
Designation: E3291 − 21 An American National Standard

Standard Guide for
Reliability Demonstration Testing1

This standard is issued under the fixed designation E3291; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This standard covers fundamental concepts, applications
and mathematical relationships associated with the planning of
reliability demonstration tests as applied to components and
materials testing.

1.2 The system of units for this guide is not specified.
Quantities and examples are presented only as illustrations of
a method or a calculation. Any examples used are not binding
on any particular product or industry.

1.3 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety, health, and environmental practices and deter-
mine the applicability of regulatory limitations prior to use.

1.4 This international standard was developed in accor-
dance with internationally recognized principles on standard-
ization established in the Decision on Principles for the
Development of International Standards, Guides and Recom-
mendations issued by the World Trade Organization Technical
Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:2

E456 Terminology Relating to Quality and Statistics
E2555 Practice for Factors and Procedures for Applying the

MIL-STD-105 Plans in Life and Reliability Inspection
E2696 Practice for Life and Reliability Testing Based on the

Exponential Distribution
E3159 Guide for General Reliability
2.2 ISO Standards:3

ISO 3534-1 Statistics – Vocabulary and symbols, Part 1:
Probability and general statistical terms

ISO Guide 73 Risk management vocabulary

3. Terminology

3.1 Definitions:
3.1.1 Unless otherwise noted, terms relating to quality and

statistics are as defined in Terminology E456. Other general
statistical terms and terms related to risk are defined in ISO
3534-1 and ISO Guide 73.

3.1.2 Bp life, n—for continuous variables, the life at which
there is a probability, p, (expressed as a percentage) of failure
at or less than this value. E3159

3.1.3 failure mode, n—the way in which a device, process or
system has failed. E3159

3.1.4 hazard rate, n—differential fraction of items failing at
time t among those surviving up to time t, symbolized by h(t).

E2555

3.1.5 mean time between failures (MTBF), n—the average
time to failure for a repairable item. E3159

3.1.6 mean time to failure (MTTF), θ, n—in life testing, the
average length of life of items in a lot. E2696

3.1.7 reliability, n—the probability that a component,
device, product, process or system will function or fulfill a
function after a specified duration of time or usage under
specified conditions. E3159

3.2 Symbols:
3.2.1 The following symbols are used extensively in the

discussion.
3.2.2 C—confidence coefficient (decimal value between 0

and 1).

3.2.3 n—sample size, (positive integer at least 1).

3.2.4 p—failure probability (decimal between 0 and 1, or
percentage between 0 and 100).

3.2.5 R—reliability. R = 1 – p or (100 – p)% for p expressed
as a percentage.

3.2.6 r—number of failures allowed (0 ≤ r < n).

3.2.7 β—Weibull shape parameter, also referred to as the
“Weibull slope.”

3.2.8 θ—for the exponential model, the mean (MTTF) of the
distribution.

3.2.9 η—for the Weibull model, the characteristic life or
scale parameter.

1 This guide is under the jurisdiction of ASTM Committee E11 on Quality and
Statistics and is the direct responsibility of Subcommittee E11.40 on Reliability.
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3.2.10 λ—for the exponential model, the failure rate; also
equal to 1 / θ.

3.2.11 f—scatter factor equal to the ratio B50/B0.1

4. Significance and Use

4.1 Reliability demonstration testing is a methodology for
qualifying or validating a product’s performance capability.
Demonstration methods are useful for components, devices,
assemblies, materials, processes, and systems. Many industries
require demonstration testing either for new product develop-
ment and product introduction, in validating a change to an
existing product or as part of an audit. Test plans generally try
to answer the questions, “How long will a product last?” or
“What is its reliability?”, under stated conditions at some
specific time. When time is being used as a life variable, it must
be cast in some kind of “time” units. Typical time units are
hours (or minutes), cycles of usage, calendar time or some
variation of these. In certain cases, “time” can be accelerated in
order to reduce a plan’s completion time. In the automotive
industry mileage may be used as the time variable. Certain
means of accelerating tests involve the use of increased power,
voltage, mechanical load, humidity, vibration, or temperature
(often in the form of thermal cycling).

4.2 Two fundamental objectives in reliability test planning
are: (a) demonstrating that a product meets a specific life
requirement, and (b) demonstrating what a product can do – its
life capability. In the first case, a requirement is specified; in
the second case a series of test results are used to state a result
at the present time – its current capability. Both cases share
similar inputs and outputs.

4.3 Often a life distribution model is specified such as the
Weibull, the exponential, the lognormal or the normal distri-
bution. In addition, for the specific distribution assumed, a
parameter is typically assumed (or a range of values for a
parameter). For example, in the Weibull case, the shape
parameter, β, is assumed; in the lognormal case the scale
parameter, σ, is assumed and in the normal case the standard
deviation, σ, is assumed. In other cases, a non-parametric
analysis can be used. Non-parametric cases typically require a
larger sample size than parametric cases. This standard will
discuss conditions under which distributions and associated
parameters can be assumed.

4.4 Generally, a life requirement is cast as a mission time
and associated reliability, for example, to demonstrate a
reliability of 99% at time t=1000 hours of usage. In another
case the requirement might be cast as a Bp life requirement,
such as the B5 life. For example, if B5 = 10 000 cycles are
specified, this means to demonstrate a reliability of 95 % at t =
10 000 cycles. Other life requirements might be a mean life, a
median life (B50) or a failure rate not to be exceeded at a
specified time t. In other cases, the requirement might mean
withstanding a load for some duration. Demonstration neces-
sarily means to demonstrate with some statistical confidence.
Thus, a confidence value is a standard input in any plan.
Commonly used confidence values are 99 %, 95 %, 90 %, and
63.2 %.

4.4.1 When a requirement and a confidence value have been
stated, a derived plan will determine a sample size, n, a test

time, t, and a maximum number of failures, r, allowed by the
plan. A test concludes and is successful if the n units tested
result in not more than r failures by time t. In another scenario,
the sample size, number of failures allowed and confidence
value are first stated and the plan returns the test time
requirement.

4.5 The “RC” nomenclature for specifying a test require-
ment is often used, where R stands for reliability and C for
confidence. For example, to state a requirement of 2000 hours
at R99C90 means that the requirement is to demonstrate 99 %
reliability at 2000 hours with 90 % confidence. Alternatively,
this also means to demonstrate a B1 life of 2000 hours with 90
% confidence.

4.6 This guide considers, the Weibull, lognormal and nor-
mal parametric cases as well as the basic non-parametric case
for attribute reliability. The common exponential case is a
Weibull distribution with assumed shape parameter β = 1, but
is considered as a separate case, distinct from the Weibull.

5. General Introduction

5.1 Before reliability can be assessed, and a test plan
specified, it is useful to know something about the nature of the
failure modes that might occur. The type of failure mode is
important in selecting a life distribution and any assumed
parameter where variable (continuous distribution) data is
used.

