Standard Practice for Installation of Folded Poly (Vinyl Poly(VinyI Chloride) (PVC) Pipe into Existing Sewers and Conduits ${ }^{1}$

Abstract

This standard is issued under the fixed designation F1947; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Seope-Scope*

1.1 This practice describes the procedures for the rehabilitation of sewer lines and conduits (4 to 15 in. diameter) with nominal diameters between 4 in . and 30 in . $(100 \mathrm{~mm}$ and 750 mm) by the insertion of afolded PVC pipe, which is heated, pressurized, and expanded against the interior surface of anthe existing pipe with either a mechanical rounding device or steam pressure. The finished formed PVC pipe will be continuous and conform to the existing eondtutt.pipe. This rehabilitation process can be used in a variety of non-pressure applications, such as: sanitary sewers, storm sewers, and process piping.
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards: ${ }^{2}$

D790 Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials D1600 Terminology for Abbreviated Terms Relating to Plastics
D1784 Classifieation System and Basis for Speeifieation for Rigid Poly(Vinyl Chloride) (PVC) Compounds and Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds
D2122 Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
F412 Terminology Relating to Plastic Piping Systems
F1417 Practice for Installation Acceptance of Plastic Non-pressure Sewer Lines Using Low-Pressure Air
F1216 Practice for Rehabilitation of Existing Pipelines and Conduits by the Inversion and Curing of a Resin-Impregnated Tube F1504 Specification for Folded Poly(Vinyl Chloride) (PVC) Pipe for Existing Sewer and Conduit Rehabilitation
2.2 NASSCO Standard:

Recommended Specifications for Sewer Collection System Rehabilitation ${ }^{3}$

[^0][^1]
2.3 Uni-Bell Standard:

3. Terminology

3.1 Definitions-Terminology used in this practice is in conformance with Terminology F412 and abbreviations used in this practice are in accordance with Terminology D1600, unless otherwise indicated.
3.2 Definitions of Terms Specific to This Standard:
3.2.1 containment tube, n-an optional elastomeric material placed between the folded pipe and the existing pipe to protect the folded pipe during insertion, for containment of steam during the installation process, and to provide a waterproof barrier against infiltration, inflow, and standing water. This tube remains within the pipe but provides no structural support.
3.2.2 dimples (dimpling), n-Wherewhere a side connection meets the existing pipe, there is not existing pipe support for the folded PVC pipe during expansion causing a point of thermoplastic pipe expansion slightly beyond the existing pipe wall. This formation of an external departure from the formed pipe wall is termed dimpling.
3.2.3 folded pipe, n-PVC pipe that has been manufactured in a folded shape or that is subsequently folded for use in existing pipeline-sewer and conduit rehabilitation (see Fig. 1).
3.2.4 formed pipe, n-folded pipe that has been inserted into an existing sewer or conduit and expanded with heat, pressure, and, if applicable, a rounding device to conform to and take the shape of the existing pipe (see Fig. 1).
3.2.5 insertion point, n-an existing manhole, existing access shaft, or an excavated pit that serves as the point of entrance for the folded pipe into the existing pipe.

Note 1—This figure is intended only for clarification of terms specific to this practice and shows a representative folded and formed pipe shape-shapes. Other folded pipe shapes maycan meet the requirements of this practice.

FIG. 1 Folded Pipe and Formed Pipe, Clarification of Terms
3.2.6 rounded fieldpipe sample, n-a rounded field sample is formed when the folded pipe-folded pipe that has been inserted into a mold-pipe mold and expanded with heat and pressure to conform to the mold pipe.mold, intended for testing purposes.
3.2.7 rounding device, n-a flexible, bullet-shaped device, which may be used to unfold and expand the folded pipe tightly against the wall of the existing pipe.
3.2.8 termination point, n-an existing manhole, existing access shaft, or an excavated pit that serves as the point of exit of the folded pipe from the existing pipe.

4. Significance and Use

4.1 This practice is for use by designers and specifiers, regulatory agencies, owners, and inspection organizations who are involved in the rehabilitation of non-pressure sewers and conduits.

