NORME
 INTERNATIONAL STANDARD

Parafoudres -

Partie 4:

Parafoudres à oxyde métallique sans éclateurs pour réseaux à courant alternatif

Surge arresters

Part 4:

Metal-oxide surge arresters without gaps for a.c. systems

Numérotation des publications

Depuis le 1er janvier 1997, les publications de la CEI sont numérotées à partir de 60000. Ainsi, la CEI 34-1 devient la CEI 60034-1.

Editions consolidées

Les versions consolidées de certaines publications de la CEI incorporant les amendements sont disponibles. Par exemple, les numéros d'édition 1.0, 1.1 et 1.2 indiquent respectivement la publication de base, la publication de base incorporant l'amendement 1, et la publication de base incorporant les amendements 1 et 2 .

Informations supplémentaires sur les publications de la CEI

Le contenu technique des publications de la CEI est constamment revu par la CEI afin qu'il reflète l'état actuel de la technique. Des renseignements relatifs à cette publication, y compris sa validité, sont disponibles dans le Catalogue des publications de la CEI (voir ci-dessous) en plus des nouvelles éditions, amendements et corrigenda. Des informations sur les sujets à l'étude et l'avancement des travaux entrepris par le comité d'études qui a élaboré cette publication, ainsi que la liste des publications parues, sont également disponibles par l'intermédiaire de:

- Site web de la CEI (www.iec.ch)
- Catalogue des publications de la CEI

Le catalogue en ligne sur le site web de Va CEI (www.iec.ch/catlg-f.htm) vous permet de faire des recherches en utilisant de nombreux critères, comprenant des recherches textuelles, par comite d'études ou date de pubkication. Des informations en ligne sont également dispenibles sux les nouvelles publications, yespublications remplacées ou retirées, ainsi que sur les corkigenda.

- IEC Just Published

Ce résumé/des dernières publications parues (www.iec.chXJP.htm $)$ est aussi disponible par courrier/électronique. Veqillez prendre contact avec le Service client (voir ci-dessous) pour plus d'informations.

- Service clients

Si vous avez des questions au sujet de cette publication ou avez besoin de renseignements supplémentaires, prenez contact avec le Service clients:

> Email: custserv@iec.ch Tél: $\frac{\text { ch1 } 229190211}{\text { Fax: }+41229190300}$

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2 .

Further information on IEC publications

The technical content of IEC publications is kept under constant reyiew by the REC, thus ensuring that the content reflects courent technology. Information relating to this publication, including its validity, is available in the IEC Qatalogue of publications (see below) in addition to new editions, amendments and corrigenda. knformation on the subjects under consideration and work in progress undertaken by the technica committeg which has prepared this publication, as well as the list of publications issued, is also available from the following:

IECWeb Site (www.iec.ch)

Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/catlg-e.htm) enables you to search by a variety of criteria including text searches, technical committees and date of publication. Online information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

- IEC Just Published

This summary of recently issued publications (www.iec.ch/JP.htm) is also available by email. Please contact the Customer Service Centre (see below) for further information.

- Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 229190211
Fax: +41229190300

NORME
 INTERNATIONAL STANDARD

Edition 1:1991 consolidée par les amendements 1:1998 et 2:2001 Edition 1:1991 consolidated with amendments 1:1998et 2:2001

Parafoudres -

Partie 4:

Parafoudres à oxyde métallique sans éclateurs pour réseaux à courant alternatif

Surge arresters

Part 4 :

Metal-oxide surge arresters without gaps for a.c. systems

© IEC 2001 Droits de reproduction réservés - Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite n
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