5.1.1 In general, there are three classes of failure modes that
operate in electro-mechanical systems: (a) random, (b) wear
out, and (c) “infant mortality”. These are related to the failure
rates operative in field applications.

5.2 In a random type failure mode, the failure mechanism is
not related to the age of the object tested or fielded, and the
failure rate is constant throughout this portion of life (constant
failure rate or CFR). A new object and any unfailed object
having seen usage each have the same propensity to fail in the
future. Causes for this type of failure mode are often related to
some external stimulus, operability robustness or to a complex
of rare factors that might come together, rarely, in just the right
mix to cause a failure.

5.2.1 Random stress spikes under field conditions, such as
those driven by electrical, mechanical, chemical or thermal
shock may cause random failures at any point in a product life
cycle. Operating a product outside of specification limits at
random times may render a product prone to failure at any time
in its life. Other outside stimuli such as those caused by foreign
object damage or biological interference are possible and may
lead to random type failures.

5.3 Wear out mechanisms are related to the age of the object
and have increasing failure rates with time/usage. This is called
an increasing failure rate (IFR). The more usage the object has,
the greater the likelihood of failures for the surviving popula-
tion. Wear-out or performance degradation is generally a
gradual process as usage increases. Ultimately, this results in
loss of robustness and eventual failure. In electro-mechanical
applications, causes of this type of failure may be driven by
gradual chemical, thermal, mechanical, electrical or radiation
stresses.
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5.4 An “infant mortality” type failure mode relates to
certain severe conditions possessed by some objects in a
population rendering these select units prone to early failure,
while the remaining population may last many times longer.
The older a unit is, the less likely such failures would appear
because the affected unit would most likely have failed early in
the life cycle if it had the severe condition. Essentially, there is
a failure mode and some items in the population have the
failure conditions more severely than others, resulting in early
failure. The failure rate in these cases is decreasing with time.
This is called a decreasing failure rate (DFR). There are
numerous causes for this case ranging from assembly issues to
material problems.

5.5 The three general classes of failure are depicted in the
so-called bathtub curve shown in Fig. 1. Fig. 1 is a highly
idealized portrait of a product’s life cycle. It suggests that there
are three phases to life: (a) the burn-in period is the trouble
shooting or corrective action phase where the failure rate is
decreasing, (b) the random period is the useful life phase where
the failure rate is constant, and (c) the wear out period with an
increasing failure rate leads to end of life or retirement. Not
every product will experience all three phases and the degree of
each phase depicted may be of very dissimilar proportion.

5.5.1 Infant Mortality—Failures of this type are generally
the result of some components that do not meet specifications
or workmanship standards. These types of failures are typically
not design-related issues, but quality-related issues. As a
product is put into service, early failures are observed as a
result of these or similar conditions. Corrections are gradually
made, and the failure rate decreases for a given time until it
may reach a steady state or constant rate. The infant mortality
period, then, is characterized by a decreasing failure rate. The
Weibull distribution with shape parameter 0<β<1 is commonly
used to characterize infant mortality conditions.

5.5.2 Constant Failure Rate—Once the failures due to
components and workmanship are for the most part eliminated,
the constant failure rate period is entered, and called the
random failure rate period. “Random” means that failure
events are proportional to time in use, but this is not dependent
on age at the start of any time interval. The constant failure rate
period is the most common time frame for making reliability
predictions, where the exponential distribution is used. The
exponential – which is equivalent to a Weibull with β = 1 – can

be used to describe this phase. The number of such random
failures occurring within this period is Poisson distributed with
some mean number of events. A failure rate parameter, λ, in the
units of failure per unit time is used to characterize this portion
of life.

5.5.3 Wear Out Period—As components begin to fatigue or
wear out, failures occur at increasing rates for a specified
interval. An increasing or sometimes sharp rise in failure rate
can be the result of fatigue and other physical actions. As time
goes on, failures occur more and more frequently to a point
where it may no longer be practical to continue operating the
product. Several distributions may be appropriate to model the
wear-out period. The Weibull and lognormal distributions are
often used. For the Weibull distribution, an increasing failure
rate occurs where the shape parameter β > 1.

5.6 For purposes of validation of a new product introduction
or for a change to an existing product it is common practice to
use the exponential distribution which covers the useful
(random) portion of product life. This assumption is conserva-
tive in that it takes more test time and/or a larger sample size
to validate a specific requirement for the random life case than
for the wear out case. In general, the infant mortality case is not
typical in validating procedures (although in theory, this case
would be valid). The infant mortality case is more often used
in working with a fielded population that shows signs of early
failures. It may also be used to develop a burn-in or screening
period that a product is exposed to prior to its field application,
in an attempt to find early type failures before customer use.

5.7 In some cases, the failure rate may exhibit increases and
decreases as a function of age. This is typically distribution-
specific and would be the case in certain parameter cases when
the lognormal distribution is used.

6. The Nonparametric Case

6.1 In the nonparametric case (NP) there is no life distribu-
tion being used to model variable data. Testing is of the
pass-fail type and governed by the binomial distribution. In this
attribute reliability case, n is the sample size, and p is the
failure probability at the specified test condition. The reliability
is cast as R = 1 – p. The parameters for this test case are C the
specified confidence, R the reliability, n, the sample size, and r
the number of failures in n allowed by the plan.

FIG. 1 The “Bathtub” Curve
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6.1.1 A random variable X is said to have a binomial
distribution if x is takes on integer values between 0 and n, and
is a count of the number of occurrences of a defined condition,
where each of the n sample units either has or does not have the
condition. Each sample unit has a probability p of having the
condition and the n sample values behave independently of one
another. We say that X is binomially distributed with param-
eters n and p.

6.1.2 A “failure event” is defined as the failure of a
component, a material specimen or other entity to meet a
well-defined requirement. A requirement may be a variable
quantity such as a number of cycles or a minimum load
condition in a fatigue test, a variable dimensional requirement,
or a basic attribute tested as go or no-go type of characteristic.
Each test either meets or fails to meet the requirement. For pure
attribute pass or fail testing, a “zero failure” test plan is a
common theme. For the zero-failure test plan the following
equation, based on the binomial distribution, relates sample
size, n, confidence, C, and reliability, R (1, 2).4

R $ =n
1 2 C (1)

6.1.3 In Eq 1, C is the chosen confidence coefficient (0 < C
< 1), n is the sample size (n > 0), and R is the demonstrated
reliability (0 < R < 1) when n tests result in zero failures. Eq 1
may be solved for either C or n giving.

C $ 1 2 Rn (2)

n 5
ln~1 2 C!

ln~R!
(3)

6.1.4 In Eq 2, the confidence in meeting the reliability
requirement R using sample size n is at least C. In Eq 3, the
sample size needed to claim reliability R with confidence C is
n. In each case r = 0 failures are observed in a sample of size
n.

