
Designation: D8321 − 22

Standard Practice for
Development and Validation of Multivariate Analyses for Use
in Predicting Properties of Petroleum Products, Liquid
Fuels, and Lubricants based on Spectroscopic
Measurements1

This standard is issued under the fixed designation D8321; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This practice covers a guide for the multivariate cali-
bration of infrared (IR) spectrophotometers and Raman spec-
trometers used in determining the physical, chemical, and
performance properties of petroleum products, liquid fuels
including biofuels, and lubricants. This practice is applicable to
analyses conducted in the near infrared (NIR) spectral region
(roughly 780 nm to 2500 nm) through the mid infrared (MIR)
spectral region (roughly 4000 cm-1 to 40 cm-1). For Raman
analyses, this practice is generally applied to Stokes shifted
bands that occur roughly 400 cm-1 to 4000 cm-1 below the
frequency of the excitation.

NOTE 1—While the practice described herein deals specifically with
mid-infrared, near-infrared, and Raman analysis, much of the mathemati-
cal and procedural detail contained herein is also applicable for multivari-
ate quantitative analysis done using other forms of spectroscopy. The user
is cautioned that typical and best practices for multivariate quantitative
analysis using other forms of spectroscopy may differ from the practice
described herein for mid-infrared, near-infrared, and Raman spectrosco-
pies.

1.2 Procedures for collecting and treating data for develop-
ing IR and Raman calibrations are outlined. Definitions, terms,
and calibration techniques are described. The calibration es-
tablishes a multivariate correlation between the spectral fea-
tures and the properties to be predicted. This correlation is
herein referred to as the multivariate model. Criteria for
validating the performance of the multivariate model are
described. The properties against which a multivariate model is
calibrated and validated are measured by Primary Test Meth-
ods (PTMs) and the results of the PTM measurement are herein
referred to as Primary Test Method Results (PTMR). The
analysis of the spectra using the multivariate model produces a
Predicted Primary Test Method Result (PPTMR).

1.3 The implementation of this practice requires that the IR
spectrophotometer or Raman spectrometer has been installed in
compliance with the manufacturer’s specifications. In addition,
it assumes that, at the time of calibration, validation, and
analysis, the analyzer is operating at the conditions specified by
the manufacturer. The practice includes instrument perfor-
mance tests which define the instrument performance at the
time of calibration, and which qualify the instrument by
demonstrating comparable performance during validation and
analysis.

1.4 This practice covers techniques that are routinely ap-
plied for online, at-line, and laboratory quantitative analysis.
The practice outlined covers the general cases for liquids and
solids that are single phase homogeneous samples when
presented to the analyzers. Online application is limited by
sample viscosity and the ability to introduce sample to the
analyzer. All techniques covered require the use of a computer
for data collection and analysis.

1.5 This practice is most typically applied when the spectra
and the PTMR against which the analysis is calibrated are
measured on the same sample. However, for some applications,
spectra may be measured on a basestock and the PTMR may be
measured on the same basestock after constant level additiva-
tion.

1.5.1 Biofuel applications will typically fall into three
categories.

1.5.1.1 The spectra and the PTM both measure the finished
biofuel blend.

1.5.1.2 The spectra are measured on a petroleum derived
blendstock, and the PTM measures the same blendstock after a
constant level additivation with the biocomponent.

1.5.1.3 The spectra and PTM both measured the petroleum
derived blendstock, and the PPTMRs from the multivariate
model are used as inputs into a second model which predicts
the results obtained when the PTM is applied to the analysis of
the finished blended product. The practice described herein
only applies to the first of these two models.

1 This practice is under the jurisdiction of ASTM Committee D02 on Petroleum
Products, Liquid Fuels, and Lubricants and is the direct responsibility of Subcom-
mittee D02.25 on Performance Assessment and Validation of Process Stream
Analyzer Systems.
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1.6 This practice includes a checklist in Annex A2 against
which multivariate calibrations can be examined to determine
if they conform to the requirements defined herein.

1.7 For some multivariate spectroscopic analyses, interfer-
ences and matrix effects are sufficiently small that it is possible
to calibrate using mixtures that contain substantially fewer
chemical components than the samples that will ultimately be
analyzed. While these surrogate methods generally make use
of the multivariate mathematics described herein, they do not
conform to procedures described herein, specifically with
respect to the handling of outliers. Surrogate methods may
indicate that they make use of the mathematics described
herein, but they should not claim to follow the procedures
described herein. Test Methods D5845 and D6277 are ex-
amples of surrogate methods.

1.8 Disclaimer of Liability as to Patented Inventions—
Neither ASTM International nor an ASTM committee shall be
responsible for identifying all patents under which a license is
required in using this document. ASTM International takes no
position respecting the validity of any patent rights asserted in
connection with any item mentioned in this standard. Users of
this standard are expressly advised that determination of the
validity of any such patent rights, and the risk of infringement
of such rights, are entirely their own responsibility.

1.9 The values stated in SI units are to be regarded as
standard. No other units of measurement are included in this
standard.

1.10 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety, health, and environmental practices and deter-
mine the applicability of regulatory limitations prior to use.

1.11 This international standard was developed in accor-
dance with internationally recognized principles on standard-
ization established in the Decision on Principles for the
Development of International Standards, Guides and Recom-
mendations issued by the World Trade Organization Technical
Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:2

D1265 Practice for Sampling Liquefied Petroleum (LP)
Gases, Manual Method

D1319 Test Method for Hydrocarbon Types in Liquid Petro-
leum Products by Fluorescent Indicator Adsorption

D2699 Test Method for Research Octane Number of Spark-
Ignition Engine Fuel

D3764 Practice for Validation of the Performance of Process
Stream Analyzer Systems

D4057 Practice for Manual Sampling of Petroleum and
Petroleum Products

D4177 Practice for Automatic Sampling of Petroleum and
Petroleum Products

D4175 Terminology Relating to Petroleum Products, Liquid
Fuels, and Lubricants

D4307 Practice for Preparation of Liquid Blends for Use as
Analytical Standards

D5769 Test Method for Determination of Benzene, Toluene,
and Total Aromatics in Finished Gasolines by Gas
Chromatography/Mass Spectrometry

D5842 Practice for Sampling and Handling of Fuels for
Volatility Measurement

D5845 Test Method for Determination of MTBE, ETBE,
TAME, DIPE, Methanol, Ethanol and tert-Butanol in
Gasoline by Infrared Spectroscopy

D6122 Practice for Validation of the Performance of Multi-
variate Online, At-Line, Field and Laboratory Infrared
Spectrophotometer, and Raman Spectrometer Based Ana-
lyzer Systems

D6277 Test Method for Determination of Benzene in Spark-
Ignition Engine Fuels Using Mid Infrared Spectroscopy

D6299 Practice for Applying Statistical Quality Assurance
and Control Charting Techniques to Evaluate Analytical
Measurement System Performance

D6792 Practice for Quality Management Systems in Petro-
leum Products, Liquid Fuels, and Lubricants Testing
Laboratories

D7278 Guide for Prediction of Analyzer Sample System Lag
Times

D7453 Practice for Sampling of Petroleum Products for
Analysis by Process Stream Analyzers and for Process
Stream Analyzer System Validation

D7717 Practice for Preparing Volumetric Blends of Dena-
tured Fuel Ethanol and Gasoline Blendstocks for Labora-
tory Analysis

D7915 Practice for Application of Generalized Extreme
Studentized Deviate (GESD) Technique to Simultane-
ously Identify Multiple Outliers in a Data Set

D8009 Practice for Manual Piston Cylinder Sampling for
Volatile Crude Oils, Condensates, and Liquid Petroleum
Products

D8340 Practice for Performance-Based Qualification of
Spectroscopic Analyzer Systems

E131 Terminology Relating to Molecular Spectroscopy
E456 Terminology Relating to Quality and Statistics
E1655 Practices for Infrared Multivariate Quantitative

Analysis
E1866 Guide for Establishing Spectrophotometer Perfor-

mance Tests
E2056 Practice for Qualifying Spectrometers and Spectro-

photometers for Use in Multivariate Analyses, Calibrated
Using Surrogate Mixtures

3. Terminology

3.1 For terminology related to molecular spectroscopic
methods, refer to Terminology E131. For terminology relating
to quality and statistics, refer to Terminology E456. For
terminology relating to petroleum products, liquid fuels and
lubricants, refer to Terminology D4175.

3.2 Definitions:

2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.
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3.2.1 absorptivity, n—the absorbance divided by the product
of the concentration of the substance and the sample
pathlength, a = A/(bc). The units of b and c shall be specified.

E131

3.2.2 analysis, n—in multivariate spectroscopic
measurement, the process of applying the multivariate model to
a spectrum, preprocessed as required, to predict a component
concentration value or property, the prediction being referred
to herein as a Predicted Primary Test Method Result (PPTMR).

3.2.3 analyzer, n—see analyzer system.

3.2.4 analyzer system, n—for equipment in the analysis of
liquid petroleum products and fuels, all piping, hardware,
computer, software, instrument, linear correlation or multivari-
ate model required to analyze a process or product sample; the
analyzer system may also be referred to as the analyzer, or the
total analyzer system. D3764

3.2.4.1 Discussion—Online analyzers that utilize extractive
sampling include sample loop, sample conditioning system and
excess sample return system (see Fig. 1 in D3764 for example).
Online analyzers that utilize insertion probes include fiber
optics and sample probes.