SOMMAIRE

AVANT-PROPOS 12
INTRODUCTION 14
SECTION 1: GÉNÉRALITÉS
1.1 Domaine d'application 16
1.2 Références normatives 16
SECTION 2: DÉFINITIONS
SECTION 3: IDENTIFICATION ET CLASSIFIGANION
3.1 Identification des parafoudres34
3.2 Classification des parafoudres 36
SECTION 4: CARACTÉRISTIQUESTASSKGNÉES
4.1 Tensions assignées normales38
4.2 Fréquences assignées normales 38
4.3 Valeurs normales des courants nominaux de décharge 38
4.4 Conditions de service 38
SECTIQN 5: PRESCRIPTIONS
5.1 Tenue diélectrique de d'enveloppe du parafoudre 40
5.2 Tension de/reférence 40
5.3 Tensions residuolles 40
5.4 Décharges partielles internes... 40
5.5 Taux de fuite dé l'étanchétié 42
5.6 Répartition du courant dans les parafoudres à plusieurs colonnes 42
5.7 Stabilite thermique 42
5.8 Tenue au choc de courant de longue durée 42
5.9 Fonctionnement des parafoudres 42
5.10 Caractéristique de tension à fréquence industrielle en fonction du temps d'un parafoudre 44
5.11 Court-circuit 44
5.12 Dispositif de déconnexion 44
5.13 Prescriptions pour les équipements auxiliaires tels que les éléments de répartition 44
5.14 Efforts mécaniques 44
SECTION 6: CONDITIONS GÉNÉRALES D'EXÉCUTION DES ESSAIS
6.1 Appareillage de mesure et précision 46
6.2 Mesures de la tension de référence 46
6.3 Echantillons destinés aux essais 46

CONTENTS

FOREWORD 13
INTRODUCTION 15
SECTION 1: GENERAL
1.1 Scope 17
1.2 Normative references 17
SECTION 2: DEFINITIONS
SECTION 3: IDENTIFICATION AND CLASSIFICATION35
3.2 Arrester classification 37
SECTION 4: STANDARD RATINGS
4.1 Standard rated voltages39
4.2 Standard rated frequencies 39
4.3 Standard nominal discharge currents. 39
4.4 Service conditions 39
SECTIQN 5: REQYIREMENTS
5.1 Insulation withstand of the arrester housing 41
5.2 Reference yoltage 41
5.3 Residual voltages. 41
5.4 Internal partial discharge 41
5.5 Seal leak rate. 43
5.6 Current/distribution in a multi-column arrester 43
5.7 Thermalstability 43
5.8 Long duration current impulse withstand 43
5.9 Operating duty. 43
5.10 Power frequency voltage versus time characteristics of an arrester 45
5.11 Short-circuit 45
5.12 Disconnectors 45
5.13 Requirements for auxiliary equipment such as grading components 45
5.14 Mechanical loads 45
SECTION 6: GENERAL TESTING PROCEDURE
6.1 Measuring equipment and accuracy. 47
6.2 Reference voltage measurements 47
6.3 Test samples 47

SECTION 7: ESSAIS DE TYPE

7.1 Généralités 48
7.2 Essais de tenue de l'isolation de l'enveloppe du parafoudre 50
7.3 Essais de vérification de la tension résiduelle 52
7.4 Essai de tenue aux chocs de courant de longue durée 58
7.5 Essais de fonctionnement 60
7.6 Essai des déconnecteurs/indicateurs de défaut pour parafoudres 76
7.7 Essais de court-circuit 80
7.8 Essais de décharges partielles internes 80
SECTION 8: ESSAIS INDIVIDUELS ET ESSAIS DE RÉCERTION
8.1 Essais individuels 80
8.2 Essais de réception 82
SECTION 9: PRESCRIPTIONS D'ESSAIS POUR'LES PARAFOUDRESÀ ENVELOPPE SYNTHÉTIQUE
9.1 Généralités 84
9.2 Définitions 84
9.3 Identification et classification 84
9.4 Caractéristiques assignées 84
9.5 Prescriptions 84
9.6 Conditions générales d'exécution desessais 84
9.7 Essais de type (essais de conception) 86
SECTION 10:PRESCRIPTIONS D'ESSAIS POUR LES PARAFOUDRESSOU\$ ENVELQPPEMÉTAL_IQUE À ISOLATION GAZEUSE10.1 Généralités104
10.2 Définitions 104
10.3 Identification des pakafoudres 104
10.4 Caractéristiques assignées 104
10.5 Prescriptions 106
10.6 Conditions générales d'exécution des essais 108
10.7 Essais de type (essais de conception) 108
10.8 Essais individuels 116
10.9 Essais consécutifs à l'installation sur site 116
SECTION 11: PARAFOUDRES DÉBROCHABLES ET PARAFOUDRES POUR PRISE
11.1 Généralités 122
11.2 Définitions 122
11.3 Identification du parafoudre 122
11.4 Caractéristiques assignées 122
11.5 Prescriptions 122
11.6 Conditions générales d'exécution des essais 122
11.7 Essais de type (essais de conception) 122
11.8 Essais individuels et essais de réception 130