6.1.5 Example 1—Suppose n = 22 units have been run to a
specific requirement and 0 failures were observed. Then at
C=90% confidence the minimum reliability demonstrated is
22=120.9 = 0.90 or 90 %, using Eq 1. This is often referred to as
an “R90C90” value (reliability at least 90 % with 90 %
confidence). Other “RC” combinations are in use. Suppose
further that R = 90 % is not good enough and the practitioner
requires 95 % reliability, what sample size is necessary? Use
Eq 3 with R = 0.95 and C = 0.9 giving n = ln(1 – 0.9) / ln(0.95)
= 44.89 or n = 45 units required without failure. What is the
confidence in meeting a reliability of at least 95 % using n = 22
tests where 0 failure have occurred? Use Eq 2 with n = 22 and
R = 0.95 giving C ≥ 1 – 0.9522 = 0.676 or about 67.6 %
confidence.

6.2 Another commonly occurring case is to allow 1 failure
in n (not more than 1 failure among n units tested). In that case,
the relation among n, C and R, based on a binomial model and
simplified from the relation between a binomial and beta
distribution is (1):

nRn21 2 ~n 2 1!Rn $ 1 2 C (4)

6.2.1 Eq 4 may be solved numerically for any variable when
the remaining two are known or assumed.

6.2.2 Example 2—Suppose 1 failure in n = 22 tests are
observed. What is the reliability demonstrated using C = 90 %
confidence? Use Eq 4 with n = 22 and C = 0.9, and iterating on
R until the inequality in Eq 4 is just met, gives R = 0.8344 or
about 83.4 % reliability. If the desire is to achieve 99 %
reliability using 90 % confidence, what sample size is required
if we allow not more than 1 failure in n? Use Eq 4 with C = 0.9
and R = 0.99. Then iterating on n until the inequality is just met
find that n = 388.

6.3 The variables in the general case include a sample size
n, confidence C, reliability R and r the number of allowable
failures in n. The solution is a generalization of the r = 1 case
discussed in section 6.2. The beta distribution equivalent to the
binomial probability expression P(X ≤ r) ≥ 1 – C is used. Let
p be the failure probability. Then R = 1 – p. Given a confidence
level C, a sample size n, and a number of allowed failures r, the
relationship is (3):

C $ *
0

12R
β~r 1 1 , n 2 r!dy (5)

6.3.1 Eq 5 is a cumulative beta distribution with parameters
r + 1 and n – r evaluated at the point 1 – R. Refer to the cdf
integral as G(1 – R). Then C = G(1 – R) and the parameter R
is calculated using the inverse beta cdf evaluated at C. This is
G–1 (C) ≥ 1 – R. Then the demonstrated reliability R is
calculated as:

R $ 1 2 G21~C! (6)

6.3.2 This calculation is carried out numerically using for
example a spreadsheet-type program having beta distribution
capability. When R, n, and r are specified, Eq 5 is used directly
to calculate the confidence demonstrated. If R, C and r are
specified or if R, C and n are specified, then Eq 5 is iterated on
the variable being solved for until the inequality in Eq 6 is just
met. It is important, that r must be strictly less than n in all
cases for these types of plans. In addition, for specified R, C
and n, there may not exist a suitable r that meets the RC
requirement. In that case, the sample size needs to increase.

6.3.3 Example 3—A test plan was conducted using a sample
of n = 250 units with r = 3 failures observed. What reliability
is demonstrated at C = 95 % confidence? Use Eq 6 with beta
distribution parameters r + 1 = 4 and n – r = 247. This results
in R ≥ 0.969 or 96.9 %. If an R95C95 plan is desired that
allows 3 failures in n, what sample size is required? Use Eq 6
with C = 0.95, R = 0.95 and r = 3. Iterate n in the beta
parameters until the inequality in Eq 6 is just met. This results
in n = 153 as the required sample size.

6.3.4 Example 4—If n = 450 units are available for test and
R95C90 is the requirement, what number of failures is al-
lowed? Use Eq 6 with R = 0.95, C = 0.9 and n = 450, iterating
on r until the inequality in Eq 6 is just met. Find that r = 16 is
the maximum number of failures allowed. Note that this
combination of n and r is one of several possible combinations
that would satisfy the R95C90 requirement. For example,
n=282 and r = 9 or n = 209 and r = 6 would also work. A
smaller sample size would be possible and more economical.
Process capability should be taken into account, where

4 The boldface numbers in parentheses refer to the list of references at the end of
this standard.
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feasible, when deciding on any plan. Table 1 is a short
summary comparing sample sizes for the r = 0, r = 1 and r =
2 cases and several common “RC” combinations.

7. The Exponential Case

7.1 The exponential distribution case is one the most com-
monly required testing scenarios found in reliability. In this
section, theory and methods are outlined for the exponential
life case where the failure mode is assumed to be of the random
type. Further related information is given in the Appendices.
The exponential distribution is shown in Fig. 2. It is used for
predicting the reliability of items in the constant failure period
(see Fig. 1). This is typically the starting point in design
reliability requirements determination.

7.2 The exponential probability density function (pdf) is:

f~t! 5
1
θ e2t ⁄θ, t.0 (7)

7.2.1 The parameter θ is often called the mean time to
failure (or MTTF) and is the mean of the distribution of t for
single use items or first occurrence failure times. In repairable
systems, units are repaired upon failure and reinstalled until
failure a second or a third time, the average time between
repair cycles is called the mean time between failures (MTBF).
In general, this should not be confused with the MTTF because
repair does not always render a repaired item in like new
condition; however, for the exponential case, it does, at least in
theory, and we have that MTTF = MTBF.

7.2.2 Eq 7 may be recast using λ = 1 / θ where λ is called the
failure rate (failures per unit time).

f~t! 5 λe2λt (8)

7.2.3 Integrating Eq 8 gives the cumulative distribution
function (cdf), F(t).

*
0

t
f~y!dy 5 F~t! 5 1 2 e2λt (9)

7.2.4 Where, again, λ is substituted for 1 / θ. F(t) is the
failure probability at time t for objects having a constant failure
rate λ. The quantity 1 – F(t) = R(t) is the reliability function at
time t. Another name for reliability is survival probability, used
particularly in the life sciences.

R~t! 5 1 2 F~t! 5 e2λt (10)

7.2.5 The hazard function, h(t), of any failure time distribu-
tion is the ratio f(t)/R(t). It is the instantaneous failure rate at

time t for the population of surviving units at that time. For the
exponential, h(t) = λ, a constant throughout time.