3.2.4.2 Discussion—At-line, field and laboratory analyzers
include the instrument and all associated sample introduction
apparatuses.

3.2.5 anti-Stokes line (band), n—a Raman line (band) that
has a frequency higher than that of the incident monochromatic
beam. E131

3.2.6 attenuated total reflection (ATR), n—reflection that
occurs when an absorbing coupling mechanism acts in the
process of total internal reflection to make the reflectance less
than unity.

3.2.6.1 Discussion—In this process, if an absorbing sample
is placed in contact with the reflecting surface, the reflectance
for total internal reflection will be attenuated to some value
between zero and unity (O < R < 1) in regions of the spectrum
where absorption of the radiant power can take place. E131

3.2.7 calibration, n—in multivariate spectroscopic
measurement, a process for creating a multivariate model
relating component concentrations or sample properties to
spectra for a set of known samples, referred to as calibration
samples.

3.2.8 calibration samples, n—in multivariate spectroscopic
measurement, the set of samples with known (measured by the
PTM) component concentrations or property values that are
used for creating a multivariate model.

3.2.9 calibration transfer, n—a method of applying a mul-
tivariate calibration developed using spectra from one analyzer
for analysis of spectra collected on a second analyzer by
mathematically modifying the multivariate model or by instru-
ment standardization. D6122

3.2.10 chemical property, n—a property of a material asso-
ciated with its elemental or molecular composition.

3.2.10.1 Discussion—Examples of chemical properties
include, but are not limited to sulfur content, benzene content,
and aromatics content.

3.2.11 fluorescence, n—the emission of radiant energy from
an atom, molecule, or ion resulting from absorption of a photon
and a subsequent transition to the ground state without a
change in total spin quantum number.

3.2.11.1 Discussion—The initial and final states of the
transition are usually both singlet states. The average time
interval between absorption and fluorescence is usually less
than 10-6 s. E131

3.2.12 inlier, n—see nearest neighbor distance inlier.
D6122

3.2.13 inlier detection methods, n—statistical tests which
are conducted to determine if a spectrum resides within a
region of the multivariate calibration space which is sparsely
populated. D6122

3.2.14 instrument, n—for multivariate spectroscopic ana-
lyzers used in used in the analysis of liquid petroleum products
and fuels, the spectrometer or spectrophotometer, associated
electronics and computer, spectrometer, or spectrophotometer
cell, and if utilized, transfer optics. D6122

3.2.15 instrument performance verification sample, n—for
multivariate spectroscopic analyzers used in the analysis of
liquid petroleum products and fuels, a material representative
of the product being analyzed which is adequately stored in
sufficient quantity to be used as a check on instrument
performance; instrument performance verification samples are
used in instrument performance tests and as checks on calibra-
tion transfer, but the samples and their spectra are generally not
reproducible long term. D6122

3.2.15.1 Discussion—In E1866 and previous versions of
D6122 and this practice, an instrument performance verifica-
tion samples were referred to as test samples.

3.2.16 instrument qualification sample, n—for multivariate
spectroscopic analyzers used in the analysis of liquid petro-
leum products and fuels, a single pure compound, or a known,
reproducible mixture of compounds whose spectra is constant
over time such that it can be used in an instrument performance
test. D6122

3.2.16.1 Discussion—In E1866 and previous versions of
D6122 and this practice, an instrument qualification sample
was referred to as a check sample.

3.2.17 instrument standardization, n—a procedure for stan-
dardizing the response of multiple instruments such that a
common multivariate model is applicable for measurements
conducted by these instruments, the standardization being
accomplished by way of adjustment of the spectrophotometer
hardware or by way of mathematical treatment of the collected
spectra. D6122

3.2.18 liquid petroleum products and fuels, n—in relation to
process analyzers, any single-phase liquid material that is
produced at a facility in the petroleum and petrochemical
industries and will be in whole or in part of a petroleum
product; it is inclusive of biofuels, renewable fuels,
blendstocks, alternative blendstocks, and additives. D8340

3.2.19 model degrees of freedom, (dof), n—the dimension of
the multivariate space defined by the number of calibration
sample spectra, the number of model variables, and the number
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of variables used in defining the property level dependence of
the Standard Error of Calibration (SEC). D6122

3.2.19.1 Discussion—For a multivariate model that is not
mean-centered, dof = n-k-c, where n is the number of calibra-
tion samples, k is the number of model variables, and c is 0, 1
or 2 depending on whether SEC is level independent, has a
linear dependence on property level, or has a power depen-
dence. For a mean-centered model, dof = n-k-c-1.

3.2.20 model variables, n—the independent variables de-
rived from the calibration spectra which are regressed against
the calibration sample properties to produce the multivariate
model. D6122

3.2.20.1 Discussion—For MLR, the model variables would
be the absorbance at the selected wavelengths or frequencies;
for PCR or PLS, the model variables are the Principal
Components or latent variables.

3.2.21 multivariate calibration, n—an analyzer calibration
that relates the spectrum at multiple wavelengths or frequen-
cies to the physical, chemical, or quality parameters. D6122

3.2.22 multivariate model, n—the mathematical expression
or the set of mathematical operations that relates component
concentrations or properties to spectra for a set of calibration
samples.

3.2.22.1 Discussion—The multivariate model includes any
preprocessing done to the spectra or concentration or properties
prior to the development of the correlation between spectra and
properties, and any post-processing done to the initially pre-
dicted results.

3.2.23 nearest neighbor distance inlier, n—the spectrum of
a sample not used in the calibration which, when analyzed,
resides within a gap in the multivariate calibration space, and
for which the result is subject to possible interpolation error.

D6122

3.2.24 outlier detection limits, n—the limiting value for
application of an outlier detection method to a spectrum,
beyond which the spectrum represents an extrapolation of the
multivariate model. D6122

3.2.25 outlier spectrum, n—a spectrum whose analysis by a
multivariate model represents an extrapolation of the model.

D6122

3.2.26 performance property, n—a property of a material
which measures how well the material functions in its intended
use.

3.2.26.1 Discussion—Examples of performance properties
include research and motor octane numbers.

3.2.27 photometer, n—a device so designed that it furnishes
the ratio or a function of the ratio, of the radiant power of two
electromagnetic beams. The two beams may be separated in
time, space, or both. E131

3.2.28 physical property, n—a property of matter not involv-
ing in its manifestation a chemical change.

3.2.28.1 Discussion—Examples of physical properties
include, but are not limited to density, melting point, boiling
point, vapor pressure, flash point, cloud point, and pour point.

3.2.29 post-processing, v—performing a mathematical op-
eration on an intermediate analyzer result to produce the final

result, including correcting for temperature effects, adding a
mean property value of the analyzer calibration, and converting
into appropriate units for reporting purposes. D6122

3.2.30 preprocessing, v—performing mathematical opera-
tions on raw spectral data prior to multivariate analysis or
model development, such as selecting spectral regions, correct-
ing for baseline, smoothing, differentiation, data
transformation, mean centering, and assigning weights to
certain spectral positions.

3.2.31 predicted primary test method result(s) (PPTMR),
n—result(s) from the analyzer system, after application of any
necessary correlation, that is interpreted as predictions of what
the primary test method results would have been, if it was
conducted on the same material. D3764

3.2.32 primary analyzer, n—the analyzer(s) on which cali-
bration spectra are collected for the purpose of building a
multivariate model.

3.2.33 primary test method (PTM), n—the analytical proce-
dure used to generate the reference values against which the
analyzer is both calibrated and validated. D3764

3.2.34 primary test method result(s) (PTMR), n—test re-
sult(s) produced from an ASTM or other established standard
test method that is accepted as the reference measure of a
property. D3764

3.2.35 secondary analyzer, n—an analyzer not used in the
development of the multivariate model, but which will be used
for analysis of new materials.

3.2.36 site precision (R'), n—the value below which the
absolute difference between two individual test results obtained
under site precision conditions is expected to exceed about 5 %
of the time (one case in 20 in the long run) in the normal and
correct operation of the test method.

3.2.36.1 Discussion—It is defined as 2.77 times σR’, the
standard deviation of results obtained under site precision
conditions. D6299

3.2.37 site precision conditions, n—conditions under which
test results are obtained by one or more operators in a single
site location practicing the same test method on a single
measurement system which may comprise multiple
instruments, using test specimens taken at random from the
same sample of material over an extended period of time
spanning at least a 15 day interval.

3.2.37.1 Discussion—Site precision conditions should in-
clude all sources of variation that are typically encountered
during normal, long term operation of the measurement sys-
tem. Thus, all operators who are involved in the routine use of
the measurement system should contribute results to the site
precision determination. In situations of high usage of a test
method where multiple QC results are obtained within a 24 h
period, then only results separated by at least 4 h to 8 h,
depending on the absence of auto-correlation in the data, the
nature of the test method/instrument, site requirements, or
regulations, should be used in site precision calculations to
reflect the longer term variation in the system. D6299

3.2.38 spectral intensity, n—a generic term referring to
either infrared absorbance or Raman scattering intensity.
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3.2.39 spectral position, n—a generic term referring to
either wavelength or frequency position in spectrum.

