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Standard Guide for
the Qualification and Control of the Assisted Defect
Recognition of Digital Radiographic Test Data1

This standard is issued under the fixed designation E3327/E3327M; the number immediately following the designation indicates the year
of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval.
A superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 Assisted defect recognition (AssistDR) describes a class
of computer algorithms that assist a human operator in making
a determination about nondestructive test data. This guide uses
the term AssistDR to describe those computer assisted evalu-
ation algorithms and associated software. For the purposes of
this guide, the usage of the words “defect,” “evaluate,”
“evaluation,” etc., in no way implies that the algorithms are
dispositioning or otherwise making an unaided final disposi-
tion. Depending on the application, AssistDR computer algo-
rithms detect and optionally classify indications of defects,
flaws, discontinuities, or other anomalous signals in the ac-
quired images. Software that does make an unaided final
disposition is classified as automated defect recognition (Au-
toDR). While the concepts discussed in this guide are pertinent
to AutoDR applications, additional validation tests or controls
may be necessary when implementing AutoDR.

1.2 This guide establishes the minimum considerations for
the radiographical examination of components using AssistDR
for non-film radiographic test data. Most of the examples and
discussion in this guide are built around two-dimensional test
data for simplicity. The principles can be applied to three
(volumetric computed tomography, for example) or higher
dimensional test data.

1.3 The methods and practices described in this guide are
intended for the application of AssistDR where image analysis
will aid a human operator in the detection and evaluation of
indications. The degree to which AssistDR is integrated into
the testing and evaluation process will help the user determine
the appropriate levels of process qualification and control
required. This guide is not intended for applications wishing to
employ AutoDR in which there is no human review of the
results.

1.4 This guide applies to radiographic examination using an
X-ray source. Some of the concepts presented may be appro-

priate for other nondestructive test methods when approved by
the AssistDR system purchaser.

1.5 Units—The values stated in either SI units or inch-
pound units are to be regarded separately as standard. The
values stated in each AssistDR system may not be exact
equivalents; therefore, each AssistDR system should be used
independently of the other.

1.6 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety, health, and environmental practices and deter-
mine the applicability of regulatory limitations prior to use.

1.7 This international standard was developed in accor-
dance with internationally recognized principles on standard-
ization established in the Decision on Principles for the
Development of International Standards, Guides and Recom-
mendations issued by the World Trade Organization Technical
Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:2

E1316 Terminology for Nondestructive Examinations
E1441 Guide for Computed Tomography (CT)
E1695 Test Method for Measurement of Computed Tomog-

raphy (CT) System Performance
E2033 Practice for Radiographic Examination Using Com-

puted Radiography (Photostimulable Luminescence
Method)

E2339 Practice for Digital Imaging and Communication in
Nondestructive Evaluation (DICONDE)

E2422 Digital Reference Images for Inspection of Alumi-
num Castings

E2445/E2445M Practice for Performance Evaluation and
Long-Term Stability of Computed Radiography Systems

E2586 Practice for Calculating and Using Basic Statistics
E2597/E2597M Practice for Manufacturing Characterization

of Digital Detector Arrays

1 This guide is under the jurisdiction of ASTM Committee E07 on Nondestruc-
tive Testing and is the direct responsibility of Subcommittee E07.01 on Radiology
(X and Gamma) Method.

Current edition approved Dec. 1, 2021. Published February 2022. DOI: 10.1520/
E3327_E3327M-21.

2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.
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E2698 Practice for Radiographic Examination Using Digital
Detector Arrays

E2862 Practice for Probability of Detection Analysis for
Hit/Miss Data

E2737 Practice for Digital Detector Array Performance
Evaluation and Long-Term Stability

E3023 Practice for Probability of Detection Analysis for â
Versus a Data

E3169 Guide for Digital Imaging and Communication in
Nondestructive Evaluation (DICONDE)

2.2 ISO Standards:3

ISO 9000 Family Quality Management

2.3 Other Documents:
NEMA PS3 / ISO 12052Digital Imaging and Communica-

tions in Medicine (DICOM) Standard, National Electrical
Manufacturers Association, Rosslyn, VA, USA (available
free at http://www.dicomstandard.org/)

MIL-HDBK-1823A Nondestructive Evaluation System Re-
liability Assessment4

3. Terminology

3.1 See Terminology E1316 as well as the ASTM CT, CR,
and DDA standards listed in Section 2 for a complete set of
standard non-film radiographic test method definitions.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 assisted defect recognition (AssistDR), n—the soft-

ware or computer algorithms, typically involving image
segmentation, feature identification, classification, and
measurement, that aid operators in detecting and optionally the
evaluation of indications in digital nondestructive testing data.
Also referred to as software assisted evaluation, computer
assisted evaluation, computer assisted detection, semi-
automated defect recognition, supervised automated defect
recognition, or computer aided detection.

