

Designation: D5847 - 22

Standard Practice for Writing Quality Control Specifications for Standard Test Methods for Water Analysis¹

This standard is issued under the fixed designation D5847; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This practice provides specific, mandatory requirements for incorporating quality control (QC) procedures into all test methods under the jurisdiction of Committee D19.

1.2 ASTM International has adopted the following:

Policy on implementation of requirements for a quality control section in standard test methods generated by Committee D19 on Water.

GENERAL—By July 29, 1998, or at the next reapproval or revision, whichever is later, every D19 Standard Test Method shall contain a QC section that is in full compliance with the requirements of this practice.

NEW COLLABORATIVE TESTING—As of July 29, 1998, each collaborative study design shall include a QC section as part of the method to be tested. Prior to approval of the study design, the Results Advisor or equivalent shall ascertain the appropriateness of the QC section in meeting the requirements of this practice and Practice D2777, and shall advise the designer of the study of any changes needed to fulfill the requirements of these practices. Before a collaborative study may be conducted, approval of the study design by the Results Advisor or equivalent shall be obtained.

OLDER VALIDATED METHODS—Standard test methods that were validated using Practices D2777 – 77, D2777 – 86, or D2777 – 94, when balloted for reapproval or revision, shall contain a QC section based upon the best information from the historical record. Where appropriate, information derived from the record of the collaborative study shall be utilized for this purpose. The introduction of the QC section into these standard test methods shall not be construed as a requirement for a new collaborative study, though the Subcommittee may opt for such a study. Any information available regarding QC or precision/bias testing shall be included in the appropriate sections of the published test method.

1.3 Required QC sections in all applicable test methods are intended to achieve two goals. First, users of Committee D19 test methods will be able to demonstrate a minimum competency in the performance of these test methods by comparison with collaborative study data. Second, all users of test methods will be required to perform a minimum level of QC as part of proper implementation of these test methods to ensure ongoing competency.

1.4 This practice contains the primary requirements for QC of a specific test method. In many cases, it may be desirable to implement additional QC requirements to assure the desired quality of data.

1.5 The specific requirements in this practice may not be applicable to all test methods. These requirements may vary depending on the type of test method used as well as the analyte being determined and the sample matrix being analyzed.

1.5.1 If there are compelling reasons why any of the specific QC requirements listed in this practice are not applicable to a specific test method, these reasons shall be documented in the QC section of the test method.

1.5.2 With the approval of Committee D19 on the recommendation of the D19 Results Advisor or equivalent and the Technical Operations section of the Executive Subcommittee, a statement giving the compelling reasons why compliance with all or specific points of this practice cannot be achieved will meet the requirements of both ASTM and this practice.

1.6 This practice is for use with quantitative test methods and may not be applicable to qualitative test methods.

1.7 Presently, this practice is applicable primarily to chemical test methods. It is intended that, in future revisions, the practice will be expanded to include other test methods such as microbiological test methods.

1.8 *Units*—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

*A Summary of Changes section appears at the end of this standard

¹ This practice is under the jurisdiction of ASTM Committee D19 on Water and is the direct responsibility of Subcommittee D19.02 on Quality Systems, Specification, and Statistics.

Current edition approved May 1, 2022. Published July 2022. Originally approved in 1999. Last previous edition approved in 2020 as D5847 – 02 (2020). DOI: 10.1520/D5847-22.

2. Referenced Documents

2.1 ASTM Standards:²

D1129 Terminology Relating to Water

D1141 Practice for Preparation of Substitute Ocean Water

D1193 Specification for Reagent Water

D2777 Practice for Determination of Precision and Bias of Applicable Test Methods of Committee D19 on Water

D3648 Practices for the Measurement of Radioactivity

D3856 Guide for Management Systems in Laboratories Engaged in Analysis of Water

D5810 Guide for Spiking into Aqueous Samples

D6362 Practice for Certificates of Reference Materials for Water Analysis

3. Terminology

3.1 *Definitions:*

3.1.1 For definitions of terms used in this practice, refer to Terminology D1129.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *batch*, *n*—set (group) of samples analyzed such that results of analysis of the QC samples (laboratory control sample, method blank, matrix spike, and duplicate or matrix spike duplicate) analyzed with the batch are indicative of the quality of the results of analysis of samples in the batch.

3.2.1.1 *Discussion*—The number of samples in the batch is defined by the task group responsible for the test method. See 6.4 and Explanation 2 in Appendix X1. When results from tests of any of the QC samples associated with the batch fail to meet the performance criteria, the test method should define the appropriate corrective action. To make such a response valid, the batch shall be constructed in such a way as to assure that all variables affecting the batch will affect all samples in the batch in a statistically equivalent manner.

3.2.2 *calibration standard, n*—solution containing the analyte of interest at a known concentration either purchased from an external source or prepared in-house from materials of known purity or concentration, or both, and used to calibrate the measurement system.

