
Designation: E2782 − 17 (Reapproved 2022) An American National Standard

Standard Guide for
Measurement Systems Analysis (MSA)1

This standard is issued under the fixed designation E2782; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide presents terminology, concepts, and selected
methods and formulas useful for measurement systems analy-
sis (MSA). Measurement systems analysis may be broadly
described as a body of theory and methodology that applies to
the non-destructive measurement of the physical properties of
manufactured objects.

1.2 Units—The system of units for this guide is not speci-
fied. Dimensional quantities in the guide are presented only as
illustrations of calculation methods and are not binding on
products or test methods treated.

1.3 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety, health, and environmental practices and deter-
mine the applicability of regulatory limitations prior to use.

1.4 This international standard was developed in accor-
dance with internationally recognized principles on standard-
ization established in the Decision on Principles for the
Development of International Standards, Guides and Recom-
mendations issued by the World Trade Organization Technical
Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:2

E177 Practice for Use of the Terms Precision and Bias in
ASTM Test Methods

E456 Terminology Relating to Quality and Statistics
E2586 Practice for Calculating and Using Basic Statistics
E2587 Practice for Use of Control Charts in Statistical

Process Control

3. Terminology

3.1 Definitions:

3.1.1 Unless otherwise noted, terms relating to quality and
statistics are defined in Terminology E456.

3.1.2 accepted reference value, n—a value that serves as an
agreed-upon reference for comparison, and which is derived
as: (1) a theoretical or established value, based on scientific
principles, (2) an assigned or certified value, based on experi-
mental work of some national or international organization, or
(3) a consensus or certified value, based on collaborative
experimental work under the auspices of a scientific or
engineering group. E177

3.1.3 calibration, n—process of establishing a relationship
between a measurement device and a known standard value(s).

3.1.4 gage, n—device used as part of the measurement
process to obtain a measurement result.

3.1.5 measurement process, n—process used to assign a
number to a property of an object or other physical entity.

3.1.5.1 Discussion—The term “measurement system” is
sometimes used in place of measurement process. (See 3.1.7.)

3.1.6 measurement result, n—number assigned to a property
of an object or other physical entity being measured.

3.1.6.1 Discussion—The word “measurement” is used in the
same sense as measurement result.

3.1.7 measurement system, n—the collection of hardware,
software, procedures and methods, human effort, environmen-
tal conditions, associated devices, and the objects that are
measured for the purpose of producing a measurement.

3.1.8 measurement systems analysis (MSA), n—any of a
number of specialized methods useful for studying a measure-
ment system and its properties.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 appraiser, n—the person who uses a gage or measure-

ment system.

3.2.2 discrimination ratio, n—statistical ratio calculated
from the statistics from a gage R&R study that measures the
number of 97 % confidence intervals, constructed from gage
R&R variation, that fit within six standard deviations of true
object variation.

3.2.3 distinct product categories, n—alternate meaning of
the discrimination ratio.

3.2.4 gage consistency, n—constancy of repeatability vari-
ance over a period of time.

1 This guide is under the jurisdiction of ASTM Committee E11 on Quality and
Statistics and is the direct responsibility of Subcommittee E11.50 on Metrology.
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3.2.4.1 Discussion—Consistency means that the variation
within measurements of the same object (or group of objects)
under the same conditions by the same appraiser behaves in a
state of statistical control as judged, for example, using a
control chart. See Practice E2587.

3.2.5 gage performance curve, n—curve that shows the
probability of gage acceptance of an object given its real value
or the probability that an object’s real measure meets a
requirement given the measurement of the object.

3.2.6 gage R&R, n—combined effect of gage repeatability
and reproducibility.

3.2.7 gage resolution, n—degree to which a gage can
discriminate between differing objects.

3.2.7.1 Discussion—The smallest difference between two
objects that a gage is capable of detecting is referred to as its
finite resolution property. For example, a linear scale graduated
in tenths of an inch is not capable of discriminating between
objects that differ by less than 0.1 in. (0.25 cm).

3.2.8 gage stability, n—absence of a change, drift, or erratic
behavior in bias over a period of time.

3.2.8.1 Discussion—Stability means that repeated measure-
ments of the same object (or average of a set of objects) under
the same conditions by the same appraiser behave in a state of
statistical control as judged for example by using a control
chart technique. See Practice E2587.

3.2.9 linearity, n—difference or change in bias throughout
the expected operating range of a gage or measurement system.

3.2.10 measurement error, n—error incurred in the process
of measurement.

3.2.10.1 Discussion—As used in this guide, measurement
error includes one or both of R&R types of error.

3.2.11 repeatability conditions, n—in a gage R&R study,
conditions in which independent measurements are obtained on
identical objects, or a group of objects, by the same operator
using the same measurement system within short intervals of
time.

3.2.11.1 Discussion—As used in this guide, repeatability is
often referred to as equipment variation or EV.

3.2.12 reproducibility conditions, n— in a gage R&R study,
conditions in which independent test results are obtained with
the same method, on identical test items by different operators.

3.2.12.1 Discussion—As used in this guide, reproducibility
is often referred to as appraiser variation or AV. This term is
also used in a broader sense in Practice E177.

4. Significance and Use

4.1 Many types of measurements are made routinely in
research organizations, business and industry, and government
and academic agencies. Typically, data are generated from
experimental effort or as observational studies. From such data,
management decisions are made that may have wide-reaching
social, economic, and political impact. Data and decision
making go hand in hand and that is why the quality of any
measurement is important—for data originate from a measure-
ment process. This guide presents selected concepts and

methods useful for describing and understanding the measure-
ment process. This guide is not intended to be a comprehensive
survey of this topic.

4.2 Any measurement result will be said to originate from a
measurement process or system. The measurement process will
consist of a number of input variables and general conditions
that affect the final value of the measurement. The process
variables, hardware and software and their properties, and the
human effort required to obtain a measurement constitute the
measurement process. A measurement process will have sev-
eral properties that characterize the effect of the several
variables and general conditions on the measurement results. It
is the properties of the measurement process that are of primary
interest in any such study. The term “measurement systems
analysis” or MSA study is used to describe the several methods
used to characterize the measurement process.

NOTE 1—Sample statistics discussed in this guide are as described in
Practice E2586; control chart methodologies are as described in Practice
E2587.