SECTION 7: TYPE TESTS (DESIGN TESTS)

7.1 General.. 49
7.2 Insulation withstand tests on the arrester housing... 51
7.3 Residual voltage tests ... 53
7.4 Long duration current impulse withstand test ... 59
7.5 Operating duty tests ... 61
7.6 Tests of arrester disconnectors fault indicators .. 77
7.7 Short-circuit tests .. 81
7.8 Internal partial discharge tests.. 81

SECTION 8: ROUTINE TESTS AND ACCEPTANCE TESTS

SECTION 9: TEST REQUIREMENTS ON POLYMERHOUSED SURGE ARRESTERS
9.1 General 85

9.3 Identification and classification... 85
9.4 Standard ratings.. 85
9.5 Requirements.. 85
9.6 General testing procedure ... 85
9.7 Type tests (design tests) .. 87

SECTION 10: TEST REQUIREMENTS ON GAS-INSULATED METAL
10.2 Definitions... 105
10.3 Arrester identification (nameplate) ... 105
10.4 Standart rating .. 105
10.5 Requirements.. 107
10.6 Generaイtestingprocedures ... 109
10.7 Type tests (design tests) .. 109
10.8 Routine tests.. 117
10.9 Test after erection on site... 117

SECTION 11: SEPARABLE AND DEADFRONT ARRESTERS
11.1 General.. 123
11.2 Definitions.. 123
11.3 Arrester identification ... 123
11.4 Standard ratings... 123
11.5 Requirements... 123
11.6 General testing procedure .. 123
11.7 Type tests (design tests) ... 123
11.8 Routine tests and acceptance tests ... 131

SECTION 12: PARAFOUDRES IMMERGÉS

12.1 Généralités 130
12.2 Définitions 130
12.3 Identification du parafoudre 130
12.4 Caractéristiques assignées 130
12.5 Prescriptions 132
12.6 Conditions générales d'exécution des essais 132
12.7 Essais de type (essais de conception) 132
12.8 Essais individuels et essais de réception 136
SECTION 13: PRESCRIPTIONS MÉCANIQUES POUR LES PARAFOUDRES
13.1 Généralités 138
13.2 Définitions 138
13.3 Identification et classification 138
13.4 Caractéristiques assignées 138
13.5 Prescriptions 140
13.6 Conditions générales d'exécution des essais 140
13.7 Essais de type (essais de conception) 140
Annexe A (normative) Conditions anornake deservice 156
Annexe B (normative) Essai de vérification de Kéquivalence thervnique entre un parafoudre complet et une fraction de parafoudre 158
Annexe C (normative) Prescriptions reatives auxparafoudres pour courants de foudre élevés pour la gamme de tension de 1 kV à 52 kV 160
Annexe D (normative) Méthode de vérification de la caractéristique de tension à fréquence industrielle en fonction du temps d'un parafoudre 164
Annexe E (informative) Guide pour he choix de la classe de décharge de ligne 168
Annexe F (normative) Essai dé pokution artificielle relatif à la contrainte thermique des parafoudres à oxyde métałique a enveloppe en porcelaine comportant plusieurs éléments 172
Annexe G (informative) Renseignernents caractéristiques fournis dans les appels d'offres et les offқes 204
Annexe H (informative) Circuit type pour l'essai de fonctionnement aux chocs de courant de grande amplitude (voir 7.5.4) 208
Annexe (informative) Circuit type de générateur de choc à constantes réparties pour l'essari de tenue aux chocs de courant de longue durée (voir 7.4) 212
Annexe K (informative) Tensions résiduelles maximales typiques 214
Annexe L (informative) Procédure d'essai de vieillissement - Loi d'Arrhénius - Problèmes liés aux températures plus élevées 216
Annexe M (informative) Guide pour la détermination de la répartition de tension dans les parafoudres à oxyde métallique 220
Annexe N (normative) Considérations d'ordre mécanique 236
Annexe O (informative) Essais de court-circuit 244
Figure 1 - Essai de fonctionnement sur les parafoudres 10000 A, classe de décharge de ligne 1 et les parafoudres $5000 \mathrm{~A}, 2500 \mathrm{~A}$ et 1500 A , voir 7.5.4 150
Figure 2 - Essai de fonctionnement sur les parafoudres 10000 A, classes de décharge de ligne 2 et 3 et les parafoudres 20000 A, classes de décharge de ligne 4 et 5 , voir 7.5.5 152
Figure 3 - Essai de stabilité thermique sur les parafoudres 10000 A de classe de décharge de ligne 1 et les parafoudres 5000 A, 2500 A et 1500 A, voir 8.2.2 154