7.2.6 The exponential distribution has the following key
properties:

7.2.7 The mean and standard deviation are the same value.
7.2.8 Approximately 63.2 % of the area under the curve

falls below the mean (θ). This further means that the failure
probability at the mean life is F(θ) = 63.2 % leaving the
reliability at the mean life of 100 – 63.2 = 36.8 %. This
property is not greatly appreciated by practitioners and can be
the source of numerous types of errors and misunderstandings
concerning reliability with this model.

7.2.9 The hazard function (failure rate) is constant through-
out life.

7.2.10 The quantity λt is called the cumulative hazard. It is
the expected number of failures at time t. For given time
interval t, the number of failures in the interval [0,t] is Poisson
distributed with mean λt provided the random behavior re-
mains homogeneous through time t. For the exponential, this is
independent of the starting time of the interval.

7.2.11 Memoryless Property—For an exponentially distrib-
uted life, the probability that an item of age t, still surviving,
lasts an additional time s without failing is identical to a
brand-new item lasting through a time s without failure.
Essentially, an item’s propensity to fail is not age dependent. A
surviving item at any age has the same probability of failing
within or surviving a future time duration s as a new item does.
Thus, there is no wear out mechanism.

7.2.12 A key property that holds only for the exponential
distribution is:

R~t 1 s! 5 R~t!R~s! (11)

7.2.12.1 This can be manipulated further as:

R~ns! 5 $R ~s!%n (12)

7.2.12.2 For example, if we know that the reliability at 1
cycle is 0.9999 (s = 1), then the reliability at 1000 cycles (n =
1000) is 0.99991000 or about 0.905.

7.2.13 Reproductive or Closure Property—The smallest or-
der statistic in a sample of size n from an exponential
distribution with mean θ is also exponentially distributed with
mean θ / n. The smallest in n inherits the exponential property
with mean proportional to 1 / n.

7.2.14 B-life Formula—The Bp life of a failure distribution
is that time by which p% of the population is expected to fail
by. For the exponential distribution this is found by inverting
the cdf, Eq 7:

Bp 5 2θlnS 1 2
p

100D (13)

7.2.15 Simulation—A random observation from an expo-
nential distribution with mean θ is determined using:

t 5 2θln~u! (14)

where:
u = a random observation from a uniform distribution on

[0,1].

TABLE 1 Sample Sizes for Nonparametric RCA Test Plan Cases
with r Failures Allowed

RC case r=0 r=1 r=2

R90C90 22 38 52
R90C95 29 46 61
R90C99 44 64 81
R95C90 45 77 105
R95C95 59 93 124
R95C99 90 130 165
R99C90 230 388 531
R99C95 299 473 628
R99C99 459 662 838

A “R” = reliability, “C” = confidence
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7.2.16 Both the time units and the failure rate may be
expressed in several ways. Hours or cycles are the typical time
units used. Several commonly used metrics are:

(1) Failures/hr,
(2) Failures per 100k hours,
(3) Failures per million hours, and
(4) %/K hours.

7.2.17 The last expression, %/K hours, represents % failing
in 1000 hours of service. For example, if the rate is 1.5 %/K
and 10 000 units each operate for 500 hours we would expect
75 failures because 10 000 units at 500 hours each is equivalent
to 5 000 units at 1000 hours each. 1.5 % of 5000 is 75 failures.

7.2.18 The standard rate in failures per hour is then 75 / (10
000 × 500) = 1.5E-5. The relationship between %/K and the
failure rate λ in failures per hour is: %/K = 105λ.

7.2.19 Another variation is “failures in time” abbreviated as
FIT and equivalent to parts per million per 1000 hours of
service or PPM/K. 1 PPM/K means 1 failure in 1 million units
each operating for 1000 hours or 1 failure per billion operating
hours. This is equivalent to FIT = 10 000(%/K). In the above
example, the FIT number is 10 000X(1.5%/K) = 15 000 FIT.
Table 2 shows a conversion among λ, %/K and FIT in the time
units of hours.

7.2.20 Eq 9 can be re-parameterized in the following way
substituting any Bp life in for θ. This equation is useful in some
applications.

F~t! 5 1 2 ~1 2 p ⁄ 100!
t

Bp (15)

7.2.21 Example 5—A certain type of transistor is known to
have a constant failure rate with rate 0.04 %/K. What is the
probability that one of these transistors fails before 15 000
hours of use? How long do we have to wait to expect 1% of the
population to have failed? What is the FIT measure of the
failure rate?

7.2.21.1 First, convert to the failure metric to failures per
hour, λ. Multiply %/K by 10–5 to get λ = 4E-7. The probability
of failure by 15 000 hours is F(15 000) or:

F~15 , 000! 5 1 2 e2~4 E 2 7!~15000! 5 0.006

7.2.21.2 The 1 % failure time is the B1 life. Use Eq 13 with
θ = 1 / λ = 1 / (4E-7) = 2 500 000 hours.

B1 5 22,500,000 lnS 1 2
1

100D 5 25,126

7.2.21.3 The FIT measure of failure is 109λ = 109(4E-7) =
400 failures per billion operating hours.

7.2.22 Example 6—A certain type of aerospace system uses
five components operating simultaneously in series. The com-
ponent MTTF is known to be 250,000 cycles. The system fails
if any of the 5 components fail. Its mission time is 50 cycles of
usage. Calculate the system reliability at the mission time.
Calculate the B0.1 life of the system.

7.2.22.1 The system will fail when the first failure in n = 5
occurs. The first of n = 5 distribution is also exponential with
MTTF = θ/n = 250 000 / 5 = 50 000 cycles (see 7.2.13). The
probability of failure by the mission time of 50 cycles is:

F~50! 5 1 2 e250⁄50000 5 0.001

7.2.22.2 Thus, the t = 50 cycle value is the B0.1 system life.

7.3 Test Planning—A test plan for the exponential distribu-
tion requires several key design parameters.

(1) Sample size (n) and number of failures allowed (r),
(2) Objective MTTF (θ) or failure rate (λ), and
(3) Confidence level (C).

7.3.1 As an alternative objective, a mission time and asso-
ciated reliability may be specified, and this is equivalent to
specifying a Bp life. For example, if a reliability of 0.99 is
required for a mission time of 1200 hours, this is equivalent to
stating a B1 life requirement of 1200 hours.

7.3.2 We may also ask what MTTF, Bp life or reliability at
a stated mission time T has been demonstrated given a set of
failure time data at the present time during a test. In addition,
we can solve for the demonstrated confidence in meeting a
requirement.