5. Characteristics of a Measurement System (Process)

5.1 Measurement has been defined as “the assignment of
numbers to material objects to represent the relations existing
among them with respect to particular properties. The number
assigned to some particular property serves to represent the
relative amount of this property associated with the object
concerned.” (1)3

5.2 A measurement system may be described as a collection
of hardware, software, procedures and methods, human effort,
environmental conditions, associated devices, and the objects
that are measured for the purpose of producing a measurement.
In the practical working of the measurement system, these
factors combine to cause variation among measurements of the
same object that would not be present if the system were
perfect. A measurement system can have varying degrees of
each of these factors, and in some cases, one or more factors
may be the dominant contributor to this variation.

5.2.1 A measurement system is like a manufacturing pro-
cess for which the product is a supply of numbers called
measurement results. The measurement system uses input
factors and a sequence of steps to produce a result. The inputs
are just varying degrees of the several factors described in 5.2
including the objects being measured. The sequence of process
steps are that which would be described in a method or
procedure for producing the measurement. Taken as a whole,
the various factors and the process steps work collectively to
form the measurement system/process.

5.3 An important consideration in analyzing any measure-
ment process is its interaction with time. This gives rise to the
properties of stability and consistency. A system that is stable
and consistent is one that is predictable, within limits, over a
period of time. Such a system has properties that do not
deteriorate with time (at least within some set time period) and
is said to be in a state of statistical control. Statistical control,
stability and consistency, and predictability have the same

3 The boldface numbers in parentheses refer to the list of references at the end of
this standard.
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meaning in this sense. Measurement system instability and
inconsistency will cause further added overall variation over a
period of time.

5.3.1 In general, instability is a common problem in mea-
surement systems. Mechanical and electrical components may
wear or degrade with time, human effort may exhibit increas-
ing fatigue with time, software and procedures may change
with time, environmental variables will vary with time, and so
forth. Thus, measurement system stability is of primary con-
cern in any ongoing measurement effort.

5.4 There are several basic properties of measurement
systems that are widely recognized among practitioners. These
are repeatability, reproducibility, linearity, bias, stability,
consistency, and resolution. In studying one or more of these
properties, the final result of any such study is some assessment
of the capability of the measurement system with respect to the
property under investigation. Capability may be cast in several
ways, and this may also be application dependent. One of the
primary objectives in any MSA effort is to assess variation
attributable to the various factors of the system. All of the basic
properties assess variation in some form.

5.4.1 Repeatability is the variation that results when a single
object is repeatedly measured in the same way, by the same
appraiser, under the same conditions (see Fig. 1). The term
“precision” also denotes the same concept, but “repeatability”
is found more often in measurement applications. The term
“conditions” is sometimes combined with repeatability to
denote “repeatability conditions” (see Terminology E456).

5.4.1.1 The phrase “intermediate precision” is also used (for
example, see Practice E177). The user of a measurement
system shall decide what constitutes “repeatability conditions”
or “intermediate precision conditions” for the given applica-
tion. Typically, repeatability conditions for MSA will be as
described in 5.4.1.

5.4.2 Reproducibility is defined as the variation among
average values as determined by several appraisers when
measuring the same group of objects using identical measure-
ment systems under the same conditions (see Fig. 2). In a
broader sense, this may be taken as variation in average values
of samples, either identical or selected at random from one
homogeneous population, among several laboratories or as
measured using several systems.

5.4.2.1 Reproducibility may include different equipment
and measurement conditions. This broader interpretation has

attached “reproducibility conditions” and shall be defined and
interpreted by the user of a measurement system. (In Practice
E177, reproducibility includes interlaboratory variation.)

5.4.3 Bias is the difference between a standard or accepted
reference value for an object, often called a “master,” and the
average value of a sample of measurements of the object(s)
under a fixed set of conditions (see Fig. 1).

5.4.4 Linearity is the change in bias over the operational
range of the measurement system. If the bias is changing as a
function of the object being measured, we would say that the
system is not linear. Linearity can also be interpreted to mean
that an instrument response is linearly related to the character-
istic being measured.

5.4.5 Stability is variation in bias with time, usually a drift
or trend, or erratic behavior.

5.4.6 Consistency is the change in repeatability with time. A
system is consistent with time when the standard deviation of
the repeatability error remains constant. When a measurement
system is stable and consistent, we say that it is a state of
statistical control.

5.4.7 The resolution of a measurement system has to do
with its ability to discriminate between different objects. A
system with high resolution is one that is sensitive to small
changes from object to object. Inadequate resolution may result
in identical measurements when the same object is measured
several times under identical conditions. In this scenario, the
measurement device is not capable of picking up variation as a
result of repeatability (under the conditions defined). Poor
resolution may also result in identical measurements when
differing objects are measured. In this scenario, the objects
themselves are too close in true magnitude for the system to
distinguish among.

5.4.7.1 Resolution plays an important role in measurement
in general. We can imagine the output of a process that is in
statistical control and follows a normal distribution with mean,
µ, and standard deviation, σ. Based on the normal distribution,
the natural spread of the process is 6σ. Suppose we measure
objects from this process with a perfect gage except for its
finite resolution property. Suppose further that the gage we are
using is “graduated” as some fraction, 1/k, of the 6σ natural
process spread (integer k). For example, if k = 4, then the
natural process tolerance would span four graduations on the
gage; if k = 6, then the natural process spread would span six
graduations on the gage. It is clear that, as k increases, we
would have an increasingly better resolution and would be
more likely to distinguish between distinct objects, however
close their magnitudes; at the opposite extreme, for small k,FIG. 1 Repeatability and Bias Concepts

FIG. 2 Reproducibility Concept
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fewer and fewer distinct objects from the process would be
distinguishable. In the limit, for large k, every object from this
process would be distinguishable.

5.4.7.2 In using this perfect gage, the finite resolution
property plays a role in repeatability. For very large k, the
resulting standard deviation of many objects from the process
would be nearly the magnitude of the true object standard
deviation, σ. As k diminishes, the standard deviation of the
measurements would increase as a result of the finite resolution
property. Fig. 3 illustrates this concept for a process centered at
0 and having σ = 1 for k = 4.

5.4.7.3 The illustration from Fig. 3 is a system capable of
discriminating objects into groups no smaller than 1.5σ in
width so that a frequency distribution of measured objects from
this system will generally have four bins. This means four
distinct product values can be detected. Using Fig. 3 and the
theoretical probabilities from the normal distribution, it is
possible to calculate the variance of the measured values for
various values of k. In this case, the variance of the measured
values is approximately 1.119 or 11.9 % larger than the true
variance. The standard deviation is, therefore, 1.058 or 5.8 %
larger.

