

Designation: D4326 - 13 D4326 - 21

Standard Test Method for Major and Minor Elements in Coal and Coke Ash By X-Ray Fluorescence¹

This standard is issued under the fixed designation D4326; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers the analysis of the commonly determined major and minor elements in ash from coal or coke using X-ray fluorescence (XRF) techniques.

Note 1—Test Method D5016 is used for determination of sulfur.

Note 2—Although not included in the present method, the determination of barium, strontium, and manganese may be required to yield adequate totals.

- 1.2 <u>Units—</u>The values stated in SI units are to be regarded as standard. No other units of measurement are included in this The values given in parentheses after SI units are provided for information only and are not considered standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety safety, health, and health environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

D121 Terminology of Coal and Coke

D346 Practice for Collection and Preparation of Coke Samples for Laboratory Analysis

D2013 Practice for Preparing Coal Samples for Analysis

D3173 Test Method for Moisture in the Analysis Sample of Coal and Coke

D3174 Test Method for Ash in the Analysis Sample of Coal and Coke from Coal

D5016 Test Method for Total Sulfur in Coal and Coke Combustion Residues Using a High-Temperature Tube Furnace Combustion Method with Infrared Absorption

D7348 Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues

D7582 Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis

D8146 Guide for Evaluating Test Method Capability and Fitness for Use

¹ This test method is under the jurisdiction of ASTM Committee D05 on Coal and Coke and is the direct responsibility of Subcommittee D05.29 on Major Elements in Ash and Trace Elements of Coal.

Current edition approved Sept. 1, 2013 Sept. 1, 2021. Published September 2013 October 2021. Originally approved in 1984. Last previous edition approved 2011 as D4326 – 11: D4326 – 13. DOI: 10.1520/D4326-13:10.1520/D4326-21.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

- E2 Methods of Preparation of Micrographs of Metals and Alloys (Including Recommended Practice for Photography As Applied to Metallography); Replaced by E 883 (Withdrawn 1983)³
- E11 Specification for Woven Wire Test Sieve Cloth and Test Sieves
- E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

3. Terminology

3.1 Definitions—Definitions applicable to this test method are listed in D121, Terminology of Coal and Coke.

4. Summary of Test Method

- 4.1 The coal or coke—to be analyzed is ashed under standard conditions and ignited to constant weight.mass. Previously ashed materials are ignited to constant weightmass under standard conditions. The ash is fused with lithium tetraborate (Li₂B₄O₇) or other suitable flux and either ground and pressed into a pellet or cast into a glass disk. The pellet or disk is then irradiated by an X-ray beam of short wavelength (high energy). The characteristic X-rays of the atom that are emitted or fluoresced upon absorption of the primary or incident X-rays are dispersed and intensities at selected wavelengths are measured by sensitive detectors. Detector output is related to eoncentration mass fraction by calibration curves or by computerized data-handling equipment.
- 4.2 The K spectral lines are used for all of the elements determined by this procedure.
- 4.3 All elements are determined as the element and reported as the oxide and include Si, Al, Fe, Ca, Mg, Na, K, P, Ti, Mn, Sr, and Ba.