3.2.2 automated defect recognition (AutoDR), n—the soft-
ware or computer algorithms, typically involving image
segmentation, feature identification, classification, and
measurement, that classify the part being tested as acceptable
or rejectable without the involvement of an operator.

3.2.3 confidence interval, n—a range of values such that
there is a specified probability that the value of an unknown
constant parameter of interest is contained in the range.

3.2.4 confidence level, n—the probability that a specified
range of values covers an unknown constant parameter of
interest.

3.2.5 data curation, v—the organization and integration of
data collected from various sources, involving annotation,
publication, and presentation of the data such that the value of
the data is maintained over time, and the data remains available
for reuse and preservation.

3.2.6 failure mode and effects analysis (FMEA), n—the
systematic process of reviewing as many components and
subsystems as possible to identify potential risks in a system
and their root causes and impact.

3.2.7 false negative (FN), n—an examination result that
reports that no indication is present when there is an indication
in the ground truth, that is, a missed identification of an
indication that should have been detected, sometimes called a
“miss.”

3.2.8 false positive (FP), n—an examination result that
reports that an indication is present when there is no corre-
sponding indication in the ground truth, that is, identification of
an indication that should not have been identified, sometimes
called a “false call.”

3.2.9 false positive rate (FPR), n—number of false positive
examination results divided by the total opportunities.

3.2.10 ground truth, n—list of indications and associated
metadata present in the test data as determined by the process
expert.

3.2.11 negative, n—an examination result that does not
report the presence of an indication.

3.2.12 negative predictive value (NPV), n—the probability
that a negative is a true negative.

3.2.13 opportunity, n—a single occurrence of the unit of
measure for the examination, for example, a part, an image, or
a pixel.

3.2.14 positive, n—an examination result that reports the
presence of an indication.

3.2.15 positive predictive value (PPV), n—the probability
that a positive is a true positive.

3.2.16 probability of detection (POD), n—a method to
quantitatively assess the performance of a test method de-
scribed in Practice E2862, Practice E3023, and MIL-HDBK-
1823A.

3.2.17 process expert, n—the individual or group of indi-
viduals responsible for establishing ground truth for the data
used in the examination, for example, subject matter experts,
AssistDR system experts, certified Level 3s, statisticians, etc.

3.2.18 receiver operator characteristic curve (ROC), n—a
graphical plot that illustrates the diagnostic ability of a binary
classifier system as its discrimination threshold is varied. The
ROC curve is created by plotting the true positive rate (TPR)
against the false positive rate (FPR) at various threshold
settings.

3.2.19 sensitivity, n—measure of the portion of true posi-
tives that are correctly identified in an examination. Sensitivity
is synonymous with true positive rate (TPR).

3.2.20 specificity, n—measure of the portion of true nega-
tives which are correctly identified in an examination. Speci-
ficity is synonymous with true negative rate (TNR).

3.2.21 total indications, n—the number of indications pres-
ent in the ground truth.

3.2.22 total opportunities, n—the number of possibilities for
indications to be identified in the ground truth.

3 Available from International Organization for Standardization (ISO), ISO
Central Secretariat, Chemin de Blandonnet 8, CP 401, 1214 Vernier, Geneva,
Switzerland, https://www.iso.org.

4 Available from http://everyspec.com/MIL-HDBK/MIL-HDBK-1800-1999/
MIL-HDBK-1823A_33187/.
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3.2.23 true negative (TN), n—an examination result that
reports that no indication is present when there is no corre-
sponding indication in the ground truth.

3.2.24 true negative rate (TNR), n—the number of true
negative examination results divided by the total opportunities.

3.2.25 true positive (TP), n—an indication in the examina-
tion results that corresponds to an indication in the ground
truth, that is, identification of an indication that should have
been identified, sometimes called a “hit.”

3.2.26 true positive rate (TPR), n—the number of true
positive examination results divided by the total indications.

3.2.27 type I error, n—the incorrect rejection of a true null
hypothesis (a "false positive").

3.2.28 type II error, n—the incorrect acceptance of a false
null hypothesis (a "false negative").

3.2.29 yield, n—the percentage of manufactured compo-
nents that are evaluated as conforming.

4. Summary of Guide

4.1 This document is written in sections that correspond to
the stages in the life cycle of an AssistDR implementation from
initial concept through production operation as shown in Fig. 1.