3.2.40 spectrometer, n—an instrument for measuring some
function of power, or other physical quantity, with respect to
spectral position within a spectral range. E131

3.2.41 spectrophotometer, n—a spectrometer with associ-
ated equipment, so designed that it furnishes the ratio, or a
function of the ratio, of the radiant power of two beams as a
function of spectral position. The two beams may be separated
in time, space, or both. E131

3.2.42 standard error of calibration (SEC), n—a measure of
the agreement between PPTMR and PTMR for the samples
used in developing a multivariate model.

3.2.42.1 Discussion—If the model error is level

independent, then SEC5Œ 1
dof (

i51

n

~PPTMRi 2 PTMRi!
2, where

dof is the model degrees of freedom and n is the number of
calibration samples.

3.2.42.2 Discussion—If the model error is level dependent,
then SEC is expressed as a function of m which is the average
of PPTMR and PTMR, and SEC(m) is calculated using a
procedure described in Practice D6122 Annex A4 and in
Practice D8321 Annex A2. D6122

3.2.43 Stokes line (band), n—a Raman line (band) that has a
frequency lower than that of the incident monochromatic
beam. E131

3.2.44 test performance index, n—an approximate measure
of a laboratory’s testing capability, defined as the ratio of test
method reproducibility (R) to site precision (R'). D6792

3.3 Definitions of Terms Specific to This Standard:
3.3.1 basestock, n—in the preparation of a biofuel, the

petroleum derived blendstock to which a biocomponent is
added.

3.3.2 combination band, n—in vibrational spectroscopy, a
spectral band that are observed in the vibrational spectrum of
a molecule when two or more fundamental vibrations are
excited, or multiply excited simultaneously.

3.3.3 cross-validation, n—an exploratory data analysis tool
which provides an assessment the optimal number of variables
to use in a multivariate model and estimates the model’s ability
to predict new data not used in development of the model.

3.3.3.1 Discussion—Cross-validation involves a repetitive
procedure in which a calibration sample set is partitioned into
two subsets, a training set which is used to develop a
multivariate model, and a testing set which is analyzed using
this model. The procedure repeats using different partitions and
the results are combined to estimate the model’s predictive
performance.

3.3.3.2 Discussion—Cross-validation is a useful tool in
guiding the development of the multivariate model, but it is not
a substitute for validation of the model with an independent set
of validation samples.

3.3.4 fundamental band, n—in vibrational spectroscopy, a
spectral band that occurs in the spectrum of a molecule when

that molecule makes a transition from the ground (v = 0) to first
excited state (v = 1), where v is the vibrational quantum
number.

3.3.5 homoscedastic, n—a condition where all the model
errors have the same finite variance.

3.3.6 mean center, v—to scale a set of data by subtracting
the mean value of the set.

3.3.6.1 Discussion—To mean center spectra, calculate the
average spectrum, and then subtract this average from each
individual spectrum.

3.3.7 model validation, n—the process of testing a multi-
variate model with validation samples to determine accuracy
and precision of the PPTMR produced by the model relative to
the PTMR.

3.3.8 model validation samples, n—a set of samples used in
validating the model which are not part of the set of calibration
samples, and for which PTMRs are compared to PPTMRs.

3.3.8.1 Discussion—This practice uses the phrase model
validation samples to distinguish these from the validation
samples defined in Practice D6122 used in validating analyzer
performance.

3.3.9 overtone band, n—in vibrational spectroscopy, a spec-
tral band that occurs in the vibrational spectrum of a molecule
when the molecule makes a transition from the ground state (v
= 0) to an excited state higher than the first excited state
(v > 1), where v is the vibrational quantum number.

3.3.9.1 Discussion—Because of anharmonicity, the fre-
quency at which an overtone occurs will typically be less than
v–1 times the frequency of the fundamental vibration.

3.3.9.2 Discussion—The intensity of overtones (absorbance
or Raman scattering) decreases significantly as the vibrational
quantum number increases.

3.3.10 physical correction, n—a type of post-processing
where the correction made to the numerical value produced by
the multivariate model is based on a separate physical mea-
surement of, for example, sample density, sample path length,
or particulate scattering. D6122

3.3.11 standard error of cross-validation, n—an estimate of
the performance of a multivariate model obtained using cross-
validation.

3.3.12 standard error of validation (SEV), n—a measure of
the performance of a multivariate model obtained by analyzing
a set of model validation samples and comparing the PPTMR
to PTMR measured on these samples.

3.3.12.1 Discussion—SEV5Œ1
v (

i51

v

~PPTMRi 2 PTMRi!
2

where v is the number of model validation samples.

3.3.13 surrogate calibration, n—a multivariate calibration
that is developed using a calibration set which consists of
mixtures which contain substantially fewer chemical compo-
nents than the samples which will ultimately be analyzed.

3.3.14 surrogate method, n—a standard test method that is
based on a surrogate calibration.

3.3.15 vibrational spectroscopy, n—infrared and Raman
spectroscopies which involve the measurement of vibrational
transitions in molecules.
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3.3.16 X-block, n—the spectral data matrix used in the
calibration or validation of a multivariate model.

3.3.17 Y-block, n—the component concentration or property
data matrix using in the calibration or validation of a multi-
variate model.

3.4 Symbols:
3.4.1 Scalars are represented by italicized normal face

letters. Vectors are represented by boldface italicized lowercase
letters. Matrices are represented by boldface italicized upper-
case letters. Lower case i and j as subscripts are indices
indicating specific samples, spectral positions, or model vari-
ables.

3.4.2 -1— a minus 1 as a superscript indicates a matrix
inverse.

3.4.3 a(λ)—sample absorbance at wavelength λ.

3.4.4 a(λ)—the absorptivity of the absorbing species at
wavelength λ.

3.4.5 a—an absorbance spectrum.

3.4.6 A—a c by f matrix with component spectra as rows,
used in the matrix form of the Beer-Lambert Law.

3.4.7 b—the pathlength (sample thickness).

3.4.8 b—a single beam background spectrum.

3.4.9 B—an n by n diagonal matrix of pathlengths for the
matrix form of the Beer-Lambert Law.

3.4.10 c—the number of absorbing or scattering compo-
nents in a sample.

3.4.11 c—concentration of absorbing or scattering species.

3.4.12 C—an n by c matrix of component concentrations in
the matrix form of the Beer-Lambert Law.

3.4.13 e—an n by 1 vector of property prediction errors.

3.4.14 ecv—an n times l by 1 vector of property prediction
errors produced during cross-validation when only one prop-
erty is modeled.

3.4.15 E—an n by p matrix of property prediction errors.

3.4.16 Ecv—an n times l by p vector of property prediction
errors produced during crossvalidation when multiple proper-
ties are modeled.

3.4.17 f—the number of spectral positions in the spectral
data used in a model.

3.4.18 Io—in a Raman measurement, the power of the
incident laser.

3.4.19 IR—in a Raman measurement, the intensity of the
scattered light.

3.4.20 l—during cross-validation, the number of times each
sample is left out of the model construction and analyzed.

3.4.21 n—the number of calibration samples.

3.4.22 k—the number of variables used in a model, where
variables may be, for example selected spectral data points for
MLR, Principal Components for PCR, or latent variables for
PLS.

3.4.23 K—a term in the Raman scattering equation that
includes the solid angle visible to the Raman collection optics,

and the volumn of the sample that is illuminated by the laser
and visible to the collection optics.

3.4.24 p—the number of properties being modeled.

3.4.25 p—the f by 1 prediction vector.

3.4.26 P—the f by p prediction matrix with p for individual
properties as columns.

3.4.27 PRESS—the Predicted Residual Error Sum of
Squares from cross-validation.

3.4.28 r—number of replicate PTM measurements.

3.4.29 s—a single beam sample spectrum.

3.4.30 t(λ)—the transmittance of a sample at wavelength λ.

3.4.31 t—a transmittance spectrum equal to the ratio of s to
b.

3.4.32 t—as a superscript, indicates a vector or matrix
transpose.

3.4.33 σR—the Raman scattering cross section for the scat-
tering species.

3.4.34 v—a vibrational energy level quantum number.

3.4.35 xi—a 1 by f row vector containing the spectrum of the
ith sample.

3.4.36 xunk—a 1 by f row vector containing the spectrum of
the unknown sample being analyzed.

3.4.37 X—the spectral data matrix which contains the n
spectra as rows of length f, also referred to as the model
X-Block.

3.4.38 x̄—the average spectrum; the average down the
columns of X.

3.4.39 x̂—the estimate of a spectrum based on the multi-
variate model.

3.4.40 X̄—an n by f matrix where each of the n rows contain
x̄ used in mean centering X.

3.4.41 yi—the PTMR value for a single property for the ith

sample.

3.4.42 ŷi—the PPTMR value for a single property for the ith

sample.

3.4.43 y—an n by 1 vector of PTMR values, also referred to
as the model Y-Block; y contains the PTMR values for a single
property for all the samples defined in the X-Block.

3.4.44 ȳ—The average of the values in y.

3.4.45 ŷ—an n by 1 vector of PPTMR values; ŷ contains the
PPTMR values for a single property for all the samples defined
in the X-Block.

3.4.46 ŷcv—an n times l by 1 vector of estimated PPTMR
values produced during cross validation when a single property
is modeled.

3.4.47 Y—an n by p matrix of PTMR values, each column
of which correspond to a y vector for a different property.

3.4.48 Ŷ—an n by p matrix of PPTMR values, each column
of which correspond to a ŷ vector for a different property.
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3.4.49 Ŷcv—an n time l by p matrix of estimated PPTMR
values produced during cross validation when multiple prop-
erties are modeled; each column of which correspond to a ŷcv

vector for a different property.