5. Materials

5.1 The folded poly (vinylpoly(vinyl chloride) (PVC) pipe shall be in accordance with Specification F1504.
5.2 The folded pipe shall be spooled in a continuous length for storage and shipping to the job site. Handling and storing shall be in accordance with the manufacturer's published recommendations.
5.3 The optional containment tube should be an elastomeric material capable of containing the steam required to process the folded pipe and serve as a protective waterproofing barrier. The containment tube shall be compatible with the PVC compound, the folded pipe installation process, and the existing pipe so as not to effect the properties of the finished pipe.

6. Installation Recommendations

6.1 Cleaning and Inspection:

6.1.1 Prep Work-Prior to entering access areas such as manholes, and performing inspection or cleaning operations, an evaluation of the atmosphere to determine the presence of toxic or flammable vapors or lack of oxygen must be undertaken in accordance with local, state, or federal safety regulations.
6.1.2 Cleaning of Pipeline-Internal debris shall be removed from the existing pipeline. The pipeline should be cleaned with hydraulically-powered equipment, high-velocity jet cleaners, or mechanically-powered equipment in accordance with NASSCO Recommended Specifications for Sewer Collection System Rehabilitation.
6.1.3 Inspection of Pipelines-Inspection of pipelines shall be performed by experienced personnel trained in locating breaks, obstacles, and service connections by closed circuit television. The interior of the pipeline shall be inspected carefully to determine the location of any conditions that may prevent proper installation of the folded pipe, such as protruding service taps, collapsed or crushed pipe, out-of-roundness, significant line sags, and deflected joints. These conditions should be noted and corrected prior to installation.
6.1.4 LinePipeline Obstructions-The existing pipeline shall be clear of obstructions that will prevent the proper insertion and full expansion of the folded pipepipeline such as offset joints of more than 12.5% of inside pipe diameter, service connections that protrude into the pipepipeline more than 12.5% of the inside pipe diameter or 1 in . (25 mm), whichever is less; and, other reductions in cross-sectional area of more than 16% based on the inside diameter of the existing pipe. If inspection reveals an obstruction that cannot be removed by conventional equipment, then a point repair excavation shall be made to uncover and remove or repair the obstruction. Typically, bends along the existing pipe length in excess of 30° and changes in pipe size cannot be accommodated along an insertion length of the folded pipe. Such conditions require access at these points for termination and start of a new insertion.

Note 1—Some processes may accommodate larger obstructions. Consult the product manufacturer for applications which exceed these typical limitations.
6.2 Bypassing-If flow can not be interrupted for the necessary duration, bypassing of the flow is required around the sections of
the existing pipe designated for rehabilitation. The bypass should be made by plugging the linepipeline at a point upstream of the pipe to be reconstructed and pumping the flow to a downstream point or adjacent system. The pump and bypass lines shall be of adequate capacity and size to handle any extreme flows expected during the installation period. Services within the rehabilitation area will be out of service temporarily.

Nоте 2-Public advisory services will be required to notify all parties whose service laterals will be out of commission and to advise against water usage until the mainline is back in service.

6.3 Insertion:

6.3.1 The spool of folded pipe shall be positioned near the insertion point and contained in a heating chamber. A temperature, as The temperature recommended by the mantuattrer, manufacturer shall be maintained in the heating chamber for a minimum of 1 h to fully heat the length of folded pipe to be inserted. Shorter insertion lengths may be fully heated over a shorter time period as recommended by the manufacturer.
6.3.2 A containment tube then may be pulled through the existing conduit, secured at both ends, and inflated with air at low pressure.

Nоте 3-The containment tube allows for thorough and even heating of the folded pipe by providing a barrier between the folded pipe and infiltration or standing water in the existing pipeline.

- 6.3.3 A cable shall be strung through the existing eonduitpipeline (and containment tube, if applicable) and attached to the folded pipe. The folded pipe shall be heated along the entire length and pulled, with a power winch unit and the cable, directly from the spool, through the insertion point, through the containment tube (if utilized), and within the existing pipe into the terminating manhole. A dynamometer shall be provided on the winch or cable to monitor the pulling force. Pulling forces shall be monitored so as not to exceed the axial strain limits of the folded pipe materiat as recommended by the manufacturer.
6.3.4 After insertion is complete, the winch cable shall be secured at the termination end, and the folded pipe shall be cut off at the insertion point and secured.