4.1.1 Following the life cycle, first the performance mea-
surements for the system are defined and agreed upon. Next,
data collection, image quality, data availability, and data
curation are initiated. Once a curated data set is available,
process training and qualification for use can occur. Production
use of the AssistDR system occurs after qualification is
complete. The production use of the AssistDR system needs to
be controlled in a manner similar to other nondestructive
testing processes. At some point during the life cycle, the
AssistDR system will need to be maintained or the manufac-
turing process will change for the part being inspected. When
AssistDR system maintenance or upgrade occurs, or changes to
the part manufacturing process occur, the AssistDR system
performance needs to be verified. If the changes to the software
or process are significant enough, the system may need to be
requalified. A summary of each of the steps in the life cycle
follows below.

4.2 Performance Measurement—In order to determine if an
inspection process utilizing AssistDR is equivalent to or better
than the existing inspection process, the performance of the
existing inspection process needs to be understood. Common
definitions for inspection system performance metrics and
methods for measuring those metrics for both operator and
AssistDR are described in this guide.

4.3 Initial Considerations—Several often-overlooked items
should be considered before undertaking a project to imple-
ment an AssistDR process. Are the image chain and X-ray
technique optimized for software evaluation? Is a statistically
significant amount of the data available from the inspection
process? If so, is curated ground truth available for that data,
and is that data representative of all indication types? Are the
target part manufacturing and inspection processes mature
enough to execute AssistDR development without repeated
requalification?

4.4 Data Collection—Significant amounts of data both with
and without indications is needed to have a successful imple-
mentation of AssistDR. Hundreds, if not thousands, of images
will be needed for both the development/training of the
software algorithms as well as the initial qualification and
future requalifications. This guide describes the different data
types needed for AssistDR and best practices for assembling
that data.

4.5 Process Qualification—Once the AssistDR system is
trained using a set of data for which ground truth has been
provided, it should then be qualified without knowledge of the
ground truth to understand its real performance. After training,
an expected TPR and FPR are known from a Receiver Operator
Characteristic (ROC) chart, but the confidence in those results
may be low because the training is inherently biased by
knowledge of the ground truth for the data. Therefore, quali-
fication should be conducted with a statistically significant data
set. The size of the qualification data set is determined by the
sample size calculated based on expected TPR and FPR, the
required confidence level, and the required confidence interval
as described in 6.3. It should be noted that the qualification
database should incorporate the same types of indications from
the FMEA as the training database, supplementing with syn-
thetic data where necessary. Also, any test data that results in
the AssistDR system being changed should be added to the
training database and removed from the qualification database.
The process of qualification is shown in Fig. 2.

4.5.1 The operating point on the ROC chart generated at the
qualification phase therefore should be the reportable TPR and
FPR for the AssistDR process, and these values should have
confidence intervals associated with them that meet the re-
quirements of the application. For instance, some applications
that utilize AssistDR only as a tool to call attention to an
abnormal condition would require a significantly different
operating point than an application where AssistDR is used as
required or critical input to the operator’s decision. Once
qualified, all test data that has influenced AssistDR system

FIG. 1 Overview of an AssistDR System Life Cycle
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performance has been incorporated into the training database
and removed from the qualification database. The qualification
database can serve as a basis for the regression and requalifi-
cation test databases for future requalification when AssistDR
system changes or improvements occur.

4.6 Process Control—Once an AssistDR process has been
qualified for use in production, a method for monitoring and
controlling the performance of the process will be needed.
Strategies for both the monitoring and control of an inspection
process using AssistDR are presented in this guide.

4.7 Process Maintenance—Similar to other inspection
processes, both routine and special cause maintenance occur
for AssistDR processes. Equipment or software upgrades or
replacements may also occur. When these events occur, the
potential impact of those events on the performance of the
system needs to be assessed. Recommendations for assessing
and measuring the performance impact of maintenance events
are detailed in this guide.

5. Significance and Use

5.1 This guide describes the recommended procedure for
using software to assist with the identification of indications in
digital radiographic images. Some of the concepts presented
may be appropriate for other nondestructive test methods.

5.2 When properly applied, the methods and techniques
outlined in this guide offer radiographic testing practitioners
the potential to improve inspection reliability, reduce inspec-
tion cycle time, and harness inspection statistics for improving
manufacturing processes.

5.3 The typical goal of a nondestructive test is to identify
flaws that exceed the acceptance criteria. Due to the variability

and uncertainty present in any inspection process, acceptance
thresholds are established so that some acceptable components
are discarded in an effort to prevent parts with discontinuities
that exceed the acceptance criteria from entering service. This
type of error, called a false positive, is considered less critical
than a false negative error which would allow a nonconforming
part into service. A successful application of AssistDR mini-
mizes the false positive rate while reducing the false negative
rate to levels appropriate for the intended application. The
methods and techniques described in this guide facilitate
achieving this desired outcome.