7.3.3 The most commonly occurring questions about test
planning are: (1) what sample size (n) should I use? And (2)
what test time (t) is appropriate? Associated with both of these
is the number of failures allowed (r). This analysis starts with

FIG. 2 The Exponential Distribution

TABLE 2 Equivalent Failure Rates in Different MetricsA

rate, λ %/K FIT

1E-04 10 100000
1E-05 1 10000
1E-06 0.1 1000
1E-07 0.01 100
1E-08 0.001 10
1E-09 0.0001 1

A λ = 1E-5X(%/K) = 1E-9X(FIT); FIT = 1E4X(%/K)
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a relationship involving, n, r, the confidence value C and the
beta distribution on the interval [0,1]. Let p be beta distributed
with parameters r+1 and n-r. Its cumulative distribution is
denoted G(p). Set G(p) = C and solve for p. This uses the
inverse beta integral:

pc 5 G21~C! (16)

7.3.4 Alternatively, we have the beta integral itself:

G~pc! 5 C (17)

7.3.5 Eq 16 and Eq 17 can be solved using many software
programs including spreadsheet-type programs. For clarity of
notation, a subscript “c” is attached to p indicating that it
satisfies Eq 16 and Eq 17. The quantity pc is the upper 100C %
non-parametric confidence bound on a failure probability p
when n units are tested and r failures occur where 0 ≤ r < n.

7.3.6 Let F(t) be the cumulative exponential failure prob-
ability where t is the test time and θ is an objective MTTF (see
7.2). Note that we could use λ, θ, or a Bp life, converting one
from the other. Use the relation pc = F(t).

pc 5 1 2 e2
t
θ (18)

7.3.7 Eq 18 then involves the key variables of the test plan
and may be solved or manipulated for any variable. It is noted
that Eq 18 depends on the ratio of test time to the objective
MTTF (t / θ). So long as that remains the same, the test plan
will be the same. This further means that for any test plan, the
test time will be proportional to the objective MTTF desired.
For example, if t / θ = 0.1 then we could use a test time of t =
100 to demonstrate θ = 1000 or t = 10 to demonstrate θ = 100.

7.3.8 Example 7—Sample size required; r, C, t, θ specified.
An engineer wants to claim an MTTF of θ = 50 000 hours with
90 % confidence (C = 0.90). He is willing to allow up to r = 5
failures during the test and can run each of the samples for 500
hours. What sample size, n, is required?

7.3.8.1 First solve Eq 18 for pc, using θ = 50 000 and t =
500. This results in pc = 0.00995. Next, solve the beta function
G(pc) = C targeting C = 0.90, using r = 5 held constant and
adjusting n in the formula until G(pc) = 0.9 results. It is useful
to use a spreadsheet type of calculator in executing the
calculation. The exhibit below shows several steps toward the
solution. We want to solve G(pc) = 0.9 for n using C = 0.9 and
pc = 0.00995.

Solution Exhibit for Example 7

n G(pc) = C

900 0.88278
910 0.88879
915 0.89169
920 0.89453
925 0.89730
926 0.89785
929 0.89948
930 0.90002

7.3.8.2 Here we see that n = 930 is the solution. This method
may also be used if r is the unknown. In this case, n remains
fixed and r is varied until Eq 16 is true.

7.3.9 Example 8—Number of failures (r) required; n, C, t, θ
specified. Suppose in Example 7 that n = 1200 units can be
tested for the increased time of t = 600. We want to determine

the maximum number of failures for the same confidence level,
C = 0.90, and objective MTTF of 50 000.

7.3.9.1 Again, solve Eq 18 for pc, using θ = 50 000 and t =
600. This result is pc = 0.011928. Next, solve the beta function
G(pc) = C targeting C = 0.90, using n = 1200 held constant and
adjusting r in the formula until G(pc) = 0.9 results.

Solution Exhibit for Example 8

r G(pc)=C

6 0.9886
7 0.9741
8 0.9479
9 0.9060
10 0.8458

7.3.9.2 Here we see that r = 9 is the solution.
7.3.10 To solve for the test time per unit required first use

Eq 16 solving for pc with an assumed confidence, C, sample
size n, and number of failures allowed, r. Then using pc and the
objective MTBF, θ, solve Eq 18 for t. This results in:

t 5 2θln~1 2 pc! (19)

7.3.11 Example 9—Test time required; n, r, C and θ speci-
fied. Suppose we want to demonstrate a B1 life of 2500 cycles
using 95 % confidence. We will use a sample size of n = 120
units and allow r = 2 failures. What test time should be used?

7.3.11.1 First, use Eq 13 with p = 1 and B1 = 2500, solving
for θ, and finding θ = 248 748. We simplify this by rounding up
to 249 000. Next, use Eq 16 with n = 120, r = 2 and C = 0.95
finding pc = 0.051534. Then use Eq 18, solving for t finding t
= 13 174.4 cycles.

7.3.12 Example 10—Confidence demonstrated required; n,
r, t and θ specified. If 150 units on test have resulted in 3
failures at t = 100 cycles, what confidence can we claim in
stating an MTTF requirement of 2500 cycles has been met?

7.3.12.1 Use Eq 17 directly with pc = 0.63212. This is the
failure probability in theory at t=θ. Use the beta integral with
parameters r + 1 and n – r or 4 and 147 respectively. The beta
integral evaluates to 0.8433 making the confidence demon-
strated 84.3 %. Iterating on sample size, n, shows that n = 169
would be the requirement to state at least 90% confidence with
r = 3 failures.

7.3.13 The Zero-Failure Case—Many organizations require
zero failure test plans. In such a plan, a sample of n units are
tested, where the test times may be different for different units
tested, and zero failures is the requirement. To determine a
plan, is to determine the total test time, T, required to
demonstrate an MTTF of θ using confidence C. A total time T
can be calculated using nt = T where t is the time per unit tested
in for each of n units. Sample size and test time can be
interchanged as long as nt = T is preserved. Further we can
have variable test times as long as T = Σt is preserved.

7.3.13.1 The equation governing this case is:

T 5 2θln~1 2 C! (20)

7.3.13.2 In using Eq 20, T is the total time on test for all
units tested. Once we have T we can decide on the number of
test units and distribute the test time in any way that is
convenient.

7.3.14 Example 11—Determine the total test time, T, re-
quired for a plan to demonstrate that the failure rate is not more
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than λ = 2.5E-5 failures per cycle at confidence 95 % with zero
failures required. Here, C = 0.95, θ = 1 / λ = 40 000 cycles.
Using Eq 20, find that T = 119 829.3 cycles. If we wanted to
use equal test times for n = 10 units we should use a test time
of T / 10 = 11 983 cycles per unit.

7.3.14.1 The C = 50 % zero failures estimate is sometimes
used as a simple point estimate for λ. It is a value of λ that
makes the likelihood of obtaining zero failures in the given
experiment 50 %. Using this is as if one has observed 0.693
failures in the sample. This 50 % confidence estimate of λ
would then be 0.693 / T. Alternatively, when zero failures are
observed in a total test time of T, the assumption of x = 1
failure is sometimes assumed. In that case the resulting
confidence in the estimate 1 / T is about 63.2 %. When the total
test time is T and zero failures have been observed, Table 3 can
be used to develop the estimate of λ.