SECTION 12: LIQUID-IMMERSED ARRESTERS

12.1 General 131
12.2 Definitions 131
12.3 Arrester identification 131
12.4 Standard ratings 131
12.5 Requirements 133
12.6 General testing procedure 133
12.7 Type tests (design tests) 133
12.8 Routine tests and acceptance tests 137
SECTION 13: MECHANICAL CONSIDERATIONS FOR SURGE ARRESTERS
13.1 General139
13.2 Definitions 139
13.3 Identification and classification 139
13.4 Standard ratings 139
13.5 Requirements 141
13.6 General testing procedure 141
13.7 Type tests (design tests) 141
Annex A (normative) Abnormal service Conditiø 157
Annex B (normative) Test to verify thermal equivalency betweencomplete arrester and arrester section 159
Annex C (normative) Requirements for HighLightning Duty arresters for voltage range 1 kV to 52 kV 161
Annex D (normative) Procedure fo verify the powenfrequency voltage versus time characteristics of an arfester 165
Annex E (informative) Guide to selection of line discharge class 169
Annex F (normative) Ardificial Rollution test with respect to the thermal stress on porcelain-housed pulti-unit metal-oxide surge arresters 173
Annex G (informative) Typical information given with enquiries and tenders 205
Annex H (informative) Typica circuit for high current impulse operating duty test (see 7.5.4) 209
Annex J (informative) Typical Circuit for a distributed constant impulse generator for the long duration current impulse withstand test (see 7.4) 213
Annex K (informative) Typical maximum residual voltages 215
Annex L (informative) Ageing test procedure - Arrhenius law - Problems with higher temperatures 217
Annex M (informative) Guide for the determination of the voltage distribution along metal-oxide surge arresters 221
Annex N (normative) Mechanical considerations 237
Annex O (informative) Short-circuit tests 245
Figure 1 - Operating duty test on 10000 A line discharge class 1, $5000 \mathrm{~A}, 2500 \mathrm{~A}$ and 1500 A arresters, see 7.5.4 151
Figure 2 - Operating duty test on 10000 A arresters line discharge classes 2 and 3 and 20000 A arresters line discharge classes 4 and 5, see 7.5.5 153
Figure 3 - Thermal stability test on 10000 A line discharge class 1, 5000 A, 2500 A and 1500 A arresters, see 8.2.2 155
Figure 4 - Essai de stabilité thermique pour les parafoudres 10000 A des classes de décharge de ligne 2 et 3 et les parafoudres 20000 A des classes de décharge de ligne 4 et 5, voir 8.2.2 154
Figure 5 - Puissance absorbée par un parafoudre à températures élevées en fonction du temps 66
Figure 6 - Essai thermomécanique 92
Figure 7 - Exemple de configuration pour l'essai thermomécanique et orientation de l'effort de flexion 94
Figure 8 - Essai d'immersion dans l'eau 96
Figure 9 - Exemple de cycle de vieillissement climatique accéléré sous tension (conformément à la CEI 61109) 102
Figure 10 - Autre exemple de cycle de vieillissement climatique accéléré 104
Figure 11 - Tensions d'essai de tenue de l'isolation des parafoudres pour pri§e ou débrochables avec enveloppe blindée 124
Figure C. 1 - Essai de fonctionnement sur les parafoudres 20000 A pqur courants de foudre élevés 162
Figure C. 2 - Essai de stabilité thermique sur les parafoudres 20000 A pour courants de foudre élevés, voir 8.2.2 162
Figure D. 1 - Méthode de vérification de la caractéristique de tension à fréquence industrielle en fonction du temps. Essai des parafoudres 10000 A, classe de décharge de ligne 1, 5000 A, 2500 A et 1500 A 164
Figure D. 2 - Méthode de vérification de la caracteristique de tension à fréquence industrielle en fonction du temps. Essai des parafoudres 2Q000 A pour courants de foudre élevés 166
Figure D. 3 - Méthode de vérification de la caractékistique de tension à fréquence industrielle en fonction du temps. Essai des parafoudres 10000 A , classes de décharge de ligne 2 et 3 et parafoudres 20000 A, classes de décharge de ligne 4 et 5 166
Figure E. 1 - Energie spécifique en kdpar $k \vee$ de tension assignée en fonction du rapport de la tension résiduelle aux chocs de manœavre $\left(U_{a}\right)$ à la valeur efficace de la tension assignée U_{r} du parafoudre 170
Figure F. 1 - Orgahigramme démontrant là procédure permettant de déterminer le préchauffage d'unéchantilion ennessai 178
Figure H. 1 - Schéma de circuit type pour l'essai de fonctionnement aux chocs de courant de/grande amplitude 208
Figure J.1-Circuit type de générateur de chocs à constantes réparties pour l'essai aux choes de courant de Iongue durée 212