3.4.50 zi—the transform of mi; zi = max(mi) – mi.

3.4.51 z̄j—the transform of m̄j; z̄j = max(m̄j) – m.

4. Summary of Practice

4.1 Multivariate mathematics is applied to correlate the
spectra measured for a set of calibration samples to component
concentrations or property values for the set of samples. The
resultant multivariate model is applied to the analysis of
spectra of unknown samples to predict the component concen-
tration or property values for the unknown sample.

4.1.1 This practice applies to both infrared and Raman
spectra. The infrared spectra are collected in the mid-infrared
spectral region, the near-infrared spectral region or, in some
cases, in an extended region that covers part of both the mid-
and near-infrared.

4.1.2 The component concentrations and property values
which are used in establishing and validating the multivariate
model are measured by a Primary Test Method (PTM),
typically an ASTM standard test method. The values are herein
referred to as Primary Test Method Results (PTMR).

4.1.3 The predicted results produced by application of the
model for the analysis of a spectrum are referred to as
Predicted Primary Test Method Results (PPTMR).

4.2 Multilinear regression (MLR), principal components
regression (PCR), partial least squares (PLS) and locally
weighted regression (LWR) are examples of multivariate
mathematical techniques that are commonly used for the
development of the multivariate model. Other mathematical
techniques are also used, but may not detect outliers, and may
not be validated by the procedure described in this practice. It
is the user’s responsibility to verify that the mathematics
employed satisfy the requirements of this practice.

4.3 Statistical tests are applied to detect outliers during the
development of the multivariate model. Outliers include high
leverage samples (samples whose spectra contribute a statisti-
cally significant fraction of one or more of the spectral
variables used in the model), samples with high spectral
residuals (suggestive of unmodeled components) and samples
whose PTMR values are inconsistent with the model.

4.4 Validation of the multivariate model is performed by
using the model to analyze a set of model validation samples
and statistically comparing the PPTMR values for the model
validation samples to PTMR values measured for these
samples, to test for bias in the model and for the degree of
agreement of the model with the PTM.

4.5 Statistical tests are applied to detect when PPTMR
produced by application of the model represent extrapolation
of the calibration. A spectrum is labeled an outlier if its
leverage exceeds that of the calibration samples, or if the
spectrum produces high spectral residuals suggesting the
presence of components which were not in the calibration
samples. Optionally, a nearest neighbor outlier test may be

employed to determine if the spectrum being analyzed falls in
a void in the multivariate space defined by the calibration
spectra.

4.6 Statistical expressions for calculating the repeatability
of the spectroscopic analysis and the expected agreement
between the spectroscopic analysis and the PTM are given.

5. Significance and Use

5.1 This practice can be used to establish the validity of the
results obtained by an infrared (IR) spectrophotometer or
Raman spectrometer at the time the calibration is developed.
The ongoing validation of PPTMRs produced by analysis of
unknown samples using the multivariate model is covered
separately (see for example, Practice D6122).

5.2 The multivariate calibration procedures define the range
over which measurements are valid and demonstrate whether
the accuracy and precision of the analysis outputs meet user
requirements.

5.3 This practice describes sampling procedures that must
be followed to ensure that the sample which is analyzed by the
spectrophotometer or spectrometer is the same as the sample
analyzed by the PTM. The sampling procedures apply to
analyses done on lab analyzers, at-line analyzers, and online
analyzers.

6. Vibrational Spectroscopies

6.1 Both infrared and Raman spectroscopies measure sig-
nals associated with molecular vibrations. Various groups of
bonded atoms in molecules give rise to vibrations that occur at
characteristic frequencies. These groups of bonded atoms are
referred to as functional groups, and the characteristic frequen-
cies as functional group frequencies. While each compound
will have a unique spectrum, in complex mixtures such as
petroleum samples, the overlap of these spectra often precludes
identification of individual molecular components.

6.1.1 Infrared spectroscopy measures the absorption of
infrared light by molecules. Light from a broad band source is
incident on the sample being measured. As the light passes
through the sample, the intensity of the light at the functional
group frequencies is reduced, the amount of the reduction
being proportional to the concentration of the functional group.
The absorption of the light induces vibrational excitation of the
bonded atoms in the functional group.

6.1.1.1 Since the light incident on the sample cannot be
directly measured, an infrared spectrum typically involves the
collection of two separate single-beam spectra, a background,
b, and a sample spectrum, s. The background is measured when
there is no sample present in the infrared beam. The single-
beam spectrum of the sample is ratioed (divided by) the
single-beam background to produce a transmission spectrum, t.
The transmission spectrum is converted to an absorbance
spectrum, a, using a negative logarithm base 10.

t 5 s ⁄b (1)

a 5 2log10 t (2)

6.1.2 Raman spectroscopy measures the inelastic scattering
of light by molecules. Raman uses a monochromatic light
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source, typically a laser. The light interacts with molecular
vibrations resulting in the frequency of the scattered light being
shifted up or down by an amount corresponding to molecular
vibration frequencies.

6.1.2.1 The interaction may transfer energy from the light to
the molecule, thereby reducing the frequency of the scattered
light relative to the laser frequency (Stokes scattering), or it
may transfer energy from a molecule in a excited vibrational
state to the scattered light, thereby increasing the frequency of
the scattered light relative to the laser frequency (anti-Stokes
scattering). Since the number of molecules in an excited
vibrational state is always lower than the number in the ground
vibrational state, anti-Stokes Raman is always weaker in
intensity than Stokes Raman, the difference getting bigger as
the frequency of the vibration increases. For this reason,
Raman analyzer applications typically use Stokes Raman
scattering.

6.1.2.2 Raman scattering is an inherently weak process.
Only about 1 in 10 million of the scattered photons are
scattered inelastically, most being scattered elastically with no
frequency change (Rayleigh scattering). Therefore, Raman
analysis is typically limited to materials that do not fluoresce
significantly when exposed to the monochromatic light.

6.2 Molecules exhibit a manifold of vibrational energy
levels.

6.2.1 Fundamental vibrations occur when molecules are
excited from the vibrational ground state (v=0) to the first
excited vibrational state (v=1), where v is the vibrational
quantum number. Raman spectroscopy typically deals with
vibrational fundamentals. Vibrational fundamentals occur in
the mid-infrared region. Bands due to aliphatic C-H vibrations
in petroleum are typically too strong to measure in transmis-
sion with cell pathlengths suitable for process analyzers but can
be measured using attenuated total reflection (ATR). ATR is not
commonly used for process measurements.

6.2.2 Overtone bands occur when a single vibration is
excited from the vibrational ground state (v=0) to a higher
vibrational level (v>1). The first overtone corresponds to a
transition from v=0 to v=2. The nth overtone corresponds to a
transition from v=0 to v=n+1. The frequencies of the overtones
will be less than n+1 times the fundamental frequency, the
difference becoming larger as n increases.

6.2.3 Combination bands occur when two or more vibra-
tions are excited simultaneously. Combination bands may
involve multiple excitation of one or more of the combined
vibrations.

6.3 Most fundamental bands occur in the mid-infrared
region. All bands in the near-infrared region are overtones or
combination bands, but some overtones and combination bands
also occur in the mid-infrared region.

6.3.1 For example, the 910 cm-1 to 670 cm-1 region of the
mid-infrared contain many fundamental vibrations associated
with out-of-plane bending vibrations of aromatic C-H bonds.
These bands are often too intense to measure in transmission
with cell pathlengths suitable for process analysis, and this
region is blocked by the absorption of some transmission cell
window materials. Some overtones and combination bands of
these aromatic C-H vibrations occur between 2000 cm-1 and
1667 cm-1 and can be measured using 0.25 mm to 0.5 mm
transmission cells

6.4 For overtones and combinations, as the excitation level
increases, the strength of the infrared absorbance (the absorp-
tivity) decreases significantly. Thus, the pathlength necessary
to measure the spectrum as one moves out to higher and higher
overtone/combination band levels increases significantly. Table
1 shows some example pathlengths for mid-infrared and
near-infrared measurements of petroleum products, liquid fuels
and lubricants. The pathlengths listed typically produce C-H
aliphatic stretching vibration peaks with absorbance less than
1.0. Pathlengths used for specific applications may vary.
Pathlengths should be selected to maximize the absorbance and
thus spectral signal-to-noise within the linear response range of
the instrument.

7. Instrumentation

7.1 A complete description of all applicable types of infra-
red and Raman analyzers is beyond the scope of this practice.
Only a general outline is given here. Instrumental performance
criteria which are critical to successful multivariate application
are discussed.

7.2 The analyzers fall into two categories, including sys-
tems that acquire continuous spectral data over wavelength or
frequency ranges (spectrophotometers and spectrometers), and
those that only examine one or several discrete wavelengths or
frequencies (photometers).