7.3.15 When using a zero-failure plan, it is important to note
that these test plans have a low pass probability when the actual
true parameter value is at or even substantially larger than the
parameter minimum requirement. They are very conservative.
For example, a zero-failure plan used to validate an MTTF of
1000 hours with C = 95 % confidence requires a total test time
of about 3000 hours without failure. The test can be allocated
in any configuration of sample size and individual test time as
long as the total test time equals 3000 hours. If the actual
MTTF is truly just at 1000 hours, the test plan will only
achieve a 5 % pass probability. In fact, the pass probability in
this scenario will only reach 50 % when the true MTTF is
about 4330 – more than 4 times the parameter value minimum
requirement.

7.3.16 Compare the zero-failure plan to a plan that allows 1
failure in 5. In that case the test time will be 1071 hours per
unit tested making the total time between 4284 and 5355 hours.
The r = 1 plan can result in as much as a 77.8 % increase in
required test time; however, the r = 1 plan achieves a pass
probability of 50 % at an MTTF = 2840. Fig. 3 shows
comparison between the two plans with the 50 % pass
probability indicated.

7.3.17 The general rule is that the true MTTF has to be
much better than the minimum requirement to have a reason-
able pass probability. This same trend holds for other sample
sizes and requirements as well as other distributional assump-
tions.

8. The Weibull Case

8.1 The Weibull distribution is widely used to model field
data exhibiting the full range of wear out, infant mortality and
random type failure modes. Section 7 discussed failure modes
of the random type – the exponential distribution. That model
is a special case of the Weibull distribution as will be seen

below. For the Weibull, demonstration test planning is gener-
ally used where the Weibull takes on wear out type failure
modes. Infant mortality type failure modes are not generally
assumed for product test. They are more likely manifested as
field data cases during an initial product release. The two
parameter Weibull model cdf is Eq 21.

F~t! 5 1 2 e2S t

η D β

(21)

8.1.1 The reliability function is:

R~t! 5 1 2 F~t! 5 e2S t

η D β

(22)

8.1.2 The two parameters shown in Eq 21 and Eq 22 are the
Weibull shape parameter, β, and Weibull scale parameter, η.
The parameter β is also referred to as the “Weibull slope”. The
parameter η is also referred to as the “characteristic life” and is
formally, the 63.2th percentile of the Weibull distribution. The
parameter β is related to the type of failure mode being
modeled and the variation in failure times for this model. The
three general failure mode classes are all possible using the
Weibull distribution. The three cases are defined by values of β.

8.1.3 β < 1 is the Infant mortality condition where there is a
failure mode that is manifested more severely in some units
that in others and can cause early failure in those units having
the severe condition. The failure rate is decreasing under this
condition.

8.1.4 β = 1 is the random failure mode condition where the
failure rate is constant throughout life. This is the exponential
model of Section 7.

8.1.5 β > 1 is the wear out condition where units are wearing
out in time with an increasing failure rate.

8.2 The Weibull has a closed form formula for its mean and
variance but these quantities are not typically used for test
planning purposes. The Weibull hazard function, h(t), and
cumulative hazard function, H(t), are also available in closed
form (see 7.2) as:

h~t! 5 S β
η D S t

η D
β21

(23)

H~t! 5 *
0

t
h~y!dy 5 S t

η D
β

(24)

8.2.1 The Weibull Bp life is:

Bp 5 ηH2 ln S 1 2
p

100D J
1⁄β

(25)

8.2.2 The interpretation of the Bp life is that the reliability at
t = Bp is (100 – p) %. For the cumulative distribution function,
the interpretation is F(Bp) = p %. The Weibull distribution also
shares the reproductive property of the exponential distribution
(see 7.2.13). In a sample of size n, from a Weibull distribution
with parameters β and η, the first order statistic (smallest value)
has a Weibull distribution with parameters β and η / n1/β.

8.2.3 An alternative parameterization for F(t) that substi-
tutes a Bp life for η is useful in some applications:

F~t! 5 1 2 ~1 2 p ⁄ 100!S t

Bp
D β

(26)

8.3 In a field data analysis application or a test plan, the
Weibull shape parameter may sometimes be assumed. This is
done because there is historical evidence for or industrywide

TABLE 3 Rate Estimate When Observing Zero Failures in Time T

Assumed Failures Rate Estimate λ Confidence

0.693 0.693/T 50%
1 1/T 63.2%

2.3 2.3/T 90%
3 3/T 95%

4.6 4.6/T 99%
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agreement for the assumed value. For example, bearing spall in
both bench testing and in the field has been observed over and
over again in many companies to exhibit a Weibull shape
parameter between 1.5 and 2. In aerospace components, high
cycle fatigue commonly exhibits a Weibull shape between 4.5
and 6. When β is assumed, the Weibull distribution becomes a
one parameter model. That single parameter is traditionally
taken as the characteristic life, η, but any other Bp life may be
substituted using Eq 25 and Eq 26.

8.3.1 In the Weibull test planning application, β must be
assumed. Either a specific value or a range of plausible values
for β is assumed. There are two alternative quantities that can
be used in place of the assumed β. Each of these is a function
of β, and by their selection we are essentially assuming β. The
two alternative quantities are the Weibull scatter factor, f, and
coefficient of variation cv.

8.3.2 The Weibull scatter factor, f, used in some industries,
is the ratio B50 / B0.1. This is sometimes known in certain types
of materials testing, for specific materials. The functional
relationship between f and β is:

f 5 692.81⁄β (27)

8.3.3 Table 4 gives several values of f as related to β using
Eq 27.

8.3.4 Thus, if the engineer can specify a scatter factor of say
f = 3, then β for that case will equal about 8.8. Alternatively, Eq
27 can be solved directly for β giving its exact value as a
function of f.

8.3.5 The Weibull coefficient of variation, cv, is the ratio of
the standard deviation to the mean. For the Weibull, this ratio
is related to β and is:

cv 5
=Γ~1 1 2 ⁄ β! 2 ~Γ~1 1 1 ⁄ β! 2

Γ~1 1 1 ⁄ β!
(28)

8.3.6 Where Γ(z) denotes the gamma function (see Appen-
dices). The functional relationship between cv and β can be
solved using a variety of software programs, for example, a
spreadsheet-type program. Table 5 gives several values of β as
related to cv using Eq 28.

8.3.7 It is noted that for the exponential distribution
(Weibull β = 1), cv = 1 meaning that the mean and standard
deviation are equal in that case. Using Eq 27 and Eq 28 a
relationship can also be established between the scatter factor
and the coefficient of variation.