5.4.7.4 This illustrates the important role that resolution
plays in measurement in general and an MSA study in
particular. There is a subtle interaction between the degree of
resolution and more general repeatability and other measure-
ment effects. In extreme cases of poor resolution, an MSA
study may not be able to pick up a repeatability effect (all
objects measured yield the same value). For an ideal system,
for varying degrees of finite resolution as described in 5.4.7,
there will be a component of variance as a result of resolution
alone. For positive integer value, k, when the smallest mea-
surement unit for a device is 1/kth of the 6σ true natural process
range, the standard deviation as a result of the resolution effect
may be determined theoretically (assuming a normal distribu-
tion). Table 1 shows the effect for selected values of k.

5.4.7.5 A common rule of thumb is for a measurement
device to have a resolution no greater than 0.6σ, where σ is the
true natural process standard deviation. This would give us
k = 10 graduation divisions within the true 6σ natural process

limits. In that particular case, the resulting variance of all
measurements would have increased by approximately 1.9 %
(Table 1, k = 10).

5.5 MSA is a broad class of activities that studies the several
properties of measurement systems, either individually, or
some relevant subset of properties taken collectively. Much of
this activity uses well known methods of classical statistics,
most notably experimental design techniques. In classical
statistics, the term variance is used to denote variation in a set
of numbers. It is the square of the standard deviation. One of
the primary goals in conducting an MSA study is to assess the
several variance components that may be at play. Each factor
will have its own variance component that contributes to the
overall variation. Components of variance for independent
variables are additive. For example, suppose y is the result of
a measurement in which three independent factors are at play.
Suppose that the three independent factors are x1, x2, and x3. A
simple model for the linear sum of the three components is y =
x1 + x2 + x3. The variance of the overall sum, y, given the
variances of the components is:

σy
2 5 σ1

21σ2
21σ3

2 (1)

5.5.1 We say that each variance on the right is a component
of the overall variance on the left. This model is theoretical; in
practice, we do not know the true variances and have to
estimate their values from data.

5.5.2 Statistical methods allow one to estimate the several
variance components in MSA. Sometimes the analyst may only
be interested in one of the components, for example, repeat-
ability. In other cases, it may be two or more components that
may be of interest. Depending on how the MSA study is
designed, the variance components may be estimable free and
clear of each other or combined as a composite measure.
Several widely used basic models and associated statistical
techniques are discussed in Section 6.

6. Basic MSA Methods

6.1 Simple Repeatability—Simple repeatability may be
evaluated using at least two measurements of each of several
objects by a single appraiser under identical conditions. The
simplest such experiment is to use a number of distinct objects,
say n, and two measurements of each object. Let yi1 and yi2 be
the two measurements of object i. Each measurement is

FIG. 3 Finite Resolution Property of a Measurement System
where Four “Graduations Fit within the Natural 6σ Process

Spread”

TABLE 1 Behavior of the Measurement Variance and Standard
Deviation for Selected Finite Resolution Property, k, True

Process Variance is 1

k
total

variance
resolution

component
stdev due to

resolution

2 1.36400 0.36400 0.60332
3 1.18500 0.18500 0.43012
4 1.11897 0.11897 0.34492
5 1.08000 0.08000 0.28284
6 1.05761 0.05761 0.24002
8 1.04406 0.04406 0.20990
9 1.03549 0.03549 0.18839
10 1.01877 0.01877 0.13700
12 1.00539 0.00539 0.07342
15 1.00447 0.00447 0.06686
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contaminated with a repeatability error component, e. This
model may be written as:

yij 5 xi1eij (2)

6.1.1 In this model, the yij values are the observed measure-
ments of object, i, measurement, j; the xi values are considered
the “true” or reference values of the objects being measured;
and eij is the repeatability error associated with object, i, and
measurement, j. The difference, di, between two measurements
of the same object may be written as:

di 5 yi1 2 yi2 5 xi1ei1 2 xi 2 ei2 5 ei1 2 ei2 (3)

6.1.2 If the error terms can be considered normally
distributed, then the paired differences, the d’s, will possess a
normal distribution. Generally, the repeatability error term, e, is
assumed to have a mean of 0 and some unknown variance σ2.
This is the repeatability variance. Under the model assump-
tions and further assuming that the errors are uncorrelated; the
variable, di, will be normally distributed with mean 0 and
variance 2σ2. The variance σ2 may be analyzed using standard
statistical theory as follows. The estimate of σ2 is formed as:

σ̂2 5
(
i51

n

di
2

2n
(4)

The square root of quantity Eq 4 is the estimate of the
repeatability standard deviation.

6.1.3 With the previous assumptions, the sum of the squared
deviations, the d2 terms, divided by 2σ2 will have a chi-square
distribution with n degrees of freedom. From this fact, a
confidence interval for σ2 may be constructed.

χ2 5
(
i51

n

di
2

2σ2 Chi 2 square with n df (5)

6.1.4 It may be important to check that the mean of the
variable d is zero. For this purpose, we can use a classical
confidence interval construction for the true mean of the
differences. The form of the confidence interval is:

d̄6
tSd

=n
(6)

6.1.5 Here, t is selected from the Student’s t distribution,
using a two-sided 100(1 – α)% confidence level and degrees of
freedom n – 1, and Sd is the ordinary sample standard deviation
of the differences. If the interval includes 0, then the assump-
tion of a mean equal to 0 cannot be refuted at significance
level, α. The normal distribution assumption may be checked
using the several values of di, and a normal probability plotting
technique (see Practice E2586).

6.1.6 The paired comparison (two measurements per each
object) scenario is convenient and very common in practice;
however, it is also possible to modify the methodology using
more than two measurements per object measured. When this
approach is used, the formulas for the resulting estimates and
confidence interval formulation will be different. An analysis
of variance (ANOVA) may be used for the more than two
measurements per object case. The ANOVA technique also

allows for differences from one object to another in the number
of times each object is measured (see 6.4 for details).