Figure M. 1 - Installationtriphasée type de parafoudres 230
Figure M. 2 - Circuit équivalent simplifié multi-étages d'un parafoudre 230
Figure M. 3 - Géométrie du modèle de parafoudre 232
Figure M. 4 - Exemple de caractéristique courant-tension en valeurs réduites à $+20^{\circ} \mathrm{C}$ pour une résistance à oxydes métalliques dans la région des courants de fuite 234
Figure M. 5 - Répartition de tension calculée le long de la colonne de résistances dans le cas B 234
Figure N. 1 - Moment de flexion pour un parafoudre à plusieurs unités 236
Figure N. 2 - Fraction de parafoudre 240
Figure N. 3 - Dimensions du parafoudre 242
Figure 0.1 - Positionnement du fil fusible dans différents cas (pour les parafoudres avec limiteur de pression) 258
Figure 0.2 - Configuration d'essai pour les parafoudres avec limiteur de pression 260
Figure 0.3 - Configuration d'essai pour les parafoudres sans limiteur de pression 260
Figure 4 - Thermal stability test on 10000 A arresters line discharge classes 2 and 3 and 20000 A arresters line discharge classes 4 and 5, see 8.2.2 155
Figure 5 - Power losses of arrester at elevated temperatures versus time 67
Figure 6 - Thermomechanical test 93
Figure 7 - Example of the test arrangement for the thermomechanical test and direction of the cantilever load 95
Figure 8 - Water immersion 97
Figure 9 - Example of an accelerated weather ageing cycle under operating voltage (according to IEC 61109) 103
Figure 10 - Another example of an accelerated weather ageing cycle 105
Figure 11 - Test set-up for insulation withstand test of separable arresters in insulating housings 125
Figure C. 1 - Operating duty test on 20000 A High Lightning Duty arresters 163
Figure C. 2 - Thermal stability test on 20000 A High Lightning Duty arresters, see 8.2.2) 163
Figure D. 1 - Procedure to verify the power frequency voltage versustime characteristics of an arrester. Test on 10000 A line discharge class 1, 5000 A, 2500 A and 1500 A arresters 165
Figure D. 2 - Procedure to verify the power frequency yoltage versus time characteristics of an arrester. Test on 20000 A High Lightning Duty arresters 167
Figure D. 3 - Procedure to verify the power frequency voltage/̌ersus time characteristics of an arrester. Test on 10000 A arresters, line discharge classes 2 and 3 and 20000 A arresters, line discharge classes 4 and 5 167
Figure E. 1 - Specific energy in kJ per kVrating dependant on the ratio of switching impulse residual voltage $\left(U_{a}\right)$ to the r.m.s. value of the rated voltage U_{r} of the arrester 171
Figure F. 1 - Flow-chart showing the prodedure for determining the preheating of a test sample 179
Figure H. 1 - Typical test Eirguit diagram for bigh-current impulse operating duty test 209
Figure J. 1 - Typical distributedconstant impuse generator for the long duration impulse test. 213
Figure M. 1 - Typican three-phase arrester installation 231
Figure M. 2 - Simpkified multi-stage equivalent circuit of an arrester 231
Figure M. 3 - Geometry of arkester model 233
Figure M 4-Example of voltage-current characteristic of metal-oxide resistors at $+20^{\circ} \mathrm{C}$ in the rakage current region 235
Figure M. 5 - Calculated voltage stress along the resistor column in case B 235
Figure N. 1 - Bending moment - multi-unit surge arrester 237
Figure N. 2 - Surge arrester unit 241
Figure N. 3 - Surge arrester dimensions 243
Figure 0.1 - Position of the fuse wire in different cases (for arresters with pressure relief devices) 259
Figure 0.2 - Circuit layout for surge arresters with pressure relief device 261
Figure 0.3 - Circuit layout or surge arresters without pressure relief device 261
Tableau 1 - Classification des parafoudres et essais 36
Tableau 2 - Echelons de tensions assignées 38
Tableau 3 - Valeurs de crête des courants pour l'essai de vérification de la tension résiduelle aux chocs de manœuvre 56
Tableau 4 - Paramètres pour l'essai de décharge de ligne sur les parafoudres 20000 A et 10000 A 58
Tableau 5 - Prescriptions pour l'essai aux chocs de courant de longue durée sur les parafoudres 5000 et 2500 A 60
Tableau 7 - Détermination des tensions assignée et de service permanent majorées 66
Tableau 6 - Prescriptions pour les chocs de courant de grande amplitude 70
Tableau 8 - Parafoudres blindés triphasés 10000 A et 20000 A - Tensions de tenue prescrites 118
Tableau 9 - Parafoudres blindés triphasés 1500 A, 2500 A et 5000 A Tensions de tenue prescrites 120