8.4 Test Planning—To specify a test plan for the Weibull
model one needs to first select β. In some cases, as shown
below, the test plan will be independent of β. In those invariant
cases the same sample size would be adequate for any value of
β. These plans are essentially identical to the non-parametric
case. Most test plans are designed to demonstrate a mission
time at an associated reliability using some confidence value C.
In this standard the mission time is synonymous with the Bp

FIG. 3 Comparison of Pass Probability, β = 1, r = 0 and r = 1 in n = 5 tests; C = 95 % for MTTF $ 1000 hours

TABLE 4 Scatter Factor, f=B50/B0.1, as Related to the Shape
Parameter, β, for the Weibull Distribution

β f β f β f

1.00 692.80 4.50 4.28 11.00 1.81
1.25 187.28 5.00 3.70 11.50 1.77
1.50 78.30 5.50 3.28 12.00 1.72
1.75 42.00 6.00 2.97 12.50 1.69
2.00 26.32 6.50 2.74 13.00 1.65
2.25 18.30 7.00 2.55 13.50 1.62
2.50 13.68 7.50 2.39 14.00 1.60
2.75 10.79 8.00 2.27 14.50 1.57
3.00 8.85 8.50 2.16 15.00 1.55
3.25 7.48 9.00 2.07 15.50 1.52
3.50 6.48 9.50 1.99 16.00 1.51
3.75 5.72 10.00 1.92 16.50 1.49
4.00 5.13 10.50 1.86 17.00 1.47

TABLE 5 Weibull Coefficient of Variation, cv, as related to the
shape parameter, β

β cv% β cv% β cv%

1.00 100.0 % 4.50 25.2 % 9.00 13.3 %
1.25 80.5 % 5.00 22.9 % 9.50 12.6 %
1.50 67.9 % 5.50 21.0 % 10.00 12.0 %
1.75 59.0 % 6.00 19.4 % 10.50 11.5 %
2.00 52.3 % 6.50 18.0 % 11.00 11.0 %
2.50 42.8 % 7.00 16.8 % 11.50 10.5 %
3.00 36.3 % 7.50 15.8 % 12.00 10.1 %
3.50 31.6 % 8.00 14.8 % 12.50 9.7 %
4.00 28.1 % 8.50 14.0 % 13.00 9.4 %
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life. This further means that the reliability at mission time Bp is
(100 – p) % and the failure probability is p %. For example, if
the mission time is 1000 hours and the reliability desired at that
time is 99 %, then p = 1 and the mission time is the B1 life.
When β, p, Bp and C have been specified, a basic plan design
seeks the sample size n, test time t and the allowable number
of failure r. It is possible that t and r can be specified as well,
and in that case the sample size is the remaining unknown.

8.4.1 A test plan can also use the Weibull failure rate, h(s),
specified at time s as the requirement (instead of the Bp life). In
such a case the combination of the assumed β and the specified
failure rate at time s, can be converted to any convenient Bp life
(such as the B10 life) then the test plan determination would
proceed along the lines of the more traditional Bp demonstra-
tion methodology. For details on the conversion formula, see
the Appendices at the end of this standard.

8.4.2 Case 1—β, p, Bp, C, n, and r specified; test time t,
unknown. The method employs the beta distribution (not to be
confused with the Weibull shape parameter β) and the Weibull
cdf, Eq 21. With confidence C, sample size n, and maximum
number of failures r specified, solve the following cumulative
beta distribution for v.

C 5 *
0

v
B~r 1 1 , n 2 r!dy (29)

8.4.2.1 In Eq 29, C is the fixed confidence chosen, and
B(a,b) is the beta density function with parameters a = r + 1
and b = n – r. Then C is the beta cdf evaluated at v. Refer to
this cdf as G(v). v is found using the inverse beta cdf with
argument C. This is:

v 5 G21~C! (30)

8.4.2.2 Once v is determined, it is used in the Weibull cdf
function, Eq 26, as v=F(t) where t is the resulting test time. The
test time t is found by inverting v=F(t). This result is a closed
form solution.

t 5 BpS ln~1 2 v!
ln~1 2 p ⁄ 100!D

1⁄β

(31)

8.4.2.3 In Eq 31, t is the required test time such that in a
sample of n units not more than r failures is allowed. This uses
a confidence C and an assumed shape parameter β. Note that C,
n and r are being incorporated in the calculation of v and do not
appear directly in Eq 31.

8.4.2.4 Example 12—A demonstration test for a certain type
of safety mechanical device has a requirement of B10 ≥ 1000
minutes using 90 % confidence. The test engineer will use β =
1.5 as this is a standard value used for this device industry
wide. A sample of size n = 21 is available and the engineer is
willing to allow r = 1 failure during the test. It is easy to use a
spreadsheet-type program with built-in beta functions to deter-
mine the plan for this simple case. The following exhibit is an
output from a spreadsheet-type program that shows the inputs,
the steps and the final result.

Solution Exhibit for Example 12

C 0.9
n 21
r 1
beta, β 1.5
p 10

Solution Exhibit for Example 12

Bp 1 000
Results, steps

v 0.172935
t (minutes) 1 480.9
Total time max 31 098.7

8.4.2.5 The value v = 0.172935 was determined using Eq 30
with associated n = 21, r = 1 and C = 0.9. Test time t was
determined using Eq 31. In this case, t = 1481 test minutes are
required for each of the 21 samples. One failure is allowed. If
the plan is executed and not more than one failure occurs, then
the B10 life of 1000 minutes has been demonstrated at 90 %
confidence. The total test time in this case is a maximum of 31
099 minutes or 518.4 hours approximately. To see the effect of
an increasing sample size, while maintaining the remaining test
parameters the following exhibit illustrates.

Solution Exhibit for Example 12, Effect of Varying Sample Size

n t Total Time

38 989.8 37 612.4
30 1 161.6 34 848.0
25 1 314.8 32 870.0
23 1 391.7 32 009.1
21 1 480.9 31 098.9
18 1 645.9 29 626.2
16 1 784.9 28 558.4
14 1 957.6 27 406.4
12 2 179.3 26 151.6
10 2 477.0 24 770.0
8 2 903.6 23 228.8
6 3 581.1 21 486.6
3 6 210.5 18 631.5

8.4.2.6 In the above exhibit, the current test plan calls for n
= 21 and t = 1481 minutes test time for each unit. If we hold
everything constant and vary n we can see the effect on the test
time t and the total test time. It is clear that a decreasing sample
size will result in a smaller total test time, and therefore it is
more efficient, at least in theory, to do a smaller number of test
specimens at higher test times.

8.4.2.7 Although the confidence is maintained at 90 % in
Example 12, when n = 6, the probability of failing any unit,
assuming the true life just meets the minimum requirement (β
= 1.5 and B10 = 1000 minutes) can be shown to be about 51%.
This probability increases with decreasing sample size (and
increasing test time). For any confidence, C, the quantity 1 – C
is the probability of passing any test plan given the true life of
the component being tested is just at the minimum require-
ment.