6.2 Use of the Range Control Chart in Evaluating
Repeatability—The range control chart may be used to evaluate
consistency of the measurement system and resolution issues.
In addition, the control chart gives an alternative measure of
repeatability that, under perfect stability and consistency
conditions, should be very close to Eq 4. Suppose there are n
objects to be measured. For each pair of repeated
measurements, calculate the range as:

Ri 5 ?yi1 2 yi2? (7)

6.2.1 The absolute value bars simply indicate that we are
looking at the absolute difference between measurements or the
range in each pair. The average range is:

R̄ 5
(
i51

n

Ri

n
(8)

6.2.2 The range estimate of the standard deviation of
repeatability is:

σ̂ 5
R̄
d2

(9)

6.2.3 A short table of the constant d2 appears in Appendix
X6 or see Practice E2587. The constant d2 converts4 the
average range into an unbiased estimate of σ. It is a function of
the subgroup size, k. Here, k = 2. The range control chart is
constructed as a series of the n sample range values with center
line equal to the average range and control limits (upper and
lower control limits) calculated from the formulas:

UCLR 5 D4R̄ (10)

LCLR 5 D3R̄ (11)

6.2.4 The values D3 and D4 may be found in Appendix X6,
Practice E2587, or any text on statistical process control. When
the subgroup size is less than seven, the constant D3 will be 0.
A sequence of such values, exhibiting good statistical control,
will give every indication of a random sequence of observa-
tions with all points falling within the control limits. This kind
of chart is always done first when performing MSA studies on
repeatability. The principle signs of inconsistency are points
outside of the control limits or other nonrandom patterns such
as runs above (below) the center line or trends of increasing
(decreasing) direction. Such signs indicate inconsistency and
out-of-control conditions.

6.2.5 When zeros appear on a range control chart, this is a
sign of either a resolution problem or that the repeatability
error is small enough to be considered negligible. In any event,
it is still resolution that is at issue. Poor resolution in the
presence of modest repeatability error may yield identical

4 Formally, the constant d2 is equal to the mathematical expectation of the sample
range divided by σ, when sampling from a normal distribution. The value, d2, is a
function only of the subgroup size, k. Some writers prefer to use the constant d2

*.
Dividing the average range (Eq 8) by this constant and squaring makes the resulting
number an unbiased estimate of σ 2. The value, d2

*, is a function of the subgroup
size, k, as well as the number of subgroups, n. See Appendix X6 for tables.
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values in repeating a measurement. Too many zeros appearing
in the range chart will reduce the estimate of the repeatability
standard deviation and perhaps underestimate its real effect.
One way to counteract this problem is to replace zeros with q
as:

q 5 ud2/~2=3! (12)

6.2.6 The quantity, u, is defined as the smallest unit of
resolution the measurement device is capable of discriminating
and d2 is as previously defined. For example, if one uses a ruler
graduated in eighths of an inch, then u = 0.125. The reason for
this is that the standard deviation of a uniform distribution
between 0 and u is u/~2=3! . Post multiplication by d2 gives an
estimate of the expected range in a sample of size, k (the
subgroup size). An alternative method is to estimate the
expected range based on the subgroup sample size, k. For this
method, we would replace a zero range with u(k – 1)/(k + 1),
which is precisely the expected range in a sample of size, k,
from a uniform distribution between 0 and u. Still, another
method is to replace zero ranges with simulated ranges from a
uniform distribution on the interval [0,u]. In each method,
these pseudo ranges replace zeros on the range chart.

6.3 Use of the Average Control Chart in Evaluating
Repeatability—The averages are formed from each pair of
repeated measurements (each pair is a subgroup). These can be
plotted in time order using a control chart for averages. The
center line for such a chart will be the overall average, x=, of the
several subgroup averages. Note that the subgroup size in this
case is two; but this method is general and any subgroup size
may be used. The range chart, having already been constructed,
is used in constructing the control limits for the average chart.
The control limits are calculated from the following classical
formulas based on the subgroup average range:

UCLxH 5 x%1A2R̄ (13)

LCLxH 5 x%1A2R̄ (14)

6.3.1 The constant, A2, is defined as:

A2 5
3

d2=n
(15)

6.3.2 For n = 2, the constant A2 is 1.88. The overall average
x= is defined as:

x% 5
(
i51

n

xH i

n
(16)

6.3.3 For subgroup sizes other than two, tables of the
constant, A2, can be found in Appendix X6 or Practice E2587.
The stability of the system may be assessed from the control
chart for averages. Individual plotted points should indicate a
random pattern about the center line. The control limits for the
average chart are constructed from the range chart and the
range chart is measuring repeatability variation only; therefore,
if the object to object variation is much greater than the
repeatability variation, most points on the average chart will
fall outside of the control limits. Points falling within the

control limits are said to be indistinguishable from one another.
The region between the control limits is a kind of noise band
(noise being a repeatability error) and object averages are like
the “signals” of real object-to-object variation. A fair bench-
mark for this kind of chart is to have at least 50 % of the
average points fall outside of the control limits. Anything less
indicates that repeatability variation is dominant over object
variation. This method is more powerful when the subgroup
sample size is greater than two. Also, if the objects were
handpicked and not random samples from a process, interpre-
tation of this type of chart may be incorrect.

6.4 Repeatability Using More than Two Observations per
Object Measured—When more than two measurements can be
made for each of several sample objects, the analysis of
variance (ANOVA) with random effects may be used. It is best
to use a fixed number of repeat measurements per object,
although this method still works when the subgroup size varies.
Whenever possible, measurements should be made in random-
ized order. If there are n objects to be measured and m
measurements per object, randomize the numbers 1, 2, … mn.
The randomized numbers should then form the basis of the
sequence for how the measurements would be obtained. Upon
completion, there will be n sets of m repeated measurements, m
for each of the n objects measured. Let yij be the jth repeated
measurement of object, i, where i varies from 1 to n and j from
1 to m. The quantity ȳi. represents the average of the measure-
ments from the ith object (the “dot” notation in the subscript
signifies that we are averaging over the second index, j). The
following statistic is an unbiased estimate of the repeatability
variance σ2.

σ̂2 5
(
i51

n

(
j51

m

~yij 2 yH i .!
2

n~m 2 1!
5

SSE
n~m 2 1!