5. Significance and Use

1 A compositional analysis of ash is used in describing the quality of coal for its complete of

- 5.1 A compositional analysis of ash is used in describing the quality of coal for its complete characterization. Ash composition is useful in predicting slagging and fouling characteristics of combusted materials as well as the potential utilization of ash by-products.
- 5.2 The chemical composition of laboratory prepared coal or coke ash is rarely, if ever, representative of the composition of the mineral matter in the coal because the ashing process can alter some minerals. However, it can approximate the composition of the fly ash and slag resulting from commercial combustion of coal or coke.coal.
 - 6. Apparatus' (standards. iteh. ai/catalog/standards/sist/5 ae 477 d4-37 db-4b 0 c-b d6 a-85 be 50 f5 cdd f/astm-d4326-21 are also be a significant of the control of
- 6.1 Ashing Furnace, with an adequate air circulation and capable of having its temperature regulated at 500°C and 750°C.750°C.
- 6.2 Fusion Furnace or Fluxing Device, with an operating temperature of at least 1000°C. 1000°C.
 - 6.3 Fusion Crucibles, either high-purity graphite (22 mm high and 19 mm wide, inside diameter) or platinum-gold alloy of a similar or larger capacity.
 - 6.4 Pulverizers, including agate, mullite or tungsten carbide mortar, and pestle, minimum capacity 25 mL.
- 6.5 Sieves, 250-μm250 μm (No. 60) and 75-μm75 μm (No. 200) U.S.A standard sieve as specified in Specification E11.
- 6.6 Compactor—A press equipped with a gagegauge enabling reproducible pressures (exceeding 1.72×10^8 Pa (25 000 psi)) if pressed pellets are utilized.
- 6.7 Excitation Source, with a stable electrical power supply $(\pm 1\%)(\pm 1\%)$ and a high-intensity, short-wavelength X-ray capability.

³ The last approved version of this historical standard is referenced on www.astm.org.

- 6.8 Spectrometer—A wavelength or energy dispersive system equipped with a vacuum sample chamber.
- 6.8.1 Analyzing Crystal (Wavelength Units)—The choice of the analyzing crystal is made on the basis of the element to be determined. An attempt should be made to use the crystal that yields the maximum sensitivity with minimum interferences. The same crystal must be used for standards and unknowns.
- 6.8.2 *Detectors*—Scintillation and gas-flow counters are used with wavelength systems while lithium-drifted diodes are used for energy dispersive systems.

7. Reagents

- 7.1 Purity of Reagents—Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.
- 7.2 Detector Gas—The usual gas composition of the gas used in the flow-proportional counters is 90 % argon, 10 % methane, although other compositions may be used.
- 7.3 *Heavy Absorber*—Where heavy absorbers, such as lanthanum oxide or barium oxide, are used they shall be a minimum of 99.99 % purity.
- 7.4 Fluxes—Lithium or sodium borates or carbonates, or combination thereof, are often used for sample fusion. Lithium or ammonium iodide used as a nonwetting agent and potassium or ammonium nitrate used as an oxidizing agent may be used provided they do not contribute to spectral interference.
- 7.5 *Binders*—Where pressed pellets are used for analysis, the binder used shall contribute no spectral interferences during the determination.

8. Sample Preparation

ASTM D4326-21

- 8.1 Coal and Coke—Coal—Prepare the analysis sample in accordance with Practice D2013 for coal or Practice D346 for coke by pulverizing the material to pass a 250-μm250 μm (No. 60) U. S. A. standard sieve.
- 8.1.1 Analyze separate test portions for moisture and ash contents in accordance with Test Methods D3173, D3174, or D7582, so that calculations to other bases can be made.
- 8.3 Solid Combustion Residue—Dry a representative portion of the solid residue to constant mass at $\frac{107107 \text{ °C}}{107 \text{ °C}} \pm \frac{3 \text{ °C.}}{200} = \frac{3 \text{ °C.}}{2$
- 8.4 Ashing Solid Combustion Residue—Spread an appropriate amount of the prepared sample in a layer not over 2 mm in a

⁴ Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Analar Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia and National Formulary, U.S. Pharmaceutical Convention, Inc. (USPC), Rockville, MD.