3.2.3 certified reference material (CRM), n—reference material, accompanied by a certificate, one or more of whose property values are certified by a procedure that established its traceability to an accurate realization of the unit in which the property values are expressed and for which each certified value is accompanied by an uncertainty at a stated level of confidence obtained either from the National Institute of Standards and Technology (NIST) or other national institute or ISO 17034 accredited supplier.

3.2.3.1 *Discussion*—The CRM shall be obtained from a different lot of material than is used for calibration, if possible. There is significant variation in the overall quality of commercially available Certified Reference Materials and caution should be used when choosing Certified Reference Materials.

Use Practice D6362 to provide guidance as to what information needs to be included on certificate of a certified reference material.

3.2.4 *detection limit, n*—minimum concentration or amount of a substance that can be discriminated from a blank with a known degree of confidence.

3.2.5 *laboratory control sample, LCS, n*—sample of known concentration and composition that is taken through the entire test method to determine whether the analytical system is in control.

3.2.5.1 *Discussion*—The LCS may also be commonly known as a "quality control sample" or an "ongoing precision and recovery sample" (OPR).

3.2.6 *matrix spike*, *MS*, *n*—addition of a known concentration of analyte to a routine sample representing a specific matrix for the purpose of evaluating interference from matrix components. (See Guide D5810.)

3.2.7 *method blank (blank), n*—reagent water (see Specification D1193) free of the constituent(s) of interest at the quantitation limit.

3.2.7.1 *Discussion*—The purpose of analysis of the method blank is to confirm that the reagents or analytical system, or both, do not contribute a measurable amount of the constituent(s) of interest during analysis of routine samples or, if they do, to determine what the contribution is.

3.2.8 *quantitation limit, n*—minimum concentration or amount of a substance that can be measured with a known degree of confidence.

3.2.9 sample pretreatment (pretreatment), n—any handling, manipulation or treatment of a sample prior to subjecting the sample to the analysis. Examples are filtration, digestion, dilution, pH adjustment and extraction.

4. Summary of Practice 030 fae/astm-d5847-22

4.1 This practice provides the writer of a test method in Committee D19 specific steps to be included in the QC section of the test method. A QC section is required in all applicable standard test methods that mandates use of the following QC measures:

4.1.1 Periodic calibration or verification of calibration of the measurement system,

4.1.2 Initial demonstration of analyst capability,

4.1.3 Analysis of at least one blank per batch,

4.1.4 Analysis of at least one LCS per batch,

4.1.5 Analysis of at least one MS per batch, where applicable, and

4.1.6 Periodic analysis of a CRM.

4.2 Duplicate analysis of at least one sample per batch is suggested. The duplicate analysis may be of a sample or of a matrix spike (matrix spike duplicate; MSD). See Explanation 4 in Appendix X1.

4.3 If there are valid reasons why any of the above QC requirements are inapplicable to a specific test method (see Section 1), these reasons shall be documented in the QC section of the test method. See 1.5 and Explanation 1 in Appendix X1.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

5. Significance and Use

5.1 In order to be certain that the end user of analytical results obtained from using an ASTM Committee D19 test method can be confident that the values have been obtained through a competent application of the test method, a demonstration of the proficiency of the analytical system shall be performed. Appropriate proficiency is demonstrated by achievement of performance criteria derived from results of the test method collaborative study. The QC measures specified in this practice shall be included in each ASTM test method, as applicable, to ensure the quality of measurements.

5.2 In order for users of D19 test methods to achieve consistently valid results, a minimum level of QC shall be performed. This minimum level of QC is stipulated in this practice and by the task groups developing D19 test methods. If the specific requirements outlined in this practice are not applicable to the test method, alternative QC shall be defined in the test method.

6. Requirements for QC Specifications in Test Methods

6.1 Every test method shall have a QC section. Listed below are requirements applicable to nearly all chemical test methods and that shall be followed to ensure that the test method is in control and to validate the accuracy of data generated for a specific matrix.

6.1.1 The measures that shall be specified in the QC section of test methods and the reasons for these measures are as follows:

6.1.1.1 Calibration and calibration verification are necessary to ensure that the analytical system is properly calibrated during the period that the analysis is performed.

6.1.1.2 An initial demonstration of laboratory capability is necessary to prevent errors as a result of unfamiliarity with the test.

6.1.1.3 Analysis of a blank with each batch may indicate that analytes in a test sample are the result of contamination.

6.1.1.4 An LCS is run with each batch to determine that the measurement system is in control at the time samples are being analyzed.

6.1.1.5 An MS (recovery check) provides information on the bias of the test method in a specific matrix.

6.1.1.6 A duplicate analysis (Dup) or duplicate of the MS (matrix spike duplicate; MSD) indicates the repeatability of the method for a specific matrix.

6.1.1.7 A CRM is analyzed periodically to validate the accuracy of the test system and standards used for calibration.

6.1.2 In addition to the QC measures required above, each test method should contain a detection limit and a quantitation limit so that there is an indication of the lowest level at which the substance(s) determined by the test method can be detected and measured.