6.4 Expansion:

6.4.1 To check that adequate temperatures are being achieved prior to expansion, suitable monitors to gage temperature shall be placed at the insertion and termination ends.
6.4.2 Through the use of heat and pressure or heat, pressure, and a rounding device, the folded pipe shall be expanded fully. Expansion pressures shall be sufficient to unfold the PVCfolded pipe, press it against the wall of the existing eondtrit,pipe, and form dimples at service connections. The installer shall take care to avoid over-expansion of the folded pipe and shall ensure that the minimum resulting wall thickness of the formed pipe is not less than those specified in Table 1.

Note 4-Folded pipe expansion pressures typically are in the range of 8 psi to $10 \mathrm{psi}(55(55 \mathrm{kPa}$ to 69 kPa$)$ but maycan vary based on field conditions.
6.4.3 If a rounding device is used, it should be propelled at a controlled rate within the folded pipe, expanding the folded pipe in a sequential manner. The rounding device shall be flexible and inflated with continual pressure so that is pressurizes the formed pipe against the existing pipe wall while pushing water ahead of the expansion process. The expansion rate (or rounding device speed) shall not exceed $5 \mathrm{ft} / \mathrm{s}(1.52(1.5 \mathrm{~m} / \mathrm{s})$.
6.4.4 Once the rounding device has reached the termination point, the expansion pressure shall be maintained for a minimum period of 2 min to ensure the complete expansion of the folded pipe at local deformities and to allow for complete dimpling at side connections.
6.5 Cool Down-The formed pipe shall be cooled to a temperature below $100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$ before relieving the pressure required to hold the PVC pipe against the existing pipe wall.

Nоте 5-Shrinkage of the formed pipe during cool-down typically is minimal due to the friction provided where the formed pipe conforms to existing pipeline irregularities, such as offset joints.

6.6 End Trimming_After the formed pipe has cooled down, the terminating ends shall be trimmed to a minimum of 3 in . (76.2(75) mm) beyond the existing pipe as allowance for possible shrinkage during cooling to ground temperature.
6.7 Service Connections-After the formed pipe has been installed, and leakage tested, if applicable, the existing active service connections shall be reconnected. This should be done without excavation from the interior of the pipeline by means of a television camera and a remote control cutting device unless otherwise specified by the owner.

Note 6-In many cases, a good seal is provided where the formed pipe dimples at service connections; however, this practice should not be construed to provide a 100% watertight seal at all service connections. If total elimination of infiltration and inflow is desired, other means, which are beyond the scope of this practice, maycan be necessary to seal service connections and to rehabilitate service lines and manholes

7. Inspection and Acceptance

7.1 The installation may be inspected by closed-circuit television. The formed pipe shall be continuous over the entire length of the insertion and conform to the walls of the existing pipe evidenced by visible joint definition and mirroring of existing pipe irregularities. Variations from true line and grade maycan be inherent because of the conditions of the existing pipeline. No infiltration of groundwater through the formed pipe wall should be observed. All service entrances should be accounted for and be unobstructed.
7.2 Leakage Testing-If required by the owner or designated in the contract documents or purchase order, or a combination thereof, gravity pipes shall be tested for leakage. This test shall take place after the formed pipe has cooled down to ambient temperature. This test is limited to pipe lengths with no service laterals or lines with service laterals, which have not yet been reinstated. One of the following two methods shall be used.
7.2.1 Exfiltration-An exfiltration test method involvesinvolving plugging the formed pipe at both ends and filling it with water. The allowable water exfiltration for any length of pipe between termination points should not exceed $50 \mathrm{U} . \mathrm{S}$. gal/in. of internal pipe diameter/mile/day, providing that all air has been bled from the tine-pipeline. The leakage quantity shall be gaged by the water level in a temporary standpipe placed in the upstream plug. During exfiltration testing, the maximum internal pipe pressure at the lowest end shall not exceed $10 \mathrm{ft}(3.0 \mathrm{~m})$ of water ofor $4.3 \mathrm{psi}(29.7 \mathrm{kPa})$ and the water level inside of the standpipe shall be 2 $\mathrm{ft}(0.6 \mathrm{~m})$ higher than the top of the pipe or $2 \mathrm{ft}(0.6 \mathrm{~m})$ higher than the groundwater level, whichever is greater. The test shall be conducted for a minimum of 1 h .
7.2.2 Air Testing_An air test shall be conducted in accordance with Test Method F1417.
7.3 Field Sampling-For When required by the owner or designated in the contract documents or purchase order, or a combination thereof, for each insertion length designated by the owner in the contract documents or purchase order, a rounded fieldpipe sample shall be prepared at the insertion or termination point, or both, by installing the folded PVC pipe into a mold pipe-pipe mold. The mold pipe shall be of like diameter to the existing pipe and should be a minimum of one diameter in length. The following test procedures shall be followed after the sample is expanded and cooled-down as an integral part of the folded PVEpipe installation process and removed from the mold pipe.