7.2.1 Photometers may have one or a series of wavelength
filters and a single detector. These filters are mounted on a
turret wheel so that the individual wavelengths are presented to
a single detector sequentially. Continuously variable filters
may also be used in this fashion. These filters, either linear or
circular, are moved past a slit to scan the wavelength being

TABLE 1 Example Pathlengths for MIR and NIR Measurements

Region Nominal Pathlength Measures Frequency / Wavelength
Mid-IR <10 microns Hydrocarbon Fundamentals 4000 cm-1 to 400 cm-1

2.5 microns to 25 microns
Mid- and Near-IR 0.25 mm to 0.5 mm Hydrocarbon Overtones & Combination Bands,

heteroatom fundamentals
5000 cm-1 to 1000 cm-1

2 microns to 10 microns
Near-IR 2 mm Hydrocarbon 1st Overtones 6400 cm-1 to 5000 cm-1

1562.5 nm to 2000 nm
Near-IR 1 cm Hydrocarbon 2nd Overtones and Combination

Bands
9200 cm-1 to 6400 cm-1

1087 nm to 1562.5 nm
Near-IR 10 cm Hydrocarbon 3rd Overtones and Combination Bands 12000 cm-1 to 9200 cm-1

833.3 nm to 1087 nm
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measured. Alternatively, photometers may have several mono-
chromatic light sources, such as light-emitting diodes, that
sequentially turn on and off.

7.2.1.1 For spectral data collected using photometers, the
number of data points per spectrum is typically limited, and
models are typically built using MLR. Such models do not
produce spectral residual outlier statistics and are thus less
capable of detecting new components in unknowns which were
not in the calibration samples.

7.2.2 Spectrophotometers and spectrometers can be classi-
fied based upon the procedure by which light is separated into
component wavelengths. Dispersive instruments generally use
a diffraction grating to spatially disperse light into a continuum
of wavelengths. Dispersion can occur before the sample
(pre-dispersed) or after the sample (post-dispersed).

7.2.2.1 In scanning-grating systems, the grating is rotated so
that only a narrow band of wavelengths is transmitted to a
single detector at any given time.

7.2.2.2 Spectrophotometers and spectrometers are also
available where the wavelength selection is accomplished
without moving parts, using an array detector. Post-dispersion
is utilized. A grating can provide this function, although other
methods, such as a linear variable filter (LVF) accomplish the
same purpose (an LVF is a multilayer filter that has variable
thickness along its length, such that different wavelengths are
transmitted at different positions). The array detector is used to
acquire a continuous spectrum over wavelength without me-
chanical motion. The array detector is a compact aggregate of
up to several thousand individual photodiode detectors. Each
photodiode is in a different spectral region of the dispersed
light beam and detects a unique range of wavelengths.

7.2.2.3 An additional category of spectrophotometers and
spectrometers use mathematical transformations to convert
modulated light signals into spectral data. The most well-
known example is the Fourier transform, that when applied to
infrared (IR) is known as FT-IR. In an interferometer, light is
divided into two beams whose relative paths are varied by use
of a moving optical element (for example, either a moving
mirror, or a moving wedge of a high refractive index material).
The beams are recombined to produce an interference pattern
that contains all the wavelengths of interest. The interference
pattern is mathematically converted into spectral data using the
Fourier transform. The FT method can operate in the mid-IR
and near-IR spectral regions. FT instruments use a single
detector. In FT-Raman, the laser excited sample serves as the
source for scattered light entering the interferometer.

7.3 Analyzers used in developing and applying multivariate
models should be installed and operated in accordance with the
instructions of the analyzer manufacturer. The performance of
the instrument should be tested at the time the calibration is
conducted using appropriate instrument performance tests (see
Guide E1866). The performance of the analyzer should be
monitored on a periodic basis using the same procedures. The
monitoring procedure should detect changes in the perfor-
mance of the instrument (relative to that seen during collection
of the calibration spectra) that would affect the prediction made
with the multivariate model.

7.4 Spectral axis reproducibility is critical for successful
multivariate spectroscopic analyses. Multivariate modeling
procedures assume that a change in intensity at a certain
spectral position is always due to the same set of sample
molecular components. If the collected spectra move across the
spectral axis, then model performance is degraded.

7.4.1 If the spectral axis shifts during calibration sample
spectra collection, then the resultant model will generally have
lower precision than one that would be obtained with a
reproducible spectral axis.

7.4.2 If the spectral axis shifts between the time the cali-
bration was developed and the time unknowns are being
analyzed, then the PPTMR values will typically be biased
relative to the PTMR, and samples within the calibration range
may be flagged as outliers.

7.4.3 If calibrations are to be used on more than one
analyzer, then either the model must be adapted to compensate
for spectral axis differences among the analyzers (calibration
transfer), or the analyzers must be standardized to have
common spectral axes to within the spectral axis precision of
the calibration analyzer (instrument standardization). The spec-
tral axes among analyzers may be adjusted in hardware or
software to obtain adequate reproducibility.

7.4.4 Instrument performance tests should include a check
of spectral axis registration.

7.5 Spectral absorbance or scattering intensity reproducibil-
ity is also critical for successful multivariate spectroscopic
analysis. The assumption inherent to the multivariate model is
that if the same sample is presented twice to the analyzer, the
spectrum, suitably preprocessed to remove correctable artifacts
will be the same to within the spectral measurement noise.

7.5.1 For some analyzers, it may be necessary to limit the
intensity range used in models to ensure that the signals fall
within the linear response range of the analyzer. Mathematics
used in developing multivariate models generally assumes a
linear relationship between signal (absorbance or scattering
intensity) and concentration (see X1.2). Nonlinear response
will cause changes in spectral band shapes that lead to
additional variables (PCs or latent variables) being required to
account for the spectral variance. While inclusion of these
additional variables may produce adequate models, these
models may be unstable relative to analyzer maintenance and
for calibration transfer to a second analyzer.

7.5.2 Infrared absorbance and Raman scattering intensity
are dependent on the pathlength and scattering volume (see
Section 8). Transfer of models from one analyzer to another (or
to the same analyzer after maintenance), must account for any
change in pathlength or scattering volume.

7.6 Infrared and Raman spectra are temperature dependent.
7.6.1 To first order, over a narrow temperature range, the

largest effect of temperature is to change in sample density
which results in a change in the amount of sample that fits in
the measurement volume (infrared cell beam path volume or
Raman scattering volume). Hydrocarbons will typically ex-
pand when heated. This will result in less material fitting in the
infrared cell beam path or Raman scattering volume, and thus
a decrease in spectral intensity.
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7.6.2 Temperature change can have additional effects on
spectra depending on the compositions of the samples being
measured.

7.6.2.1 For samples containing functional groups which
hydrogen bond, changes in temperature can cause changes in
band frequency and intensity.

7.6.2.2 For molecules which exist in different
conformations, spectra are sensitive to temperature due to
Boltzmann distribution and degeneracy. Changing temperature
changes conformational equilibrium and hence the vibrational
spectra which is the weighted sum of the contribution from
each conformation.

7.6.3 Multivariate models assume each spectrum represents
the same amount of material, the amount that fits in the
measurement volume at a fixed measurement temperature. If
the temperatures at which different spectra are collected differ,
this assumption may be violated. Failure to compensate for
temperature differences among calibration spectra may reduce
model precision and accuracy.

7.6.4 Alternatively, preprocessing and modeling techniques
may be used to adjust spectra to represent a constant volume of
sample (see X2.2.3).

7.6.5 Over a large temperature range, changes in spectral
bandwidth will be observed. These changes limit the tempera-
ture range over which a temperature compensated multivariate
model can adequately perform.

8. Basis for Quantitative, Multivariate Spectral
Measurements

8.1 Multivariate models can be subdivided into three types
based on the relationship between the spectra, and the property
being modeled.

8.2 Hard models are based on a direct and distinct chemical
relationship between features in the spectra and the component
or functional group concentration being modeled. Peaks in an
infrared or Raman spectra are due to the molecular components
in the sample being measured. Hard models’ only assumption
is that the component of interest exhibits one or more spectral
bands which are resolved and differentiable from bands of
other components, and whose intensity varies as a function of
concentration. There are no peaks that relate directly to any
physical or performance property, so models for physical and
performance properties are not hard models.

8.2.1 For infrared, hard models are based on the Beer-
Lambert Law. The absorbance at wavelength, λ, a(λ) of a
homogeneous sample containing an absorb substance is lin-
early proportional to the concentration of the absorbing
species, c, and the pathlength (sample thickness), b.

a~λ! 5 a~λ!bc (3)

The a(λ) is defined as the logarithm to the base ten of the
reciprocal of the transmittance, (t(λ)), at the same wave-
length. t(λ) is defined as the ratio of radiant power transmit-
ted by the sample to the radiant power incident on the
sample. The proportionality constant, a(λ), is referred to as
the absorptivity. The absorptivity is a characteristic of the
absorbing species and is wavelength dependent.

8.2.1.1 The above equation, which only deals with a single
wavelength (or frequency) can be expressed in a multivariate
form.

X 5 BCA (4)

X is an n by f matrix of the sample spectra, A is a c by f
matrix of the spectra of the s components in the samples, C
is an n by c matrix of the concentrations of the c compo-
nents in the n samples, and B is an n by n diagonal matrix
of the pathlengths. See X1.2 for a discussion of the use of
this multivariate form of Beer-Lambert Law in Classical
Least Squares analysis.

8.2.2 For Raman scattering, an equation analogous to the
Beer-Lambert Law applies. The measured Raman scattering
intensity, IR, is proportional to the incident laser power, Io, and
to the concentration of the scattering species, c.