Tableau 10 - Tensions d'essai de tenue de l'isolation des parafoudres débrochables non blindés 126
Tableau 11 - Tensions d'essai de tenue de l'isolation de l'enveloppe des parafoudres débrochables ou pour prise blindés 126
Tableau 12 - Essais de décharges partielles internes pour les parafoudres débrochables et les parafoudres pour prise 130
Tableau C. 1 - Prescriptions relatives aux parafoudres 20 000 A pour courants de foudre élevés 160
Tableau F. 1 - Charge moyenne externepour différentes sévérités de la pollution 180
Tableau F. 2 - Caractéristiques de l'échantion utilisé lors de l'essai de pollution 182
Tableau F.3a - Exigences relatives à Kappareil de mesure de la charge 184
Tableau F.3b - Exigences relatives à l'appareil de mesure de la température 186
Tableau F. 4 - Résultats dur calcul de ΔZ_{Z} max pour l'exemple choisi 198
Tableau F. 5 - Resultats<de l'essai sous browihard salin pour l'exemple choisi 198
Tableau F. 6 - Valeuŕs calcûées de A r ef $_{2} T_{O D}$ après 5 cycles pour l'exemple choisi 200
Tableau F. 7 - Vałeurs calcurées de $\Delta T / z$ et $T_{\text {OD }}$ après 10 cycles pour l'exemple choisi 202
Tableau K. 1 - Tensions residuelles pour les parafoudres 20000 A et 10000 A Valeurs rapportées à ta tension assignée 214
Tableau<K.2 Tensions résiduelles pour les parafoudres $5000 \mathrm{~A}, 2500 \mathrm{~A}$ et 1500 A Valeurs rapportéés á la tension assignée 214
Tableau L. 1 - Durée de vie minimale prévisible démontrée 216
Tableau L. 2 - Relation entre durée d'essai à $115{ }^{\circ} \mathrm{C}$ et durée équivalente à la limite supérieure de la température ambiante 218
Tableau M. 1 - Résultats d'exemples de calcul 228
Tableau 0.1 - Méthode de préparation des parafoudres avec limiteur de pression pour initier le courant de court-circuit 246
Tableau 0.2 - Méthode de préparation des parafoudres sans limiteur de pression pour initier le courant de court-circuit 248
Tableau 0.3 - Courants prescrits pour les essais de court-circuit 256
Table 1 - Arrester classification and test requirements 37
Table 2 - Steps of rated voltages 39
Table 3 - Peak currents for switching impulse residual voltage test 57
Table 4 - Parameters for the line discharge test on 20000 A and 10000 A arresters 59
Table 5 - Requirements for the long-duration current impulse test on 5000 A and 2500 A arresters 61
Table 7 - Determination of elevated rated and continuous operating voltages 67
Table 6 - Requirements for high current impulses 71
Table 8 - 10000 A and 20000 A three-phase GIS-arresters - Required withstand voltages 119
Table 9-1500 A, 2500 A and 5000 A three-phase GIS-arresters - Required withstand voltages 121
Table 10 - Insulation withstand test voltages for unscreened separable arresters 127
Table 11 - Insulation withstand test voltages for deadfront arresters or separable arresters in a screened housing 127
Table 12 - Partial discharge test values for separable and deadfront arresteks 131
Table C. 1 - Test requirements on 20000 A High Lightning Duty arresters 161
Table F. 1 - Mean external charge for different pollution severities 181
Table F. 2 - Characteristic of the sample used for the pollution test 183
Table F.3a - Requirements for the device used for theneasurement of the charge 185
Table F.3b - Requirements for the device used for the measurement of the temperature 187
Table F. 4 - Calculated values of $\Delta T_{\text {z max }}$ for the selected example 199
Table F. 5 - Results of the salt fog test for the selected example 199
Table F. 6 - Calculated values of ΔT_{Z} and of $T_{\text {OQ }}$ after 5 cycles for the selected example 201
Table F. 7 - Calculated vakues of ΔT_{Z} and of T ODafter 10 cycles for the selected example 203
Table K. 1 - Residual voltages for 2000Q A and 10000 A arresters in per unit of rated voltage 215
Table K. 2 - Residual yolitages for 5000 A, 2500 A and 1500 A arresters in per unit of rated voltage. 215
Table L. 1 - Minimum demonstrated life time prediction 217
Table L. 2 - Rêationship between test durations at $115^{\circ} \mathrm{C}$ and equivalent time at upper limit of ambient temperature 219
Table M,1-Results from example calculations 229
Table 0.1 -Methpd of preparing arresters with a pressure relief device for conducting short-circuit current 247
Table 0.2 - Method of preparing arresters without a pressure relief device for conducting short-circuit current 249
Table 0.3 - Required currents for short-circuit tests 257