7.3.1 Dimensions:

7.3.1.1 Routhted Field Sample-Diameter-The average outside diameter of the rounded fieldpipe sample shall meet the requirements givenspecified in Table 1 with a tolerance of $-7.0 \pm 5.0 \%$ when tested $-7.0 \%,+5.0 \%$ when measured in accordance with the applicable section of Test Method D2122.
7.3.1.2 Rotnted Field Sample-Wall Thickness-The minimum wall thickness of the rounded pipe sample, when measured in accordance with the applicable sections of Test Method D2122, shall not be less than the values specified in Table 1.
7.3.2 Flexural Properties-The flexural modulus of elasticity shall be measured in accordance with Test Method D790, Test Method 3, Procedure A, and shall meet the requirements of SpeeifieationTable 2F1504. Specimens shall be oriented on the testing machine with the interior surface of the rounded fieldpipe samples against the loading supports.

Note 7-The evaluation of rounded fieldpipe sample flexural properties is intended as an installation quality control test to verify that these properties were not negatively affected through installation processing of the PVC material. The minimum physical properties requiredspecified in Table 2 are the same as required for the mantufactured pipe-those in Specification F1504.

8. Keywords

8.1 installation-underground; plastic pipe-thermoplastic; poly (viny-poly(vinyl chloride) PVC plastic pipe; rehabilitation

Specification D1784PVC Gompound Classification	Minimum Flexural Aodules of Elasticity, psi $(\mathrm{mPa})^{A}$
13223	280000 (1931)
12334	320000 (2206)
12344	$360-000$ (2482)
TABLE 2 Rounded Pipe Sample Flexural Properties	
PVC Cell Classification	Minimum Flexural Modulus of Elasticity, psi $(\mathrm{MPa})^{A}$
13223, 33223	280000 (1930)
12334, 32334	320000 (2206)

[^2]

APPENDIX

(Nonmandatory Information)

X1. STRUCTURAL DESIGN CONSIDERATIONS

X1.1 Terminology:

X1.1.1 partially deteriorated pipe - $\underline{\text { When }}$ the existing pipe can support the soil and surcharge loads throughout the design life of the rehabilitated pipe, and the soil adjacent to the existing pipe mtst provide-provides adequate side support. The eonduit maypipeline can have longitudinal cracks and distortion not greater than 12.5% of theits nominal inside diameter.

X1.1.2 fully deteriorated pipe-When the existing pipe is not structurally sound and cannot support soil and live loads or is expected to reach this condition over the design life of the rounded PVC pipe. This-formed pipe. The fully-deteriorated pipe condition is evident when sections of the existing pipe are missing, the existing pipe has lost its original shape, or the existing pipe has corroded due to the effects of the fluid, atmosphere, or soil.

[^0]: ${ }^{1}$ This practice is under the jurisdiction of ASTM Committee F17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.67 on Trenchless Plastic Pipeline Technology.

 Current edition approved Mareh 1, 2021Aug. 1, 2021. Published Mareh 2021August 2021 Last previous edition approved in 20102021 as F1947-10 which was withdrawn February 2019 and reinstated in Mareh 2021. DOI: 10.1520/F1947-21.21. DOI: 10.1520/F1947-21A.
 ${ }^{2}$ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.
 ${ }^{3} 11521$ Cronridge Drive, Suite J Owings Mills, MD 21117. www.nassco.org.

[^1]: *A Summary of Changes section appears at the end of this standard
 Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

[^2]: ${ }^{A}$ Measured in accordance with 7.3.2.