(17)

6.4.1 Table X1.1 in Appendix X1 contains a complete
ANOVA table for this type of model. The quantity SSE/σ2

possesses a chi-square distribution with n(m – 1) degrees of
freedom, and from this fact, a confidence interval for the
repeatability standard deviation, σ, can be obtained. In the case
where there are varying numbers of repeat measurements for
each of the several objects measured, Eq 17 would be modified.
Suppose for n objects, there are mi measurements for the ith
object. The estimate of repeatability variance becomes:

σ̂2 5
(
i51

n

(
j51

mi

~yij 2 yH i .!
2

(
i51

n

~mi 2 1!

5
SSE

(
i51

n

~mi 2 1!

(18)

6.4.2 Again, the quantity SSE/σ2 possesses a chi-square
distribution with degrees of freedom as shown in the
denominator, and from this fact, a confidence interval for the
repeatability standard deviation, σ, can be obtained. Eq 17 and
18 come from an ANOVA approach to repeatability analysis.
Table X1.1 in Appendix X1 contains the details for this model
in which n objects are measured m times each by a single
appraiser.
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6.5 Repeatability Using Known or Standard Reference
Values—An MSA study may be conducted using several
known or standard objects. Let y be the measurement of an
object whose standard value is x. The model is:

yi 5 xi1ε i (19)

6.5.1 The ε term is assumed to have mean 0 and some
unknown variance σ2 representing repeatability. The goal is to
estimate σ. If we have n objects to measure, then form the
paired differences di = yi – xi. The di values are equivalent to
the εi values. In this model, we do not have to assume a
distribution for the variable, x. We only need one consistent
distribution for the paired differences. In theory, this type of
study could be carried out using a single object measured m
times (see 6.5.4).

6.5.2 The following quantity is used as the point estimate of
the repeatability variance:

σ̂2 5
(
i51

n

di
2

n
(20)

6.5.3 If the di terms can be considered normally distributed,
the sum of squared differences divided by σ2 will possess a
chi-square distribution with n degrees of freedom, and from
this fact, a confidence interval for σ2 can be constructed.

6.5.4 If several objects are each measured a variable number
of times, say ki times for object i, the formulation of Eq 20 is
the same. Let N = the total number of paired observations
including all repeated measurements of all n objects. The
estimate of repeatability variance is Eq 20 with n replaced by
N. The sum of all N squared differences possesses a chi-square
distribution with N degrees of freedom.

6.6 Reproducibility—Appraiser Component of Variance—In
using a measurement system, it is always possible for different
people to get different results when identical objects are
measured in the same manner. Two sources of variation are
responsible for the difference among appraisers: (1) simple
repeatability error will cause differences among appraisers and
(2) overall differences among appraisers may be due to
individual biases on the average. The second component is the
subject of reproducibility. This is shown in Fig. 2. The
difference between means of the two appraisers in Fig. 2 is the
effect of reproducibility. In practice, it is the difference in
sample means of the two groups as measured by differing
appraisers that estimates reproducibility.

6.6.1 Reproducibility can be considered as a random bias
component assigned to every appraiser. A bias simply means
that the appraiser tends to measure every object either higher or
lower on average than the “true” measure of the object. We can
think of appraisers coming from a population of all such
appraisers, each with a unique and fixed bias. The distribution
of these biases is assumed to be normal with mean 0 and some
unknown variance θ2. The parameter, θ, is the reproducibility
standard deviation. We may think of the random variable u as
denoting the random bias (reproducibility) component. When
several specific appraisers are used in a measurement systems
study, we are effectively picking several random values of u.

6.6.2 For several appraisers, the model for the measurement
of the ith object by appraiser j at the kth repeat is:

yijk 5 xi1uj1eijk (21)

6.6.2.1 The quantity eijk continues to play the role of the
repeatability error term which is assumed to have mean 0 and
variance σ2. Quantity xi represents the standard or “true” value
of the object being measured and quantity uj is a random
reproducibility term associated with appraiser j. This last
quantity is assumed to come from a distribution having mean
0 and some variance θ2. If the objects being measured can be
considered a random sample from a population of objects, then
the xi are random variables with some mean, the true popula-
tion mean, and variance v2.

6.6.2.2 Eq 21 assumes no part-operator interaction term,
which might sometimes be a reasonable assumption in prac-
tice. An interaction between part and operator means that for
increasing (decreasing) values of some objects, some apprais-
ers follow an opposite trend—that is, they measure smaller
(larger) values. If interaction is to be considered, an additional
term, wij, would have to be included in Eq 21. The model
including interaction is:

yijk 5 xi1uj1wij1eijk (22)

6.6.3 Variance Components—For Eq 21, assuming indepen-
dence of the three terms, the variance of the measurements is
simply:

var~yijk! 5 ν21θ21σ2 (23)

6.6.3.1 For Eq 22, including the interaction term, the vari-
ance of the measurements becomes:

var~yijk! 5 ν21θ21α21σ2 (24)

6.6.3.2 Each of ν2, θ2, α2, and σ2 are the components of the
overall variance with α2 playing the role of interaction. One
principle objective of a measurement systems analysis is to
obtain estimates of these variance components. The combined
variance components, θ2 and σ2, are often referred to as the
gage R&R variance. Many software packages will perform this
type of analysis.

6.6.3.3 When several appraisers each measure a group of
objects once only (no repeats), it is still possible to estimate
R&R but not interaction. Appendix X2 and Appendix X3 give
complete ANOVA tables for Eq 21 and 22, respectively.

6.7 Bias—Reproducibility variance may be viewed as com-
ing from a distribution of the appraiser’s personal measurement
bias. In addition, there may be a global bias present in the
measurement system that is shared equally by all appraisers.
Bias is the difference between the mean of the overall distri-
bution of all measurements by all appraisers and a “true” or
reference average of all objects. Whereas reproducibility refers
to a distribution of appraiser averages, bias refers to a differ-
ence between the average of a set of measurements and a
known or reference value. The measurement distribution may
itself be composed of measurements from differing appraisers
or it may be a single appraiser that is being evaluated. Thus, it
is important to know what the objective is in evaluating bias.

6.7.1 Bias may also vary as a function of the reference
value. For example, bias may be larger for “larger objects” and
smaller for “smaller objects.” This concept is referred to as
linearity. See 6.8 for further details on this concept.
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6.7.2 For single appraiser, and a single object, bias is
evaluated as the difference between the average of several
measurements and the known reference value. This is Eq 25,
where x is the known reference value and b is the observed
empirical bias.

b 5 ȳ 2 x (25)

6.7.2.1 Eq 25 represents a point estimate for the bias. It
might or might not be significant, because quantity b is also
contaminated with repeatability error. We can determine if the
observed bias is significant by constructing a confidence
interval for the real bias B. If the confidence interval includes
0 as a plausible value, then we may conclude that a significant
non-zero bias has not been detected. To understand how the
confidence interval is constructed, we shall consider the model
for this scenario and its assumptions.