porcelain, quartz, or fused silica roasting dish. Place the dish in a muffle furnace that is at ambient temperature and heat gradually so that the temperature reaches $\frac{500500 \text{ °C}}{500500 \text{ °C}} \pm \frac{10 \text{ °C}}{10 \text{ °C}}$ at the end of $\frac{1 \text{ h. }}{1 \text{ h. }}$ Continue the gradual heating until the temperature rises from $\frac{500500 \text{ °C}}{500500 \text{ °C}} \pm \frac{10 \text{ °C}}{10 \text{ °C}}$ to $\frac{750750 \text{ °C}}{10 \text{ °C}} \pm \frac{15 \text{ °C}}{15 \text{ °C}}$ at the end of 1 h. Maintain the $\frac{750 \text{ °C}}{10 \text{ °C}} \pm \frac{10 \text{ °C}}{10 \text{ °C}}$ temperature until the combustion residue reaches a constant mass or for an additional two h. Cool the test specimen, grind 2 h. Allow the test specimen to cool to room temperature, grind it to pass a $\frac{75 \text{ µm}}{10 \text{ °C}}$ (No. 200) U. S. A. standard sieve, and reignite it at $\frac{750 \text{ °C}}{10 \text{ °C}} \pm \frac{10 \text{ °C}}{10 \text{ °C}}$ for 1 h and allow to cool to room temperature.

8.5 If previously ignited samples are stored and the absorption of moisture of CO_2 , or both, is in question, reignite the ash at $750^{\circ}C_{750}^{\circ}C_$

9. Preparation of Analytical Sample

9.1 Mix the powdered sample, weigh-determine the mass of a portion of the sample, and mix with a suitable amount of flux (2(2 g to 10 g of flux per gram of sample) (Note 3). When a heavy absorber is used (Note 45), it is added at this point in an amount equal to the amount of sample and thoroughly blended with the mix. A portion of the flux used as a cap on the mix ensures washing down any of the material from the sides of the crucible. Add all fluxes and other additives in an appropriate manner at the time of sample preparation.

Note 3—The amount of sample and flux used are determined by the necessity of forming a disk or pellet of 2-mm2 mm thickness to fit the sample holder of the spectrometer used. All fluxes and other additives should be added in an appropriate manner at the time of sample preparation.

Note 4—Beads thinner than 5 mm might not be infinitely thick for Sr K- $L_{2,3}$ radiation. If the specimen (in this case the bead) is not infinitely thick for one or more analytes, then the intensity of those analytes depends not only on the composition but also on the thickness. Unless the thickness is taken into account explicitly, determination of the mass fractions is then much more difficult. In this case, it is important that the mass of sample and flux is strictly controlled and that loss of ignition (LOI) during fusion is kept to a minimum. An alternative is to use thicker beads by increasing the masses of sample and flux.

- 9.1.1 Fluxing materials commonly available are not consistent and can vary in volatile losses upon fusing. In order to eliminate errors caused by this loss, <u>use</u> one of three methods must be employed. First, the entire bottle of flux may be heated to the fused state, then cooled, reground, and stored in a desiceator. Second, a weighed sample from each bottle the following two methods. First, a sample of known mass from each lot of flux is fused and a loss on fusion is determined, which is then applied as a correction for each sample prepared from that bottle. Third, lot of flux. Or, alternatively, the entire mass of each sample prepared (flux, sample, and heavy absorber, if used) may be weighed determined and an independent fusion loss calculated.
- Note 5—Use of a heavy absorber has the advantage of allowing the use of a much smaller sample weightmass to reach infinite thickness and allows for calculation of eoneentrations-mass fractions using a simple linear regression coefficient. It does, however, prevent determination of a number of trace elements and may be impractical for energy dispersive systems where its addition may cause increased detector dead time and complicate correction procedures. The use of a heavy absorber is recommended only when its absence is impractical or inconvenient.
- 9.2 The sample mix is fused at approximately 1000°C, 1000 °C, in a fusion furnace of fluxing device, for a length of time sufficient to guarantee complete dissolution of the sample. Some type of agitation of the crucible, such as swirling or shaking, must be used in order to ensure a uniform melt.
 - 9.3 The fusion melt will then be made into a suitable mount by casting the liquid into a mold and forming a glass disk or by allowing the pellet to cool, grinding to a fine powder with 2 % of a plasticizer or binder, and pressing into a pellet at a minimum of 1.72×10^8 Pa pressure with a suitable backing as added support.
 - 9.4 The glass disk must be cooled at a rate that is fast enough to prevent any segregation occurring and, at the same time, slowly enough to prevent stresses that will crack the glass. Cracked glass disks may be refused and recast without loss of precision.
 - 9.5 Whichever method of preparation of the analytical mount is used, it is essential that a smooth, uniform, and flat surface is exposed to the exciting radiation.
- 9.6 It is essential that the entire sample preparation procedure (including sample weight, mass, flux weight mass and ratio, grinding, casting, and so forth) be followed precisely for all analytical mounts and standards. Even a small change in the selected procedures