8.4.2.8 Consider the effect of the assumed Weibull shape
parameter, β, in Example 12. In the next exhibit the columns
represent the unit test time as a multiple of the B10 life
requirement (here B10 = 1000 minutes). For example n(2)
means we are using a test time of 2 × B10 or 2000 minutes per
unit. Rows represent the assumed Weibull β parameter. The
table body contains the sample size requirement, continuing to
allow one failure in n = 21. Although β < 1 is not normally used
in test planning, these β values are shown for comparison
purposes.

Solution Exhibit for Example 12: Sample Size vs Effect of Varying Test Time
and Weibull β

β n(0.5) n(1) n(1.5) n(2) n(3)

0.10 41 38 36 35 34
0.25 45 38 34 32 29

E3291 − 21

10

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E3291-21

https://standards.iteh.ai/catalog/standards/sist/0448b350-0bba-470a-a0d9-afa31e3c4eac/astm-e3291-21

https://standards.iteh.ai/catalog/standards/sist/0448b350-0bba-470a-a0d9-afa31e3c4eac/astm-e3291-21


Solution Exhibit for Example 12: Sample Size vs Effect of Varying Test Time
and Weibull β

β n(0.5) n(1) n(1.5) n(2) n(3)

0.50 53 38 31 27 22
0.75 63 38 28 23 17
1.00 75 38 26 19 13
1.50 105 38 21 14 8
2.00 148 38 17 10 5
2.50 209 38 14 8 3
3.00 296 38 12 6 3
4.00 591 38 8 3 2
5.00 1 182 38 6 2 2
6.00 2 363 38 4 2 2
8.00 9 452 38 3 2 2
10.00 37 805 38 2 2 2

8.4.2.9 When the test time is less than the B10 requirement
the sample size increases with increasing β as it is in the n(0.5)
column. When the test time is greater than the B10 requirement
the sample size decreases with increasing β. In the case of t >
B10 the assumption of a smaller β than is actually the case
would result in a more conservative test in that if the true β
were really greater than what we choose, the sample size would
be less. This is equally valid for any Bp life requirement, any
confidence level and any allowable number of failures. When
the test time is greater than the requirement we are trying to
demonstrate, the sample size decreases with increasing β.

8.4.2.10 The case where the test time is exactly equal to the
B10 life to be demonstrated is shown in this exhibit under the
column n(1). It is beta invariant (the same sample size for all
values of an assumed β). This is equivalent to the non-
parametric plan at the same confidence level, n and r.

8.4.3 Case 2—β, p, Bp, C, and t specified; sample size and/or
number of allowed failures unknown. Work backwards starting
with Eq 26 using test time t and the mission Bp life with
associated p. The resulting calculation determines v which is
used in the cumulative beta distribution Eq 29. In that
calculation v is kept fixed and the parameters n and r are
adjusted until the value, C, is just met. There may be several n,
r combinations that satisfy any set of C, p, Bp and t. The next
exhibit shows this result for varying test time t.

Solution Exhibit for Example 12: Determination of n and r with Varying Test
Time t and All Other Variables Fixed from Example 12 (β = 1.5, C = 0.90)

t r=0 r=1 r=2

800 31 53 72
900 26 44 61
1000 22 38 52
1100 19 33 45
1200 17 29 40
1300 15 26 36
1400 14 23 32
1481 13 21 30
1500 12 21 29
1600 11 19 26
1700 10 18 24
1800 10 16 22
1900 9 15 21
2000 8 14 19

8.4.3.1 The bold entry shows the original value of n = 21
used in the previous exhibits for Example 12, where r = 1 was
used. The same pattern of a decreasing sample size would also
hold for other values of an assumed β provided β > 1. For each
row of the table the actual confidence achieved is slightly more
than 90 %. That is, n was found for each table entry for which
C ≥ 90 % was just achieved.

8.4.4 Case 3—r = 0. The common plan with zero failures (r
= 0) has a closed form formula for any unknown parameter.
The two key formulas are for test time and sample size. In each
case there is an assumed Weibull β, a confidence C, a sample
size n and a target Bp life. In addition, there is a formula for the
Bp life being demonstrated at specific test time t per unit. These
are shown in Eq 32, Eq 33 and Eq 34.

8.4.4.1 Test time unknown:

t $ S ln~1 2 C!
ln~1 2 p ⁄ 100!D

1⁄βS Bp

n1⁄βD (32)

8.4.4.2 Sample size unknown:

n $ S ln~1 2 C!
ln~1 2 p ⁄ 100!D S Bp

t D β

(33)

8.4.4.3 Bp life demonstrated:

Bp $ tS ~n!ln~1 2 p ⁄ 100!
ln~1 2 C! D 1⁄β

(34)

8.4.4.4 It may sometimes be the case that there is a sample
size and there are zero failures, but the test times for each unit
may be different. In such a case Eq 35 is used to figure the Bp

life being demonstrated at the present time.

Bp $ S (
i51

n

t i
βD 1⁄βS ~n!ln~1 2 p ⁄ 100!

ln~1 2 C! D 1⁄β

(35)

8.4.4.5 Example 13—A specification requires a life test with
r = 0 failures. A B1 life of 500 cycles is to be demonstrated with
95 % confidence (R99C95). A Weibull distribution has been
assumed for the life variable with a shape parameter between
2 and 4. It is feasible to carry out any test to t = 1000 cycles.
What sample size should be used? Use Eq 33 with β’s of 2, 3,
and 4 (for comparison purposes). This gives sample sizes of 75,
38, and 19 respectively, rounded up. The n = 75 case, using β
= 2, is the most conservative; while n = 19, using β = 4, the
more relaxed. It may be a compromise to use β = 3, with n =
38.

8.4.4.6 Example 14—Suppose 8 units are available for test
and we want to demonstrate a B5 life of 300 hours using 95 %
confidence (R95C95) and allow 0 failures in the sample. The
Weibull distribution is assumed for the failure mode having β
= 1.8, what test time should be used? Use Eq 32 finding t =
905.2 hours.

8.4.4.7 Table 6 contains sample sizes for r = 0, 1, and 2
allowable defective units, Weibull β’s of 1, 2, 3, and 4, and test
times equal to 0.5, 1, 2, and 3 times the Bp life requirement
being demonstrated. Confidence and reliability are indicated by
the “RC” column. For example, if a B1 life of 500 hours is
being demonstrated using 95 % confidence, assuming β = 3 and
testing each unit for a duration of 2XB1 allowing 1 failure in n,
the sample size should be n = 60. The corresponding zero
failure plan would require n = 38. In this sense the B1

requirement at 95 % confidence means we want an R99C95
requirement.

8.5 “Sudden death” Tests—A “sudden death” test requires
that the test apparatus can accommodate n units simultane-
ously. A set of n units on test is started simultaneously and
stopped upon the first failure in n. In some industries this is
referred to as “1st of n” testing, for example 1st of 4 or 1st of
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