IR 5 IoσRKc (5)

8.2.3 The proportionality constants are σR, the Raman
cross-section of the scattering species and K a function of
numerous factors including the solid angle visible to the
Raman collection optics, and the volume of the sample that is
illuminated by the laser and visible to the collection optics (1).3

A similar multivariate version of this equation can be derived.
8.2.4 Hard models are generally limited to quantitation of

individual chemical species which possess unique spectral
features, to groups of such chemical species, or to function
group concentrations.

8.2.4.1 An example of a hard model is Test Method D6277
where benzene volume % is measured based on a unique
feature at 675 cm-1. Multivariate techniques are used to com-
pensate for baseline level interferences from other aromatics.

8.2.4.2 For samples with a maximum carbon number of C8,
it is possible by mid-IR or Raman to differentiate all possible
aromatic species, and thus build hard models for individual
species and for total aromatics. The ability to do this in the NIR
is highly dependent on resolution. For samples with higher
carbon number, the overlap among aromatic species generally
precludes quantitation of all individual aromatic species, and
total aromatics models are no longer hard models, because the
spectral variables used in the model typically represent the
average carbon number and isomer distributions represented by
the calibration samples. Such soft models provide accurate
prediction as long as the samples being analyzed contain
similar distributions but can be biased when used to analyze
samples where the distributions are different.

8.2.4.3 For individual oxygenates (Ethanol, MTBE), hard
models can generally be built based on the unique spectra
features of the oxygenate. For FAME, hard models can be built
for the ester content of a diesel fuel, but models that predict
volume % FAME are not hard, since they include assumptions
about the carbon number of the FAME molecule fatty acid
chain and will give biased predictions if the sample being
analyzed contains a FAME with a different carbon number
fatty acid.

3 The boldface numbers in parentheses refer to a list of references at the end of
this standard.
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8.2.5 Both the Beer-Lambert Law and the Raman scattering
equation assume that component concentrations are volumetric
in nature, that is, that they are either volume fraction, volume
percent, grams per unit volume, or moles per unit volume. Both
the infrared and Raman measurements are done on a fixed
volume of sample. For infrared, this volume is the product of
the pathlength times the infrared beam cross-section. For
Raman, the volume is the volume of the sample that is
illuminated by the laser and visible to the collection optics. For
multivariate models built on PTMR values expressed in weight
%, there is a built-in assumption that the weight of sample in
the fixed volume is a constant, that is, that the density of the
samples is a constant. Thus, models that predict weight % are
inherently soft due to this constant density assumption.

8.2.6 The amount of sample that fit in the fixed volume is
temperature dependent. Failure to account for temperature
effects in hardware or modeling may decrease the accuracy and
precision of models.

8.3 Soft models also depend directly on the Beer-Lambert
law or the Raman scattering equation, but do not assume a
distinct relationship between the spectral features and the
property being modeled. Soft models are also referred to as
inferential models since they infer a relationship between the
composition expressed by the spectrum and the property being
modeled. Soft models may depend upon properties of the
calibration set which are not reflected in the spectra.

8.3.1 For example, infrared and Raman spectra contain
features corresponding to aromatic ring vibrations. However,
aside from light sample containing C8 aromatics or less, the
spectroscopies do not distinguish among aromatics based on
length of aliphatic side chains or number of aliphatic ring
substituents. Models for total volume percent aromatics incor-
porate information as to the average carbon number of the
aromatic moieties in the calibration samples and assume that
this average number applies to samples being analyzed. If this
assumption applies, the PPTMR may be accurate and precise.
If this assumption is violated, the PPTMR may be inaccurate
and imprecise.

8.3.2 For physical and performance properties, the calibra-
tion essentially involves calculation of blending values for each
of the mathematically derived components (principal compo-
nents or latent variables) derived from the calibration sample
spectra. The application of the model assumes that these
blending values can be applied linearly over the range of the
model. If the property does not blend linearly over the range of
the calibration sample PTMRs, then the model performance
may suffer.

8.3.3 Transforming a property such that it is volumetrically
based can improve the likelihood that it can be adequately
modeled.

8.3.3.1 For example, API does not blend linearly based on
volume, so models predicting API will likely show nonlinearity
over a large enough range. A superior model will typically be
achieved by converting API to specific gravity, modeling
specific gravity, and converting the PPTMR back to API.

8.3.3.2 The petrochemical industry has developed a number
of blending indices that are used to calculate the property of a
blend based on the properties of the blend components. In

some cases, modeling the blending index instead of the
property may produce superior results.

8.4 Circumstantial models do not have any direct relation-
ship to the Beer-Lambert law or the Raman scattering equation.
Circumstantial models are strictly based on a statistically
identifiable relationship between the calibration spectra and the
property being modeled, but they do not have any underlying
scientific explanation. Circumstantial models may depend on
other, potentially unknown relationships among the calibration
samples.

8.4.1 Vibrational spectroscopies measure molecules, not
elements. Thus, any model that predicts sulfur or nitrogen
content may be circumstantial. For a limited set of feeds, there
may, for instance, be a relationship between a spectrally
detectable level of product sample hydrotreating and sulfur or
nitrogen content, allowing a model to be developed. The model
may work well for the limit set of feeds but fail for more
compositionally diverse feeds.

8.4.2 Vibrational spectroscopies are used to predict distilla-
tion properties of petroleum feeds, products and liquid fuels.
Models that predict the volume fraction of a sample that distills
at a fixed temperature are soft models because they assume that
a volume fraction for each spectral variable can be inferred
from the calibration set. However, models that predict the
temperature at which a fixed percentage of a sample distills are
by definition circumstantial because there is no definable linear
relationship between these temperatures and composition.

8.4.3 Circumstantial models may produce results compa-
rable to hard and soft models, but they may be less robust to
changes in process operation.

9. Sampling

9.1 Proper sampling is critical to successful spectroscopic
analyzer applications. The objectives are to ensure that the
sample is representative of the process stream from which it is
taken, and that the sample whose spectra is collected is
identical to the sample measured by the PTM.

9.2 If calibration sample spectra are collected on a labora-
tory or at-line analyzer, follow Practice D7453 for proper
procedures in collecting line and composite samples, and
Practice D1265, D4057, D5842, or D8009 for procedures for
collecting tank samples. Line samples will typically offer a
larger range of variation in composition and properties which is
desirable for modeling.

9.3 If calibration spectra are collected on an online analyzer,
follow Practices D7278 and D7453 to account for lag times to
ensure that the line sample taken for PTM analysis corresponds
to the sample whose spectrum was collected.

9.3.1 If calibration spectra are collected on a flowing or
static (stop-flow) sample, and if more than one spectrum is
collected during the time period over which a sample is taken,
then after accounting for lag time, the spectra collected over
the sampling period should be averaged, and either the average
spectrum, or the individual spectrum closest to the average
should be used as the calibration spectrum.

9.3.2 If calibration spectra are collected on flowing or static
(stop-flow) samples, and the spectral collection time exceeds
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the time required to collect a line sample, then considering lag
times, the sample collection should be timed to correspond as
closely as possible to the middle of the spectral collection
period.

9.4 Samples should be stored in containers that are at least
70 % to 85 % full to minimize partitioning of lighter compo-
nents into the headspace. For spark ignition fuels, chill
containers to the temperature recommended by the PTM before
opening for analysis by PTM and before open transfer from
one sample holder to another before use in lab, at-line, or field
spectral analyzers (that is, analyzers not attached to the
process). If necessary, split the chilled sample into separate
containers of appropriate size for the volumes required by the
PTM and spectral measurement. If the same sample is being
measured using more than one PTM, use the most stringent
sampling requirements for transfer from one sample holder to
another.

9.5 If the calibration samples are Blendstocks for Oxygen-
ate Blending (BOBs), but the PTM measures a final fuel
containing ethanol, follow Practice D7717 in preparing the
blends for the PTM measurement.

9.6 Handblends (preferably prepared in accordance with
Practice D4307) may be used to extend the variability of
available calibration samples.

9.7 Process spectroscopic analyzers use either in situ or
extractive sampling.

9.7.1 Analyzers that use in situ sampling generally employ
fiber optics to take the light from the analyzer to the sample and
back. A sample probe is inserted into the process to allow the
light to interact with the sample.

9.7.2 In extractive sampling, the sample is removed from
the process and introduced into the analyzer system. Typically,
a small fraction of the process material is diverted into a fast
sample loop from which it may be sampled by the analyzer.
Sample conditioning may be employed prior to the spectral
measurement.

9.7.3 Detailed discussion of in situ and extractive sampling
are beyond the scope of this practice. However, if transferring
calibrations among analyzers, users should be aware that
differences in sample condition and presentation can affect
analysis results unless they are corrected for in spectral
preprocessing or modeling.

10. Overview of Multivariate Calibration

10.1 Before starting the multivariate calibration process,
several prerequisites shall be satisfied.

10.1.1 Determine what type of instrument performance
testing will be done both while the calibration spectral data is
being collected, and later when the multivariate model is
applied for the analysis of product. It is critical to establish the
level of performance achieved during the collection of the
calibration spectra so that this level can be maintained when
the model is used for analysis.

10.1.2 Determine what type of instrument standardization
or calibration transfer approach will be used. Some approaches
require that spectra of one or more reference material be
collected on the initial calibration instrument, and again on the

instrument to be used for analysis. These reference spectra
should be collected at the start of the calibration process.