6.7.3 The model for simple bias is:

yi 5 B1x1ε i (26)

6.7.3.1 The value x is the fixed known reference value,
quantity B is the unknown bias, the ε terms are random
repeatability errors assumed to be normally distributed with
mean 0 and unknown variance σ2, and the y terms are the actual
measurements. A series of n measurements will have an
average given by:

ȳ . 5 B1x1 ε̄ . (27)

6.7.3.2 The empirical bias b is therefore equal to:

b 5 ȳ .2x 5 B6 ε̄ . (28)

6.7.3.3 Quantity b therefore possesses a normal distribution
with mean B and variance σ2/ n. If the repeatability variance
were known, then we could create a confidence interval for B
in the usual way using critical values from the standard normal
distribution. Typically, σ2 is not known and must be estimated
from the sample data. The estimate of the σ2 under the
assumptions of this model is:

σ̂2 5
(
i51

n

~yi 2 yH!2

n 2 1
(29)

6.7.3.4 A confidence interval for the bias B may then be
constructed using Student’s t distribution with n – 1 degrees of
freedom. The confidence interval is:

ȳ .2x6
tα/2Sy

=n
(30)

6.7.3.5 Here, tα/2 is a positive constant chosen using confi-
dence 1 – α from Student’s t distribution with n – 1 degrees of
freedom such that P(-tα/2 ≤ t ≤ tα/2) = 1 – α. If the confidence
interval includes 0 as a plausible value, then we cannot
conclude that the bias, B, is non-zero. Note that this does not
mean that the bias is 0; it simply indicates that we have not
detected a significant non-zero bias. This may mean that our
sample size was not adequate to detect the bias.

6.8 Linearity—A closely related concept to bias is linearity.
Bias may vary as a function of the reference value. For
example, bias may be larger for “larger objects” and smaller for
“smaller objects.” A measurement process has a significant

linearity effect if the bias changes in linear manner over the
operational range of a set of reference standards. Linearity may
be measured using a linear regression analysis of
measurements, y, on reference values, x. The measure of
linearity is the slope of the least squares best fit line or some
function thereof. A simple model for linearity is:

yij 5 mxi1B1ε ij (31)

6.8.1 The concept of linearity is often applied in calibration
problems. In such cases, a measurement y is related to a set of
standard values (x) according to Eq 31. One objective is to
determine the range for y that makes the probability of
conforming x values very high, say 90 %.

6.8.2 The yij term is the jth measurement of object xi, and
the εij term is the random repeatability error term normally
distributed with mean 0 and variance σ2 associated with the jth
measurement of object, i. The parameter, B, represents a global
bias; the parameter m represents linearity. When m = 1 and
B = 0, the measurement model reverts to Eq 2. The system is
then unbiased and perfectly linear. When m ≠ 1, then the
system possesses a linearity effect.

6.8.3 The linear regression proceeds with a selection of
several reference objects (x) to be used for measurement
several times each. It is important that the reference objects
represent the range of possible objects that the system may see
in practice. A linear regression analysis of y on x is then carried
out on the data. Typically, when a simple regression analysis is
implemented using a software package, the results will include
point estimates for the model parameters (m and B). Confi-
dence intervals may be constructed to determine if B ≠ 0 or if
m ≠ 1. The estimate of the repeatability error standard deviation
σ2 is also output from any good statistics software package
when a simple linear regression analysis is performed.

6.8.3.1 For a set of n (x,y) data pairs, the regression analysis
results in a pair of estimates calculated using Eq 32 and Eq 33.
Let Sx and Sy be the ordinary standard deviations of the x and
y values, respectively; let r be the Pearson correlation coeffi-
cient between x and y; and let x̄ and ȳ be the sample averages
for the x and y values. The point estimates of m and B are:

m̂ 5
rSy

Sx

(32)

B̂ 5 ȳ 2 m̂x̄ (33)

6.8.3.2 Confidence intervals for the model parameters may
be constructed from well-known formulas. See, for example,
Ref (2). The predicted value of y given x is calculated as
ŷ

i
= m̂xi + B̂. The estimate of the standard error (repeatability

standard deviation) is:

σ̂ 5 5!(
i51

n

~yi 2 ŷ i!
2

n 2 2
(34)

6.8.4 In some cases, the bias term may be known to be 0 at
the outset, and linearity is the main concern. The model then
becomes:

yij 5 mxi1ε ij (35)

6.8.4.1 The least squares estimate of the parameter, m, is:
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m̂ 5
(
i51

n

xiyi

(
i51

n

xi
2

(36)

6.8.4.2 The predicted value of y given x is then ŷi = m̂xi. The
error of any particular measurement is specified as the residual:
ei = yi – ŷi. If the error term can be considered normally
distributed, then the estimate of σ is:

σ̂ 5!(
i51

n

~yi 2 ŷ i!
2

n 2 1
(37)

6.8.4.3 In Eq 37, n – 1 is used in the denominator because
there is but a single parameter of interest.

6.9 Stability and Consistency—Stability refers to the ab-
sence of special causes of variation affecting the mean of a
process. Consistency refers to the absence of special causes
affecting the variation in a process. When a process is stable
and consistent, we refer to it as in a state of statistical control
and predictable, within limits.

6.9.1 Where a measurement process is concerned, a stable
and consistent process means that the distribution of measure-
ments from the process does not depend on time order. Such a
process typically follows some theoretical model such as the
normal distribution.

6.9.2 The properties of stability and consistency are best
studied using a control chart technique. A set of control
samples are measured over time and plotted on a control chart.
Aside from the inherent variation in the several control objects,
variation in the individual samples and the mean and range are
due entirely to the measurement system. This includes both
R&R effects as well as other effects such as linearity. Variation
patterns visible within the control chart and other analytical
techniques are then used to judge the degree of stability and
consistency.