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

PARAFOUDRES -

Partie 4: Parafoudres à oxyde métallique sans éclateurs pour réseaux à courant alternatif

AVANT-PROPOS

1) La CEI (Commission Electrotechnique Internationale) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEM. LaCEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités, publie des Normes internationales. Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementares et non gquvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collapore étrontement avec I'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
2) Les décisions ou accords officiels de la CEI concernant les questionstechniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donqé que lés Comités nationaux intéressés sont représentés dans chaque comité d'études.
3) Les documents produits se présentent sous la forme de recommandations internationales. Ils sont publiés comme normes, spécifications techniques, rapports teatniques ou/guides et agréés comme tels par les Comités nationaux.
4) Dans le but d'encourager l'unification internationale, les Comités nationaux de la CEI s'engagent à appliquer de façon transparente, dans toute la mesure possible, Kes Normes internationales de la CEI dans leurs normes nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale correspondante doit être indiquée en termes clairs dans cette derniére.
5) La CEI n'a fixé aucune procéduke concemantle marquage comme indication d'approbation et sa responsabilité n'est pas engagée quand un matérie est déckaré conforme à une de ses normes.
6) L'attention est attirée surye fait que certains des éléments de la présente Norme internationale peuvent faire l'objet de droits de propriéte intellectyelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas ayoir identifie de tels droits de propriété et de ne pas avoir signalé leur existence.

La présente Norne internationale a été établie par le comité d'études 37 de la CEI: Parafoudres.

La présente version consolidée de la CEI 60099-4 est issue de la première édition (1991) [document's 37(BC)38et 37(BC)45], de son amendement 1 (1998) [documents 37/192/FDIS et $37 / 198 /$ RVD] et de son amendement 2 (2001) [documents 37/268/FDIS et 37/270/RVD].

Elle porte le numéro d'édition 1.2.
Une ligne verticale dans la marge indique où la publication de base a été modifiée par les amendements 1 et 2 .

Les annexes $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}$ et N font partie intégrante de la présente norme.
Les annexes $\mathrm{E}, \mathrm{G}, \mathrm{H}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}$ et O sont données uniquement à titre d'information.
Le comité a décidé que le contenu de la publication de base et de ses amendements ne sera pas modifié avant 2003. A cette date, la publication sera

- reconduite;
- supprimée;
- remplacée par une édition révisée, ou
- amendée.