5.4 With the advent of deep learning, convolutional neural
networks, and other forms of artificial intelligence, scenarios
become possible where an AssistDR system continues to
evolve or learn after qualification for production use. This
guide does not address learning-based AssistDR systems. This
guide addresses only deterministic systems that have software
code and parameters that are fixed after qualification. Note that
this limitation does not prohibit the use of this guide for
developing a qualification and usage strategy for software
using deep learning technology. The training or learning
process for the deep learning system would need to be
completed before qualification and all parameters of the deep
learning system held fixed (as with deterministic software
approaches based on traditional image processing) after quali-
fication and during use.

6. Performance Measurement

6.1 The ability of an AssistDR system to find relevant
indications in the nondestructive test data and to ignore
nonrelevant ones is the cornerstone of a successful implemen-
tation. This section defines common performance measures for

FIG. 2 Qualification Process for AssistDR
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AssistDR processes. Since those measures will be calculated
from a sample of the processed data, the relevant statistical
measures on the confidence of those metrics are described next.
An AssistDR project will need to set targets for both the
performance measures and statistical confidence during initial
phases. Finally, some guidance on determining the sample size
needed to meet those targets is presented. The AssistDR
process should be evaluated under the same conditions that it
is intended to be used. For example, when measuring the
performance of AssistDR, it should include operator input if
that is the intended production use.

6.2 Quantitative System Performance Evaluation
6.2.1 The first step in analyzing AssistDR system perfor-

mance is to organize its results into the format shown in Fig. 3.
In this table, the number of positive examination results that
had a corresponding indication in the ground truth is put in the
first row and first column and the number of positive exami-
nation results that did not have a corresponding indication in
the ground truth goes in the second row of column 1. The same
process is followed for the second column of the table for the
negative examination results. A table in this format is often
referred to as a truth table or confusion matrix.

6.2.2 The number of total indications for the examination
result in Fig. 3 is a+b.

6.2.3 The number of true positive results for the examina-
tion in Fig. 3 is a. The true positive rate can be calculated as a
/ (a+b).

6.2.4 The number of false negative results for the examina-
tion in Fig. 3 is b. These are Type II errors. The false negative
rate can be calculated as b / (a+b).

6.2.5 The number of opportunities for a false positive for the
examination result in Fig. 3 is c+d.

6.2.6 The number of false positive results for the examina-
tion in Fig. 3 is c. These are Type I errors. The false positive
rate can be calculated as c / (c+d).

6.2.7 The number of true negative results for the examina-
tion in Fig. 3 is d. The true negative rate can be calculated as
d / (c+d).

6.2.8 The fraction of examinations that correctly tested
positive for an indication is the positive predictive value
(PPV). The PPV can be calculated as a / (a+c).

6.2.9 The fraction of examinations that correctly tested
negative for an indication is the negative predictive value
(NPV). The NPV can be calculated as d / (b+d).

6.3 Use of Confidence Intervals in AssistDR Validation

6.3.1 The true value of the performance metrics described in
6.2 is never completely known. The performance of operators
or AssistDR systems can never be measured on every part
produced. Instead, the performance metrics are estimated using
a sample of parts. This single measurement does not necessar-
ily reflect the true performance, but its statistical confidence
can also be measured and reported. Due to this measurement
uncertainty, the statistical significance of a sample is expressed
using a confidence interval and confidence level. This allows
for the precision of the performance measurement to be
reported.

6.3.2 The interpretation of confidence interval and confi-
dence level on TPR is shown in Fig. 4. The endpoints of the
confidence interval are referred to as the upper and lower
confidence bounds. For simplicity, Fig. 4 shows a special case
of upper and lower confidence bounds that are symmetrically
distributed about the sample estimate. Because the distribution
is symmetric, the confidence level is divided into two equal
halves to create both the upper and lower confidence bounds.
For a TPR estimate t with confidence bounds cbu and cbl, and
a confidence level c%, the probability that the sample’s upper
and lower bounds, cbu and cbl, contain the population TPR is
c%.

6.3.3 For the measurement of TPR, the symmetric probabil-
ity distribution above is appropriate only for TPRs measured at
or near 50 %, or for very large sample sizes. As the TPR
approaches 100 %, the distribution skews left and sample TPR
does not coincide with the mode or peak of the distribution.
Additionally, neither the confidence level nor the confidence
intervals are symmetric. The width of the confidence interval
depends on the sample size, N. Fig. 5 shows this relationship as
TPR deviates from the simple case, for a relatively low sample
size of 30. For more information regarding skewness of
probability density functions and appropriate probability dis-
tribution models for TPR and FPR estimates, refer to Practice
E2586.