will require remaking of all standards to match the changed procedure. All calibration standards and the unknowns to be used with them must be prepared in exactly the same manner with all weighings mass determinations to be made to the nearest 1 mg.

10. Preparation of XRF Spectrometer

- 10.1 Follow the manufacturer's instruction for the initial assembly, conditioning, and preparation of the XRF unit.
- 10.2 Follow the manufacturer's instructions with respect to control setting and operation.

11. Excitation and Exposure

11.1 Position the sample in the chamber provided for this purpose. Avoid touching or otherwise contaminating the sample surface. Produce and record the spectrum at the settings recommended for the instrument. Prepare and analyze duplicate mounts for all samples with duplicate readings on each mount. For in-house laboratories, single determinations may be performed as long as the precision and bias limits are met.

12. Safety Precautions

12.1 It is necessary to obtain training before using X-ray fluorescence equipment and important to understand completely the operation of the instrument to ensure that the provisions of 1.3 are met.

13. Calculations and Calibration

- 13.1 Standards for calibration may be prepared from standard reference materials or synthetically blended pure compounds. It is required that the range of concentrations mass fractions represented by the standards exceeds that of any unknown.
- 13.2 Calculation of elemental concentrations <u>mass fractions</u> may be accomplished by empirical fundamental parameter or linear regression in accordance with Practice E2.

14. Precision and Bias⁵

Document Preview

14.1 *Precision*—The relative precision of this test method for the determination of major and minor elements in coal and coke ash combustion residues was calculated from data obtained from ashes with the concentration mass fraction ranges shown in Table 1.

https://standards.iteh

TABLE 1 Mass Fraction Range and Limits for Repeatability and Reproducibility for Major and Minor Elemental Oxides in Ash (Dry Basis) from Combustion Residues^{A,B}

Parameter	Mass Fraction	Repeatability	Reproducibility
	Range, %	Limit,	Limit,
		<u></u>	R
SiO ₂	30.12 to 63.95	0.818	1.736
Al_2O_3	11.87 to 33.76	$0.020x^- + 0.173$	$0.049x^{-} + 0.577$
Fe ₂ O ₃	3.09 to 42.26	$0.009x^- + 0.137$	$0.041x^{-} + 0.416$
TiO ₂	0.50 to 3.66	$0.017x^- + 0.038$	$0.091x^- + 0.092$
CaO	1.50 to 25.77	$0.016x^- + 0.083$	$0.056x^- + 0.076$
MgO	0.75 to 7.27	$0.014x^{-} + 0.095$	$0.056x^- + 0.242$
Na ₂ O	1.16 to 7.31	0.008x + 0.152	$0.108x^{-} + 0.282$
K ₂ O	0.28 to 3.08	0.075x - 0.015	$0.102x^- + 0.020$
K ₂ O BaO	0.38 to 2.84	$0.006x^- + 0.052$	$0.206x^- + 0.078$
SrO	0.13 to 0.58	$0.020x^- + 0.016$	$0.206x^- + 0.032$
SrO P ₂ O ₅	0.25 to 3.40	0.043x ⁻ + 0.024	$0.130x^- + 0.098$
	The values presented below are for information only.		
MnO_2		$0.135x^- + 0.014$	0.351x ⁻ + 0.017
SO ₃		$0.045x^{-} + 0.161$	$0.135x^- + 0.660$

A Where x̄ is the average of two single test results.

