.4.4 The depth of the structural members shall be sufficient to allow unimpaired out-of-plane displacements of the glass specimens during the test.
- A1.2.5 Holes shall be provided as required in the flanges of the structural members for fasteners.

A1.3 Glazing System

- A1.3.1 The glazing system, which attaches to the vertical structural support system, consists of the following major components (see Fig. A1.2, Fig. A1.3, and Fig. A1.4):
 - A1.3.1.1 Inside and outside glazing stops,
 - A1.3.1.2 Aluminum spacers,
 - A1.3.1.3 Inside and outside neoprene gaskets,
 - A1.3.1.4 Structural fasteners, and
 - A1.3.1.5 Neoprene setting blocks.
- A1.3.2 The glass specimen rests on two neoprene setting blocks (85 \pm 5 Shore A durometer) as shown in Fig. A1.4. The glass specimen is laterally supported around its perimeter with neoprene gaskets (65 \pm 5 Shore A durometer). The glass specimen shall be centered within the glazing system to a tolerance of $\pm 1/16$ in. (1.6 mm). A minimal clamping force (4 lbf/in. to 10 lbf/in.) (700 N/m to 1750 N/m) is applied to the edge of the glass specimen by loosely tightening the wing bolts that are spaced around the specimen perimeter.
- A1.3.3 The glazing stops shall be fabricated using $\frac{1}{2}$ in. by 3 in. (13 mm by 76 mm) aluminum bar stock (6061 T 6511) in sections no shorter than 24 in. (610 mm) or the smaller rectangular glass specimen dimension. A $\frac{1}{8}$ in. by $\frac{3}{8}$ in.

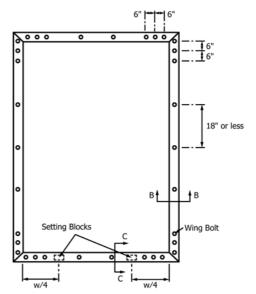


FIG. A1.2 Standard Glazing System

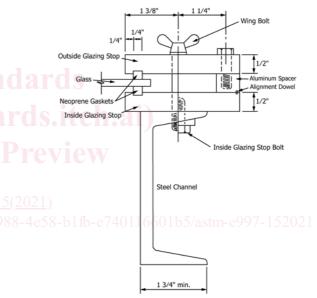


FIG. A1.3 Section B-B of Standard Glazing System

- (3.2 mm by 9.5 mm) rectangular slot shall be machined in the glazing stops as shown in Fig. A1.3. At each corner the glazing stops shall be mitered and fitted as shown in Fig. A1.2.
- A1.3.4 The inside glazing stop shall be fastened to the top flange of the structural support members using ½ in. (6.4 mm) diameter bolts. These bolts pass through a clear hole in the channel flange into a threaded hole in the inside glazing stop. These bolts shall not extend above the surface of the inside glazing stop. These bolts shall be spaced no further than 24 in. (610 mm) apart with no fewer than two bolts per glazing stop section.
- A1.3.5 The outside glazing stop shall be secured to the support system using $\frac{3}{8}$ in. (9.5 mm) diameter wing bolts. These bolts pass through the outside glazing stop through the inside glazing stop and into a threaded hole in the support