10.2 The practice of spectroscopic multivariate quantitative
analysis involves the following steps:

10.2.1 Selecting the Calibration Set—The calibration set is
intended to represent all the chemical and physical variation
which would normally be encountered during routine analysis
for the desired application. Selection of the calibration set is
discussed in Section 21, after the statistical terms necessary to
define the selection criteria have been defined.

10.2.2 Determination of Concentrations or Properties, or
Both, for Calibration Samples—The chemical, physical or
performance properties, or both, of samples in the calibration
set must be accurately and precisely measured by the PTM in
order to accurately calibrate the multivariate model for predic-
tion of the unknown samples. PTM measurements are dis-
cussed in Section 11.

10.2.3 The Collection of Spectra—The collection of spectral
data must be performed with care to present calibration
samples, validation samples, and prediction (unknown)
samples for analysis in an alike manner. Variation in sample
presentation technique among calibration, validation, and pre-
diction samples will introduce variation and error which has
not been modeled within the calibration. Instrumentation is
discussed in Section 7 and spectral measurements in Section 8.

10.2.4 Calculating the Multivariate Model—The calculation
of multivariate (calibration) models may involve a variety of
data treatments and algorithms. The more common linear
techniques are discussed in Section 14 and Appendix X1. A
variety of statistical techniques are used to evaluate and
optimize the model. These techniques are described in Section
17 and Appendix X3. Statistics used to detect outliers in the
calibration set are covered in 18.1.

10.2.5 Establishing Criteria for Identifying Outliers During
Analysis—Based on the outlier statistics for the calibration
spectra, limits are set for each statistic. If, during analysis of an
unknown, the value for an outlier statistic exceeds the limit, the
spectrum is considered an outlier and the PPTMR is considered
invalid.

10.2.6 Validation of the Multivariate Model—Validation of
the efficacy of a specific multivariate model requires that the
model be applied for the analysis of a separate set of model
validation samples, and that the PPTMR values for these
samples be statistically compared to PTMR values obtained by
application of the PMT to these same samples. The statistical
tests to be applied for validation of the model are discussed in
Section 22.

10.2.7 Application of the Model for the Analysis of
Unknowns—The multivariate model is applied to the spectra of
unknown samples to produce the PPTMR. (see Section 15 and
X1.8). Outlier statistics are used to detect when the analysis
involves extrapolation of the model (see Section 20).

10.2.8 Routine Analysis and Monitoring—Once the efficacy
of one or more multivariate model is established, the equations
must be monitored for continued accuracy and precision.
Simultaneously, the instrument performance must be moni-
tored to trace any deterioration in performance to either the
multivariate model itself or to a failure in the instrument.

D8321 − 22

12

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM D8321-22

https://standards.iteh.ai/catalog/standards/sist/89fda23d-a997-47fc-be8c-a93a32fd5eec/astm-d8321-22

https://standards.iteh.ai/catalog/standards/sist/89fda23d-a997-47fc-be8c-a93a32fd5eec/astm-d8321-22


Procedures for verifying the performance of the analysis are
covered in detail in Practice D6122. The use of Practice D6122
requires that an instrument performance test procedure be
established at the time the model is developed. Instrument
performance test results collected during the time the calibra-
tion spectra are collected can be used to establish suitable
performance levels. Analyzer vendors may recommend instru-
ment performance tests and provide expected levels of perfor-
mance against which future test results are compared.

10.2.9 Calibration Transfer and Instrument
Standardization—A model built using calibration spectra from
one analyzer may be used to analyze unknown samples on
additional analyzers, or on the first analyzer after major
maintenance has been performed. It may be necessary to adjust
the model or the analyzers in order to achieve acceptable
PPTMR and outlier statistics. In this practice, the term calibra-
tion transfer is used to refer to procedures that are used to adapt
the model from the first analyzer to perform correctly on the
other analyzers. Instrument standardization is used to refer to
procedures that are used to adapt the other analyzers to
adequately match the first analyzer such that no change to the
model is required to achieve correct performance. Calibration
transfer and instrument standardization are discussed in Sec-
tion 26.

11. Primary Test Method (PTM) and Primary Test
Method Result (PTMR)

11.1 Infrared and Raman spectroscopies require calibration
to determine the proportionality relationship between the
signals measured and the component concentrations or prop-
erties that are to be predicted. During the calibration, spectra
are measured for samples for which these PTMRs are known,
and the multivariate relationship between the sample spectral
signals and the PTMRs is determined. The relationship, the
multivariate model, is then applied to the spectrum of an
unknown sample to predict the PPTMR for that sample.

11.2 For simple mixtures containing only a few chemical
components, it is generally possible to prepare mixtures that
can serve as standards for the multivariate calibration of an
infrared and Raman analyses. Because of potential interfer-
ences among the spectral signals of the components, it is not
sufficient to vary the concentration of only some of the mixture
components, even when analyses for only one component are
being developed. Instead, all components should be varied over
a range representative of that expected for future unknown
samples that are to be analyzed. Since infrared measurements
are conducted on a fixed volume of sample (for example, a
fixed cell pathlength), and Raman measurements are conducted
on a fixed scattering volume, it is preferable that concentration
PTMR values be expressed in volumetric terms, for example,
in volume percentage, grams per milliliter, moles per cubic
centimeter, and so forth. Developing multivariate calibrations
for concentrations expressed in other terms (for example,
weight percentage) can lead to models that are linear approxi-
mations to what is really a nonlinear relationship and can lead
to less accurate estimates of the concentrations.

11.3 For complex mixtures, such as those obtained from
petrochemical processes, preparation of calibration standards is

generally impractical, and the multivariate calibration of a
spectroscopic analysis must typically be performed on actual
process samples. In this case, the PTMRs used to calibrate the
analysis are obtained by application of the PTM. The accuracy
of a PPTMR value produced by a multivariate spectral analysis
is highly dependent on the accuracy and precision of the
PTMRs used in the calibration. The expected agreement
between the infrared or Raman PPTMRs and those obtained
from a single PTM measurement can never exceed the site
precision of the PTM, since, even if the PPTMR is the true
value, the measurement of agreement is limited by the preci-
sion of the PTMR. Knowledge of the site precision of the PTM
is critical in the development of a multivariate calibration. The
precision of the PTMR data used in developing a model, and
the accuracy of the model can be improved by averaging
repeated PTM measurements.

NOTE 2—If the PTMR values used to calibrate a multivariate infrared
analysis are generated in a single laboratory, it is essential that the
measurement process used to generate these values be monitored for bias
and precision using suitable quality assurance procedures as outlined in
Practice D6299. If primary standards are not available to allow the bias of
the PTM to be established, it is recommended that the laboratory
participate in an interlaboratory crosscheck program as a means of
demonstrating accuracy.

NOTE 3—Samples like hydrocarbons from petrochemical process
streams can degrade with time unless careful sampling and sample storage
procedures are followed. It is critical that the composition of samples
taken for laboratory or at-line spectroscopic analysis, or for PTM
measurement be representative of the process at the time the samples are
taken, and that composition is maintained during storage and transport of
the samples either to the analyzer or to the laboratory. Sampling should be
done in accordance with methods like Practices D1265, D4057, D4177, or
D7453 whichever are applicable. Whenever possible, sample storage for
extended time periods is not recommended because of the likelihood of
samples degrading with time despite sampling precautions taken. Degra-
dation of samples can cause changes in the spectra measured by the
analyzer and thus in the values estimated, and in the property or quality
measured by the PTM. If necessary, store samples in containers that are at
least 70 % to 85 % full and avoid exposure to light and extreme
temperatures. For spark ignition fuels, refrigerated storage is recom-
mended.

11.4 If the PTM is an established ASTM method, then
repeatability and reproducibility of the PTM are documented in
the method. In this case, the user should use procedures
described in Practice D6299 to establish the site precision for
the PTM, calculate the PTM’s Test Performance Index (TPI),
and demonstrate that the TPI is within an acceptable range as
discussed in Practice D6792. If the reproducibility of the PTM
is level dependent, then at least three QC samples should be
used to estimate the level dependence of the site precision.
These samples should be chosen to span the range of values
over which the calibration is to be developed, one sample
having a PTMR in the bottom third of the range, one sample
having a PTMR in the middle third of the range, and one
sample having a PTMR in the upper third of the range. Practice
D6299 control charts should be maintained for each of the QC
samples and used to estimate the site precision at the QC
samples.

11.5 PTMs that are not ASTM methods can be used for the
multivariate calibration of infrared analyses, but in this case, it
is the responsibility of the user to establish the site precision of
the PTM using procedures in Practice D6299. Since the level
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dependence of the PTM may not be known, three QC samples
should be used as described in 11.4 above. The TPI of the PTM
will not be known.

11.6 Most multivariate models are built using a single
spectrum and a single PTMR for each calibration sample.
Multivariate modeling methods generally assume that the
errors in the PTMRs are normally distributed and
homoscedastic, that is that the errors have a common variance.

11.6.1 If multiple PTM measurements are done on a cali-
bration sample, then the average PTMR value will be more
precise than the individual PTMR values by √r, where r is the
number of replicate measurements. If multiple PTM measure-
ments are done on calibration samples, then it is likely that
similar numbers of PTM measurements will be required on
validation samples for herein, for model validation, and for
Practice D6122 analyzer validation.