6.10 Gage Performance Curves—Gage performance curves
may be defined in several ways. One way to do this is to define
performance as the probability that a given object actually
meets a specification requirement given the value of its
measurement. In this use, we require that the objects being
measured are selected from a process in statistical control and
normally distributed. Further, the mean, µ, and standard
deviation, ν, of the true object measure are assumed known as
well as the gage R&R standard deviation, σ. These assump-
tions usually are backed by some kind of previous data for the
measurement system being used. The alternate type of perfor-
mance curve looks at the probability of gage acceptance (or
rejection) given the true object measurement, x.

7. Planning the Measurement System Study

7.1 All measurement system studies are application depen-
dent; however, several good practices apply to any type of
study. Start by selecting the several objects to be measured.
There are n of these. Preferably, the objects should be ran-
domly selected from the population of all such objects and the
process that produced them should have been in a state of
statistical control. Several appraisers are selected from a

population of all potentials appraisers. There are p appraisers.
Often, there may only be two or three appraisers available.
These are then chosen for the study and assumed to represent
the population of all such appraisers that may be thought to
exist. In some quarters, differing measurement devices or
laboratories may play the role of the appraiser. A number, m, of
repeat measurements shall be decided. It is possible to do an
experiment with only one measurement, but in such a case, it
is not possible to estimate an interaction effect. Even when it is
believed that interaction between object and appraiser is not a
concern, it is advisable to plan for at least two repeated
measurements, when possible. When these numbers are
decided, the size of the experiment is simply (n)(m)(p). For
example, if p = 3, n = 10, and m = 3, the experiment will
consist of 90 observations (3 appraisers, 10 objects, and 3
repeated measurements). This configuration is very common in
manufacturing organizations.

7.2 Conducting the Experiment—In conducting an
experiment, care should be taken in obtaining the observations.
Since any experiment will be conducted in time order, and
since time may introduce additional nuisance variation in the
results, any experiment should be conducted in random order.
A random order may be obtained using commercially available
software or using some mechanical randomization process
such as random numbers selected from a table.

7.2.1 During the course of running the experiment, every
effort should be made to preserve the constancy of the
measurement process. Do not introduce changes to the system
such as recalibrations, changes to hardware/software, changes
to procedures, or other stability upsetting changes. This prac-
tice will give assurance that the measurement system/process
remains stable during the experiment. Measurements made by
one appraiser should not be revealed to other appraisers during
the experiment. Care should also be taken by individuals who
may be observing the experiment for this may introduce
variation as a result of the so-called “Hawthorne” effect.5

8. Analysis of Test Results

8.1 Several statistical methods are useful for assessing
R&R. Among these the Analysis of Variance (ANOVA) is the
principle tool. There are numerous types of ANOVA. Statistics
based on sample ranges are also in wide use. Several models
that have found wide use in industrial quarters are portrayed in
the appendices. More traditional gage R&R, as for example
found in manufacturing applications, are summarized in Ref
(3) and forms for these calculations are given in Appendix X5.

8.2 Case 1 ANOVA—Simple repeatability using one
appraiser, n objects, and m repeats per object. Refer to the
sections on repeatability, 6.3 and 6.4, and Appendix X1.

8.3 Case 2 ANOVA—Repeatability using p appraisers, n
objects, and one repeat only. The model is Eq 21 with one
repeat. See Appendix X2.

5 The Hawthorne effect refers to the possibility that subjects in an experiment
improve or modify their behavior in response to the fact that they are being studied,
not in response to any particular experimental manipulation.
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8.4 Case 3 ANOVA—Repeatability using p appraisers, n
objects, and m repeats per each object. The model is Eq 22. See
Appendix X3.

8.5 Repeatability with Given Standards—The model is Eq
22. See Appendix X4.

8.6 Standard methodology based on sample ranges for gage
R&R. See Appendix X5.

8.7 For control chart factors, see Appendix X6.

9. Measurement System Performance

9.1 When an MSA study is complete, estimates for the
various properties will result depending on the type of study
that was done. The purpose of this section is to elaborate some
of the uses to which these statistics may be put. It is assumed
throughout that the derived results stand for the associated
parameter values. In this sense, the results discussed are
theoretical; however, in practice, these measures will have
associated standard errors. In the discussion that follows, the
standard deviation of measurement error will be denoted as σ
and the standard deviation of the error-free object variation is
denoted as ν. Note that the process (measurements) variance is
ν2 + σ2; also, that the standard deviation of measurement error,
σ, may have been derived from repeatability, reproducibility, or
both. This section also assumes that interaction effects are
negligible.

9.2 Discrimination Ratio—We have seen that the finite
resolution property (u) of a measurement system places a
restriction on the discriminating ability of the measurement
system (see 5.4.7). This property is a function of the hardware
and software system components; we shall refer to it as
“mechanical” resolution. The several factors of measurement
variation discussed in this guide, particularly R&R, contribute
to further restrictions on object discrimination. This aspect of
resolution will be referred to as the statistical resolution.

9.2.1 The effects of mechanical and statistical resolution can
be combined as a single measure of discriminating ability.
When the true object variance is ν2, and the measurement error
variance is σ2, the following quantity describes the discrimi-
nating ability of the measurement system.6

D 5Œ2ν2

σ2 11'
1.414ν

σ (38)

9.2.2 The right-hand side of Eq 38 is the approximation
formula found in many texts and software packages (see, for
example, Refs (4) or (5)). The interpretation of the approxima-
tion formula is as follows. Multiply the top and bottom of the
right-hand member of Eq 38 by 6 and rearrange and simplify.
This gives:

D'
6~1.414!ν

6σ 5
6ν

4.24σ (39)

9.2.3 The denominator, 4.24σ, in Eq 39 is the span of an
approximate 97 % interval for a normal distribution centered

on its mean. The numerator is a similar 99.7 % (6-sigma) span
for a normal distribution. The numerator represents the real
object variation and the denominator, variation caused by a
measurement error (including mechanical resolution). Then D,
referred to as the discrimination ratio, represents the number of
non-overlapping 97 % confidence intervals that fit within the
true object variation. This is referred to as the number of
distinct product categories or effective resolution within the
true object variation for the process.

9.2.4 The theoretical basis for the left-hand side of Eq 38 is
as follows. Suppose x and y are measurements of the same
object. If each is normally distributed, then x and y have a
bivariate normal distribution. If the measurement error has
variance, σ2, and the true object has variance, ν2, then it may be
shown that the bivariate correlation coefficient for this case is
ρ = ν2/(ν2 + σ2). The expression for D in Eq 38 is the square
root of the ratio (1 + ρ)/(1 – ρ). This ratio is related to the
bivariate normal density surface, a function z = f(x,y). Such a
surface is shown in Fig. 4.