6.3.4 It is the lower confidence bound that is of interest for
the measurement of the TPR of an AssistDR application. The
lower confidence bound on the TPR estimate represents the
lowest value of TPR that could be expected on future measure-
ments of that AssistDR process at a given confidence level.
Note that for skewed sensitivity distributions as shown in Fig.
6, the confidence interval is asymmetric including more TPR
estimates below the measured sensitivity. Hence, the lower
bound is further below the measured TPR than the upper bound

FIG. 3 AssistDR Test Results Compared to Ground Truth
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is above. Increasing the sample size reduces this effect on the
sensitivity measurement’s lower bound. Similarly, it is the
upper confidence bound that is of most interest for FPR
estimates.

6.4 Sample Size Requirements for Validation of Initial
Performance Assessments

6.4.1 In order to provide a clear, quantitative validation of
an AssistDR system’s performance (in terms of TPR, for

FIG. 4 Illustration of Confidence Bounds and Confidence Level

FIG. 5 Illustration of Confidence Level and Confidence Intervals for Increasing TPR Measurements
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example) on a given part, two quantities are required before-
hand. The first of these quantities is an estimate of the
anticipated performance (say TPR) and the second is the
desired width of the resulting confidence interval. These two
quantities are needed because the relationship between sample
size and confidence interval width is a function of anticipated
performance. That is, the number of samples required to meet
a given confidence interval width for one value of TPR will
differ from the number required for a higher value of TPR. Fig.
6 illustrates this relationship for TPR.

6.4.2 The lower confidence bound for a TPR estimate can be
estimated given the sample size used to calculate the estimate
and the desired confidence level. The approximate lower
confidence bound for a 95 % confidence level for a given TPR
and sample size in the associated study can be determined from
Table 1. To use Table 1, first find the row that is closest to, but
not greater than, the TPR of the study. Next, find the column
with the number of samples that is closest to, but not greater
than, the number of samples in the study. The heading of the
column is the lower confidence interval. To determine the
lower confidence bound, simply subtract the lower confidence
interval from the TPR of the study. For example, consider a
study with a 90.5 % TPR measured from a qualification data

set with 250 indications. The row of Table 1 that is closest to,
but not greater than, the TPR is the 90 % TPR row. The column
with the number of indications that is closest to, but not greater
than, the 250 indications used in the study is the 5 %
Confidence Interval column. The 95 % lower confidence bound
on TPR for this study is 85.5 % (90.5 % - 5 %).

6.4.3 Similarly, an upper confidence bound for an FPR
estimate can be estimated given the sample size used to
calculate the estimate and the desired confidence interval. If the
number of opportunities for a false positive is defined, FPR can
be bounded. By noting that FPR = 1 – TNR, Table 1 can also
be used to compute a lower bound on TNR. Analogously, this
lower bound on TNR equates to an upper bound on FPR.

6.4.4 If the number of opportunities for a false positive is
not defined, FPR may be unbounded. For example, if it is
desired to measure the number of false positives per
opportunity, the upper confidence bound should be calculated
from a counting process distribution, as described in Practice
E2586. The approximate upper confidence bound for a 95 %
confidence level for a given number of false positives in the
associated study can be determined from Table 2. To use Table
2, first find the row that is closest to, but not less than, the
number of false positives per opportunity of the study. Next,

FIG. 6 95 % Confidence Interval Width for TPR Estimates as A Function of Sample Size and TPR; Lines Are Colored by Estimated TPR,
Increasing From 70 % (in Black) to 98 % (in Red); Note That Confidence Interval Width Decreases as A Function of Sample Size And

That Confidence Interval Widths Are Smaller for Larger TPR Estimates Than for Lower TPR Estimates For A Given Sample Size

TABLE 1 Number of Indications Required in the Qualification Data Set for a 95 % Confidence Level (CL) on True Positive Rate

True Positive Rate Confidence Interval (CI)
1 % 2 % 3 % 4 % 5 % 10 % 20 %

97.0 % 1484 461 244 159 115 45 19
96.0 % 1837 548 282 180 129 49 20
95.0 % 2181 632 319 201 142 52 20
94.0 % 2517 715 356 221 155 55 21
93.0 % 2846 796 391 240 167 57 21
92.0 % 3167 875 425 260 179 60 22
91.0 % 3480 952 459 278 191 63 23
90.0 % 3786 1027 492 296 202 65 23
87.5 % 4516 1206 570 339 229 71 24
85.0 % 5198 1373 643 379 254 77 25
82.5 % 5832 1528 710 416 277 82 26
80.0 % 6418 1671 772 450 298 87 27
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find the column with the number of samples that is closest to,
but not less than, the number of samples in the study. The
heading of the column is the upper confidence interval. To
determine the upper confidence bound, add the upper confi-
dence interval from the number of false positives per oppor-
tunity of the study. For example, consider a study with 0.83
false positives per clean component measured from a qualifi-
cation data set with 100 clean components. The row of Table 2
that is closest to, but not less than, the false positives per clean
component is the 0.9 false positives row. The column with the
number of opportunities that is closest to, but not less than, the
100 opportunities used in the study is the 0.2 Confidence
Interval column. The 95 % upper confidence bound on false
positives per component for this study is 1.1 (0.9 + 0.2).