11.6.2 If the PTM precision is not level dependent, and if all
the calibration samples are measured r times using the PTM,
then the averaged PTMR values should be homoscedastic, and
normal modeling methods can be employed. However, the
statistics produced by the modeling software will reflect r PTM
measurements. If analyzer performance is to be validated
against a single PTM measurement, then the statistics must be
adjusted to account for the variance removed by the PTM
averaging. See 17.2.3.1 for details.

11.6.3 If the PTM precision is not level dependent, and if
differing numbers of PTM measurements are done for different
calibration samples, the mixed replicate level PTMR values
will not be homoscedastic. A weighted regression approach can
be employed in this case (see X1.10). The committee is
unaware of any commercial software package that is typically
used in spectroscopic multivariate modeling that provides for
this weighted regression approach.

11.6.4 For many ASTM PTMs, the precision of the method
is level dependent. In this case, the errors in the PTMRs may
not be homoscedastic. Normal modeling methods do not
account for the heteroscedasticity. In this case, the model SEC
should be tested for level dependence (see Annex A2), and any
detected level dependence should be used in validation of the
model (see Section 22).

11.7 When multiple PTM measurements are made on an
individual calibration or validation sample, an Extreme Stu-
dentized Deviate technique (see Practice D7915) may be
applied to the values to determine if all of the PTMR values
came from the same population, or if one or more of the values
is suspect and should be rejected.

12. Simple Procedure to Develop a Feasibility Model

12.1 For new applications, it is generally not known
whether an adequate spectroscopic multivariate model can be
developed. In this case, feasibility studies can be performed to
determine if there is a relationship between the IR spectra and
the component/property of interest, and whether a model of
adequate precision could possibly be built. If the feasibility
calibration is successful, then it can be expanded and validated.
A feasibility calibration involves the following steps:

12.1.1 Approximately 30 to 50 samples are collected cov-
ering the entire range for the PTMRs of interest. Care should

be exercised to avoid intercorrelations among major constitu-
ents unless such intercorrelations always exist in the materials
being analyzed. The standard deviation in the PTMRs should
be preferably five times, but not less than three times, the
standard deviation of the site precision (site precision/2.77) of
the PTM. If the site precision of the PTM has not been
established prior to the feasibility study, substitute the PTM
reproducibility.

12.1.2 When collecting spectral data on these samples,
variations in sample presentation, and process conditions
which are expected during analysis must be reproduced.

12.1.3 Analyses on these samples are conducted using the
PTM. If the standard deviation for the PTMRs is not at least
five times the standard deviation of the reproducibility for the
PTM, then r replicate analyses should be conducted on each
sample such that the √r times the PTMR standard deviation is
preferably five times, but at least three times, the standard
deviation of the PTM analyses. The SEC calculated for the
model should be adjusted using the procedure described in
17.2.3.1 to account for the variance removed by averaging the
individual PTMRs to provide a better estimate of what model
performance can be expected for a model built using one
PTMR per sample.

12.1.4 A multivariate model is developed using one or more
of the mathematical techniques described in Section 14 and
Appendix X1. The multivariate model is preferably tested
using cross-validation methods to produce statistics such as
SECV or PRESS (see 17.3.9). Other statistics can also be used
to judge the overall quality of the calibration.

12.1.5 If the SECV value obtained from the cross-validation
suggests that a model of adequate precision can be built, then
additional samples are collected to round out the calibration
set, and to serve as a validation set, spectra of these samples are
collected, a final model is developed and validated as described
in Sections 14 and 22 respectively.

13. Data Processing

13.1 Various types of data preprocessing algorithms can be
applied to the spectral data prior to the development of a
multivariate model. Most preprocessing is designed to either
remove unwanted signals from the spectral data, to remove
unwanted variations in spectral intensity, or for spectral regis-
tration. For example, numerical derivatives of the spectra may
be calculated using digital filtering algorithms to remove
varying baselines. Such filtering generally causes a significant
decrease in the spectral signal-to-noise. Digital filters may also
be employed to smooth data, improving signal to noise at the
expense of resolution. A complete description of all possible
preprocessing methods is beyond the scope of this practice, but
more commonly used types of preprocessing are described in
Appendix X2. For the purpose of this practice, preprocessing
of the spectral data can be used if it produces a model which
has acceptable precision, and which passes the validation test
described in Section 22. In addition, any spectral preprocessing
method must be automated to provide an exactly reproducible
result, and must be applied consistently to all calibration
spectra, validation spectra, and to spectra of unknowns which
are to be analyzed.
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13.1.1 Autoscaling of the X-Block is not recommended for
spectral data since it amplifies the baseline noise relative to the
absorbance or scattering signal.

13.1.2 If multiple preprocessing steps are used, the proper
order of operations should be established and used throughout
calibration and analysis. Generally, treatments that adjust
spectral registration should be done first, treatments that
remove unwanted signals in the spectral data should be done
second, and treatments that remove unwanted variations in
spectral intensity should be done last.

13.2 The Y-Block may also be preprocessed. Transforma-
tions may be used to convert property data into a form that is
more linearly dependent on concentration and thus potentially
easier to model. Such transformations are often used in process
models for estimating the property of a blend from component
properties. An example would be converting API Gravity to
specific gravity.

13.3 One type of preprocessing requires special mention.
Mean-centering refers to a procedure in which the average of
the calibration spectra (average spectral intensity over the
calibration spectra as a function of spectral position) is
calculated and subtracted from the spectra of the individual
calibration samples prior to the development of the model. The
average PTMR value among the calibration samples is also
calculated and subtracted from the individual PTMR values for
the calibration samples. The model is then built on the
mean-centered data. If the spectral and PTMR data are mean-
centered prior to the development of the model, then:

13.3.1 When an unknown sample is analyzed, the average
spectrum for the calibration set must be subtracted from the
spectrum of the unknown prior to applying the mean-centered
model, and the average PTMR value for the calibration set
must be added to the estimate from the mean-centered model to
obtain the final estimate; and

13.3.2 The degrees of freedom used in calculating the
standard error of calibration must be diminished by one to
account for the degree of freedom used in calculating the
average (see 17.2.2).

13.3.3 Mean centering will typically be done either before
or after all other types of preprocessing are started or com-
pleted.

14. Calibration – Creating the Multivariate Model

14.1 Multivariate mathematical techniques are used to relate
the spectra measured for a set of calibration samples to the
PTMRs obtained by applying the PTM to the same set of
samples. The object is to establish a multivariate model that
can be applied to the spectra of future, unknown, samples to
predict property or concentration values (PPTMRs) for these
samples. Linear multivariate techniques are described in this
practice, that is, it is assumed that the PTMRs can be modeled
as a linear function of the sample spectra. Various nonlinear
multivariate techniques have been developed but have gener-
ally not been as widely used as the linear techniques discussed
herein. This practice is not intended to compare or contrast
among techniques. For this practice, the suitability of any
specific mathematical technique should be judged only on the
following two criteria:

14.1.1 The technique should be capable of producing a
multivariate model that can be validated as described in
Section 22; and

14.1.2 The technique should be capable of providing
statistics suitable for identifying if samples being analyzed are
outside the range for which the model was developed; that is,
when the estimated values represent extrapolation of the model
(see Sections 18, 19, and 20).

NOTE 4—In the following derivations, matrices are indicated using
boldface capital letters, vectors are indicated using boldface lowercase
letters, and scalars are indicated using lowercase letters. Vectors are
column vectors, and their transposes are row vectors. Italicized lowercase
letters indicate matrix or vector dimensions.

14.1.3 All linear, multivariate techniques are designed to
solve the same generic problem. If n calibration spectra are
measured at f discrete spectral positions, then X, the spectral
data matrix, is defined as an n by f matrix containing the
spectra (or some function of the spectra produced by
preprocessing, as described in Section 11) as columns.
Similarly, y is a vector of dimension n by 1 containing the
PTMRs for the calibration samples.

14.1.3.1 Discussion—The selection of whether the calibra-
tion spectra are stored in rows or columns of X is arbitrary.
Rows are used here to be more consistent with various
references that describe PCR and PLS algorithms (2-12). This
choice is the opposite of that used in Practice E1655 where
spectra are stored in columns of X.

14.1.3.2 The object of the linear, multivariate modeling is to
calculate a prediction vector p of dimension f by 1 that solves
Eq 6 :

y 5 Xp1e (6)

The error vector, e is a vector of dimension n by 1, that is
the difference between the PTMR values y and their
predictions, ŷ (the PPTMRs), where:

ŷ 5 Xp (7)

14.1.3.3 Some multivariate techniques allow more than one
property to be modeled simultaneously. In this case, the
equation being solved becomes

Y 5 XP1E (8)

Y is an n by p matrix whose columns are the PTMRs for the
p different properties being modeled, and P is an f by p ma-
trix containing the prediction vectors for the p properties as
columns.

14.1.4 For some applications, it may be useful to combine
the spectral data with other measured variables (for example,
sample temperature, density, or viscosity). These additional
heterogeneous variables may simply be appended to the
spectrum of each sample as if they were spectral intensities
measured at additional spectral positions. When heterogeneous
data is used, it is important to consider the possibility that it
may be appropriate to apply weighting factors to the hetero-
geneous variables to appropriately balance their influence on
the calibration with respect to the influence of the spectral
variables. Incorporation of additional heterogeneous variables
in a model requires that these variables be measured for all
future samples being analyzed using the model.
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