B Where the lower scope limit is the larger of the following: the lowest sample mean tested in the Interlaboratory Study (ILS) or the test level where the ratio of the test level to the within laboratory standard deviation (S_i) is ten. The latter is calculated from the relationship expressing the repeatability limit for the test method as Intercent /(0.28 - Intercent /(0.

⁵ Supporting data are available from ASTM Headquarters. Request have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D05-1006RR:D05-2003. Contact ASTM Customer Service at service@astm.org.

Note 6—DataTable 1 were also collected for indicates that the precision for SO₃ and MnO₂, is for information only. For SO₃, SrO, and BaO in the round robin used to generate the data for calculating the repeatability and reproducibility intervals or limits for the first nine elemental oxides in this is explained by observed inconsistencies in the results within and between labs, likely caused by the fusion process. For Table 1. These data were used to calculate the repeatability and reproducibility intervals or limits for the last four elemental oxides in the table. The analyses of MnO₂, SO_{this3}, SrO, and BaO were not included in the original scope and responsibility of the Task Group and are listed for informational purposes only: is explained by the observed mass fraction of this oxide being low enough on most of the ILS samples such that trace analysis would be required.

- 14.1.1 *Repeatability*—the The value below which the absolute difference between two test results of separate and consecutive test determinations, carried out on the same sample in the same laboratory by the same operator using the same apparatus on samples taken at random from a single quantity of homogeneous material, may be expected to occur with a probability of approximately 95%:95 %.
- Note 7—The interlaboratory studies used to determine the precision of this method in Table 1 defined separate test determinations as "two fused glass disks prepared from separate test portions of coal derived ash."
- 14.1.2 *Reproducibility*—the The value below which the absolute difference between two test results carried out in different laboratories using samples taken at random from a single quantity of material that is as homogeneous as possible, may be expected to occur with a probability of approximately 95%.95 %.
- 14.2 *Bias*—Analysis of ash by X-ray fluorescence is empirical and its approach to accuracy is dependent upon the accuracy of the reference materials to be used for calibration (13.1) and compliance to this test method. No other statement on bias can be made for this test method.
- 14.3 Interlaboratory studies, designed consistent with Practice E691, were conducted in 1984, 1989 and 1995 for major and minor elemental oxides in ash from combustion residues; however, data from the 1984 ILS was not used for derivation of the precision information in Table 1 because of inconsistencies in the number of replicates reported for that study. The total number of participating laboratories between the 1989 and 1995 studies was twenty-three (23); however, some laboratories' results were excluded for some materials, and the average number of participating laboratories for a given element and material was seven (7). The details of the study and supporting data are given in ASTM Research Report RR:D05-2003.⁵

15. Keywords

ASTM D4326-21

15.1 coal; coal ash; major elements; minor elements; X-ray fluorescence 4b0c-bd6a-85be50f5cddf/astm-d4326-21

ANNEX

(Mandatory Information)

A1. PRECISION STATISTICS

A1.1 See Table A1.1.

- A1.1.1 Repeatability Standard Deviation (S_r) —The standard deviation of test results obtained under repeatability conditions.
- A1.1.2 Reproducibility Standard Deviation (S_R) —The standard deviation of test results obtained under reproducibility conditions.
- A1.1.3 Analytical Performance Value (APV_r)—The ratio of the repeatability to the average test level expressed as a percent.
- A1.1.4 Performance Ratio (PR)—The ratio between reproducibility and repeatability.

iTeh Standards (https://standards.iteh.ai) Document Preview

ASTM D4326-21

https://standards.iteh.ai/catalog/standards/sist/5ae477d4-37db-4b0c-bd6a-85be50f5cddf/astm-d4326-21