6.5 An alternative approach to the quantitative assessment
of the performance of a nondestructive testing method is
probability of detection (POD). Like TPR, the POD approach
provides estimates of the probability that an inspection method
correctly detects defects. The POD approach is based upon a
statistical model with several important assumptions. Perhaps
the most important of these assumptions is that there is a single
aspect of true defects (often defect size) that strongly influ-
ences probability of detection. TPR, on the other hand, rests on
very few assumptions. The assumptions behind both methods
have both benefits and risks. The strongly parametric nature of
the POD approach means that smaller data sets are required to
get meaningful estimates, while the simpler TPR approach
requires larger data sets. However, TPR is ultimately more
robust in the presence of multiple defect types or when image
properties other than indication size have strong influence on
performance (for example, strong gradients or variation in
contrast). Detailed information on POD can be found in
Practice E2862, Practice E3023, and MIL-HDBK-1823A.

7. Data Collection

7.1 Several different data sets are necessary to qualify an
AssistDR system for use in a production environment. These
data sets correspond to the overall process described by Fig. 1
and are broken down into more detail in Fig. 7 below. In Fig.
7 , the first step is to carefully define the space of NDT data that
is representative of the manufacturing and inspection process.

This is described in detail in 7.2. This definition should be used
as guidance to collect data sets for assessing operator
performance, software training, and software performance. For
this data to be useful in conducting performance assessments or
training, it will need to have the ground truth determined.
Ground truth determination is discussed in 7.3.

7.1.1 Before describing the elements of a comparison for
evaluating an AssistDR system, it should be noted that every
inspection system and manufacturing context is different, and
those differences can have significant implications for conduct-
ing a successful and meaningful comparison study. To handle
these nuances and to ensure the accuracy of results, it is
recommended that a trained statistician be consulted whenever
possible. If the AssistDR system purchaser or provider lacks a
staff statistician, there are a variety of fully qualified statistical
consulting firms that can be contacted to assist in the design of
these studies.

7.2 Representative Process Data
7.2.1 Often, faults in AssistDR systems are not detected

until the later stages of development. The late detection is due
to the random nature of the variation of manufacturing pro-
cesses. The image or type of indication that caused the fault
was simply not produced by the process during the previous
testing periods. However, finding a problem at this point in the
development process can add significant cost and delays to
schedules. The challenge is to create a training data set that is
as robust and comprehensive as possible to uncover these faults
during the training phase. One way to create a robust training
set is to use Failure Mode and Effects Analysis (FMEA), a tool
for identifying potential problems and their impact. FMEA is a
qualitative and systematic tool, usually created within a
spreadsheet, to help practitioners anticipate what might go
wrong with a product or process. Since the effects of failure for
AssistDR systems are limited, the focus is on identifying
modes (indication types, indication locations, background
level, background gradient, etc.) that may cause the software to
provide an incorrect result.

7.2.2 A strong cross-functional team is necessary to perform
an effective FMEA. This team should include manufacturing
process experts to identify type, size, and location of indica-
tions; inspection process experts to identify variation in image

TABLE 2 Number of Opportunities Required in the Qualification Data Set for a 95 % Confidence Level (CL) on False Positives per
Opportunity

False Positives Per
Opportunity

Confidence Interval (CI)
0.05 0.10 0.20 0.30 0.40 0.50 1.00

0.10 231 77 29 17 12 - -
0.20 385 116 39 22 15 7 -
0.30 539 154 48 26 17 8 -
0.40 693 193 58 30 20 8 6
0.50 846 231 68 35 22 9 6
0.60 1000 270 77 39 24 10 7
0.70 1154 308 87 43 27 10 7
0.80 1307 347 97 47 29 11 7
0.90 1461 385 106 52 32 12 8
1.00 1615 423 116 56 34 12 8
1.25 1999 520 140 67 40 14 9
1.50 2383 616 164 77 46 16 10
1.75 2767 712 188 88 52 18 11
2.00 3151 808 212 99 48 19 12
4.00 6225 1576 404 184 106 33 20
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view angle, quality, and noise; and AssistDR system experts to
identify weak points of algorithms and filters. Such a group is
needed to identify the broadest set of failure modes possible to
include in the training data set.