9.2.5 When a plane cuts this surface parallel to the x,y
plane, an ellipse is formed. Each ellipse has a major and minor
axis. The ratio of the major to the minor axis for the ellipse is
the expression for D, Eq 38. The mathematical details of this
theory have been sketched by Shewhart (6). Now consider a set
of bivariate x and y measurements from this distribution. Plot
the x,y pairs on coordinate paper. First plot the data as pairs
(x,y). In addition, plot the pairs (y,x) on the same graph. The
reason for the duplicate plotting is that there is no reason to use
either the x or the y data on either axis—thus, we use both. This
plot will be symmetrically located about the line, y = x. If r is
the sample correlation coefficient, an ellipse may be con-
structed and centered on the data. Construction of the ellipse
and its relation to D is also described in Refs (6) and (7). Fig.
5 shows such a plot with the ellipse superimposed and the
number of distinct product categories shown as squares of side
equal to D in Eq 38.

9.2.6 What we see is an elliptical contour at the base of the
bivariate normal surface where the ratio of the major to the
minor axis is approximately three. This may be interpreted
from a practical point of view in the following way. From Fig.
5, the length of the major axis is due principally to the real
object variance, while the length of the minor axis is due to the
repeatability variance alone. To put an approximate length
measurement on the major axis, we realize that the major axis
is the hypotenuse of an isosceles triangle whose sides we may
measure as 6ν (real object standard deviation) each. It follows

6 An alternative definition for the discrimination, algebraically equivalent to Eq
38 is as follows. Note that σm is the standard deviation of the measurement:

D5Œ2σm
2

σ2 21 FIG. 4 Bivariate Normal Density Function
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from simple geometry that the length of the major axis is
approximately 1.414(6ν). The length of the minor axis we can
characterize simply as 6σ (error variation). The approximate
ratio of the major to the minor axis is, therefore, approximated
by discarding the “1” under the radical sign in Eq 38 and 39.

9.2.7 Care should be taken in calculating and using the ratio
D in practice. First, the values of ν and σ are not typically
known with certainty and are estimated from the results of a
measurement system study; second, the estimate of ν is based
on the objects selected for the study. If the several objects used
for the study were specially selected and not a random
selection, then the estimate of ν will not represent the standard
deviation of the distribution of real object variation biasing the
calculation of D (it may be an over or an under estimate).

9.3 Wherever a measurement is used, the question may
always be asked: “What is the error in the measurement?” If y
is the measurement, the answer is y 6 e, where e is an estimate
of the “error” in the measurement process. The interval
(y – e,y + e) is assumed to enclose or capture the “real”
measure of the object represented by the measurement, y.
Usually, this statement is made with some level of confidence
(probability). Suppose the measurement error standard devia-
tion is σ. The value of σ is referred to as one standard error of
the measurement, y. Many quarters use one standard error as
the error in a single measurement. If the object measured
comes from a normal distribution, then the interval, y 6 σ, is
an approximate 68 % confidence interval for the “real” object
measure. Some quarters use the so-called probable error and
this carries 50 % confidence. The associated interval is
y 6 0.67σ. Still, some quarters demand higher confidence such
as 90 or 95 %. In these cases, the intervals are y 6 1.64σ and
y 6 1.96σ, respectively.

9.3.1 A frequent question is to ask how far apart we might
expect two measurements of the same object to be, determined
under the same conditions, when the measurement error
standard deviation is σ. For two independent measurements,
the standard deviation of their difference may be shown to be
approximately 1.414σ. Using this theory and the confidence
interval idea, approximate 95 % confidence bounds for the

difference between two measurements is 62(1.414)σ or ap-
proximately 62.8σ. For any two measurements, y1 and y2, this
essentially means that the absolute value of their difference is
not more than 2.8σ with 95 % confidence. This is embodied in:

P$?y1 2 y2? # 2.8σ% 5 0.95 (40)

9.3.2 Other confidence levels may be used, for example, for
90 % confidence, the interval is 62.33σ.

9.4 Suppose a practitioner finds that the resulting interval is
too wide for his use. In this case, additional measurements can
reduce the resulting interval. If n measurements are made, the
interval takes the following form:

ȳ6
kσ

=n
(41)

Where k = chosen from the standard normal distribution at
the chosen confidence level (k = 1.96 for 95 % and k = 1.645
for 90 % confidence).

9.4.1 This interval is particularly important when a mea-
surement is very near (either above or below) to a specification
limit. In such cases, the interval becomes tighter as n increases
shrinking error variation around the real object measure (as Eq
41 indicates). It may sometimes happen that the reduced
interval finally falls entirely within the specification limit
requirement rendering the object acceptable with some stated
confidence.

9.5 Gage Performance Curve—When the real object and
measurement error standard deviations are approximately
known, a performance curve may be constructed that describes
the probability of the real object measure, X, given an actual
measurement, y. Several additional themes are also possible
using this technique.

9.5.1 Let x be the true object measure, and y the actual
measurement. Let these be related through the linear relation y
= mx + B + e. Quantity B is a possible bias component and m
is a possible linearity component. Parameters B and m may
take any value and are as previously defined. The random
variable, e, represents the measurement error with mean 0.
Variables, x and e, are each normally distributed with
variances, ν2 and σ2, respectively. The covariance between x
and y may be shown to be ν2. The bivariate correlation
coefficient between x and y may be shown to be:

ρ 5
ν

=ν21σ2
(42)

9.5.1.1 Let µ be the mean of the real object distribution, x.
The mean of the measured objects, y, is mµ + B. Assume that
upper and lower specification limits for an object are a and b,
respectively. We want to calculate the probability P(x > a|y) or
P(x < b|y). These are statements of the probability that the true
object measure meets the limiting requirement given the actual
measurement, y. From the foregoing facts, the key result may
be developed and shown to be:

9.5.1.2 For the lower limit:

P~X.a?y! 5 PS Z.
a 2 µ 2 ~ρ2/m! ~y 2 mµ 2 B!

ν =1 2 ρ2 D (43)

9.5.1.3 For the upper limit:

FIG. 5 Bivariate Normal Surface Cross Section with Superim-
posed Data
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