7.2.3 The objective of a FMEA for the qualification and
control of AssistDR software is to identify the range of input
data to the software that could impact performance. A more
extensive FMEA considering a broader range factors impacting
implementation, such as computation time, network speeds,
operator acceptance, etc., is recommended. The analysis in-
cludes expected variations in the manufacturing process, in-
spection process, and software algorithms. The output of the
FMEA should be a table of factors that could cause a failure of
the AssistDR software. An example table of the output of a
FMEA is found in Table 3.

7.2.3.1 This example is based on the positive image in Fig.
8 where air is shown as white and the part being inspected as
shades of gray. The darker shades of gray indicate thicker areas
of the part. There are two indication types (foreign material and
porosity) that the AssistDR system is required to detect. In this
example, each of these types has a 0.020 in. minimum
interpretable size, but the manufacturing process produces
indications over a wide range of sizes. Due to the nature of the
foreign material and porosity, the digital signals produced by
the indications vary in both magnitude and signal-to-
background ratio. There are two boundaries of interest in the
image, the part/air boundary (1) and the part/end of image

boundary (3, 4). There are areas of thinner material (2), thicker
material (3), and a transition from thin to thick (5).

7.2.4 After the failure modes are identified, they should be
incorporated into the training and qualification databases for
the AssistDR system. For elements of the FMEA having a
range of values, an efficient way to put together a data set that
spans the entire space is by applying the Design of Experi-
ments (DOE) methodology. Design of Experiments is a sys-
tematic method to determine the relationship between factors
affecting a process and the output of that process. The most
common DOE method uses a full factorial design where the
boundary points on the range of the input parameters are
combined in a systematic manner to form a set of experiments.
For the example in Table 3, this would result in a 48
(2x2x2x2x3) run DOE for each indication type. Each of the
runs for this design is shown in Table 4.

7.2.5 After creating a DOE design, images are assembled
representing each of the runs in the DOE. It is preferable for
these to be indications that are produced by the manufacturing
process and created on the production inspection system. Due
to the nature of manufacturing processes, not all indications
that may occur in the process occur on a regular basis. These
infrequently occurring indication types may make completing
the DOE image matrix in a timely manner impossible. In these
cases, it is necessary to use carefully created simulated images
to fill out the DOE matrix.

FIG. 7 Data Sets Used in AssistDR System Qualification and Software Maintenance
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7.2.6 The results of the AssistDR system on the DOE should
be expressed as a TPR for the indications. While other metrics
such as FPR may be of interest and provide insight into the
system’s performance, the DOE design method described in
this section is intended to investigate the impact of process
variation on TPR.

7.2.7 Requirements on the performance of the AssistDR
system on the DOE matrix will vary from project to project. If
a large, statistically significant DOE matrix like the one
specified in Table 4 is used, a TPR requirement based on the
production inspection processes can be applied to evaluate the
DOE results. For some projects, a statistically significant DOE
may not be possible. In this case, the experiment can use a
reduced size DOE focused on specific indication conditions
(for example, location, contrast, size) that do not occur in
typical production but are identified by the FMEA as condi-
tions the algorithm needs to address. If a reduced size DOE is
used, a higher TPR should be required of the software on the
DOE data to ensure that the AssistDR system has some degree
of sensitivity to those conditions.

7.2.8 The nature of the assessment data set used in a
qualification study is vital to determining the efficacy of an
AssistDR system. This data set should consist of a sufficiently
large (see discussion in 6.4) collection of indications and
inspection opportunities to provide estimates of statistical
sensitivity and specificity for a purely manual inspection
system and the associated AssistDR-enabled inspection sys-
tem. In practice, determining how many indications are re-
quired is often a tradeoff between statistical requirements and
practical matters such as availability of indications in
production, operator availability, cost, etc. If a reasonable
initial estimate of operator sensitivity and specificity is
available, the method described in 6.4.2 can be employed to
identify the number of indications and indication-free inspec-
tion system outputs required to provide real sensitivity and
specificity estimates with a specified degree of uncertainty.
Generally speaking, if a statistician is unavailable, it is prudent
to err on the side of larger data sets. Beyond the quantity of
indications and indication-free inspection opportunities, it is
extremely important to ensure that the assessment data set

TABLE 3 Example FMEA Output For A Radiographic Inspection Process Based on Notional Image in Fig. 8

Failure Modes
Impact of Failure

Range of Causing Condition Failure Mode Mitigation
Miss False Positive

Foreign Material Too Small to Detect × 0.020 in. Min Interpretable 10 indications between 0.025 in. and
0.015 in. major dimension in
qualification data set

Foreign Material Too Large to Detect × Indications greater than 0.150 in.
may cause algorithm error

10 indications greater than 0.150 in.
in qualification data set

Low Contrast Foreign Material × Foreign material less than CNR
threshold possible

10 indications within 5 % of
CNRthreshold in qualification data
set

High Contrast Foreign Material × Large areas of foreign material rare
but possible

10 indications greater than 200 % of
CNRthreshold in qualification data
set

Porosity Too Small to Detect × 0.020 in. Min Interpretable 10 indications between 0.025 in. and
0.015 in. major dimension in
qualification data set

Porosity Too Large to Detect × Indications greater than 0.150 in.
may cause algorithm error

10 indications greater than 0.150 in.
in qualification data set

Low Contrast Porosity Detection × Porosity less than CNR threshold
rare but possible

10 indications between within 5 % of
CNRthreshold in qualification data
set

High Contrast Porosity Detection × Large pores rare but possible 10 indications greater than 200 % of
CNRthreshold in qualification data
set

Algorithm Performance at Part/Air Interfaces × × 2 regions of part/air interface 20 indications located within 0.010 in.
of a part/air interface in qualification
data set

Algorithm Performance at Part/Image Edge
Interfaces

× × 2 regions of part/image edge
interface

20 indications located within 0.010 in.
of a part/image edge interface in
qualification data set

Algorithm Performance in Areas of Thickness
Transition

× × 1 region of thickness transition
between platform and airfoil

20 indications located within 0.020 in.
of a thickness transition in
qualification data set (10 in thicker
region, 10 in thinner in region)

Complete Detector Failure × All data in image occupies less than
5 % of dynamic range

Error check for detector failure
incorporated into software before
detection algorithm

Detector Degradation × × Areas of low contrast or higher than
acceptable noise

Performance check of system using
a reference part at the start and end
of each shift

Operator Does Not Evaluate Identified Indication × × All software identified indications
must be evaluated

Software implements check box for
each indication and all check boxes
must be set before software will
register the inspection complete
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covers the full space of possible inspection contexts. Thus,
when developing an assessment data set, it is recommended
that the AssistDR system purchaser or provider conduct an
FMEA Design of Experiments as described above.

7.3 Ground Truth—Assembly of the associated ground truth
data set is one of the most important, most time consuming,
and most challenging elements of creating a training or

qualification data set. Assembling this ground truth is challeng-
ing because it requires that all indications in the image data set
larger than some minimum interpretable size be located,
measured, and assigned a unique identification. Doing this task
accurately usually requires significant manual intervention.
The accuracy of the performance measurements for the As-
sistDR algorithm is directly dependent on the correctness of the

FIG. 8 Image for FMEA Example

TABLE 4 Example DOE based on FMEA in Table 3

Run
Order

Size SBR Image
Location

Part
Location

Gradient Run
Order

Size SBR Image Location Part
Location

Gradient

1 Small Low Edge Edge B->G 25 Large Low Edge Edge B->G
2 Small Low Edge Edge W->G 26 Large Low Edge Edge W->G
3 Small Low Edge Edge Flat 27 Large Low Edge Edge Flat
4 Small Low Edge Center B->G 28 Large Low Edge Center B->G
5 Small Low Edge Center W->G 29 Large Low Edge Center W->G
6 Small Low Edge Center Flat 30 Large Low Edge Center Flat
7 Small Low Center Edge B->G 31 Large Low Center Edge B->G
8 Small Low Center Edge W->G 32 Large Low Center Edge W->G
9 Small Low Center Edge Flat 33 Large Low Center Edge Flat
10 Small Low Center Center B->G 34 Large Low Center Center B->G
11 Small Low Center Center W->G 35 Large Low Center Center W->G
12 Small Low Center Center Flat 36 Large Low Center Center Flat
13 Small High Edge Edge B->G 37 Large High Edge Edge B->G
14 Small High Edge Edge W->G 38 Large High Edge Edge W->G
15 Small High Edge Edge Flat 39 Large High Edge Edge Flat
16 Small High Edge Center B->G 40 Large High Edge Center B->G
17 Small High Edge Center W->G 41 Large High Edge Center W->G
18 Small High Edge Center Flat 42 Large High Edge Center Flat
19 Small High Center Edge B->G 43 Large High Center Edge B->G
20 Small High Center Edge W->G 44 Large High Center Edge W->G
21 Small High Center Edge Flat 45 Large High Center Edge Flat
22 Small High Center Center B->G 46 Large High Center Center B->G
23 Small High Center Center W->G 47 Large High Center Center W->G
24 Small High Center Center Flat 48 Large High Center Center Flat
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