6.1.3 Statistical tests should be done at a significance level of $\alpha \le 0.01$, that is, ≥ 99 % confidence level. If other levels are specified, the reason for deviation should be delineated in the test method.

6.1.4 The operational principles and characteristics of detectors used for radioactivity measurements are somewhat different from those of instruments used for measurements of chemical and physical properties. Therefore, authors of ASTM International test methods for radioactivity measurements should provide specific guidance within each test method, practice, or guide relative to applicable QC program requirements. Guidance on the preparation and use of instrument tolerance and control charts can be found in Practices D3648, Guide D3856, and ASTM MNL 7.³

6.2 Calibration and Calibration Verification-For test methods requiring calibration of instrumentation, an appropriate number of calibration standards shall be analyzed during the day that an analysis is performed to confirm that the instrument is properly set up and required sensitivity is being obtained. The actual number of standards required will depend on the requirements of the test method. For tests run infrequently, analysis of a single calibration standard to verify an existing calibration curve may suffice. For tests run frequently without an internal standard, a verification standard should be analyzed at the beginning, at a given time or sample interval for a large batch and at the end. Under these circumstances, it is recommended that a different standard concentration be used each time the calibration is verified. Raw data (absorbance, intensity, and so forth) should be compared to data generated in the past under the same conditions and should fall within three standard deviations of the mean value found in the past based on the pooled single operator precision. Alternatively, data should be compared to the calibration limits stated in the test method or should be developed from collaborative study data. Refer to Guide D3856 and Practices D3648 for further information on calibration checks.

6.2.1 For titrimetric test methods, titrants shall be standardized on a scheduled basis against a standard solution of known concentration in duplicate or triplicate. The average normality/ molarity is then used for calculation. The frequency of standardization is left to the judgment of the writer of the test method and should be based on the stability of the titrant.

6.2.2 An alternate calibration procedure, such as an internal standard, external standard, or single-point calibration procedure, shall be specified in the test method.

6.2.3 The test method shall establish the frequency of calibration and calibration verification.

6.3 Initial Demonstration of Analyst Capability—A test shall be included in the test method to confirm that the analyst is capable of running the test method and generating acceptable data. This test of analyst capability will vary depending on the test method. Whenever appropriate, a precision and bias (as recovery) test is performed. For most test methods this can be done by analyzing at least four replicates of a standard solution containing the analyte at one of the concentration levels used in the collaborative study. The matrix and chemistry of the solution should be such that, when spiked, results statistically equivalent to results produced in the collaborative study should be produced. Each replicate shall be taken through the complete analytical test method including any pretreatment. The mean and standard deviation of these results are then calculated

³ ASTM Manual on Presentation of Data and Control Chart Analysis, ASTM MNL 7.

and compared to the single operator precision and recovery found in the collaborative study.

NOTE 1-Initial Demonstration of Analyst Capability-The type of test designed to assess the capability of an analyst is at the discretion of the test method writer. It can be designed any way the test method writer believes is appropriate for the test method so long as it provides meaningful data to ensure that the analyst is capable of generating results that are valid and accurate within the confidence limits defined in the precision and bias statement of the test method.

6.3.1 To establish that results produced by an analyst will be acceptable, the test method writer shall prepare a table containing an upper limit for acceptable precision and a range for acceptable recovery for the analytes determined by the test method. The limit for acceptable precision is established by carrying out a one-sided F test at the $\alpha = 0.01$ significance level, and the range for acceptable recovery is established by carrying out a two-sided Student's t test. Instructions for performing these calculations are provided in 6.3.1.1 and 6.3.1.2. An example is given as Example 1 in Appendix X2.

6.3.1.1 The single-sided F test for a limit on precision is carried out using the square of the standard deviation found by the operator, S_A , and the square of the expected pooled single operator standard deviation reported in the collaborative study, S_O , at the concentration level at which the precision study was carried out, and dividing the square of S_A by the square of S_O . The resulting value shall be less than or equal to the F value at the 0.01 significance level (99 % confidence level) for the number of degrees of freedom in the operator's study and the number of degrees of freedom in the collaborative study. The following formula is used:

$$\frac{(S_A)^2}{(S_O)^2} \le F_{0.99} \text{ at } (df_{S_A}, df_{S_O})$$
(1)

where:

= standard deviation found by operator, SAL = single operator standard deviation reported in collaborative study.

= F value at 99 % confidence level, $F_{0.99}$

- = degrees of freedom in laboratory's study (usually 6 because 7 replicates are usually run), and
- df_{S_o} = degrees of freedom for the single operator standard deviation estimate from the collaborative study.

If $S_A < S_O$, S_A/S_O is inverted to S_O/S_A in Eq 1. See Example 1 in Appendix X2.

6.3.1.2 The two-sided Student's t test for a recovery range is carried out using Eq 2:

$$\frac{\bar{X}_{A} - \bar{X}}{\sqrt{(S_{T})^{2} - \frac{(n-1)(S_{O})^{2}}{n}}} \leq t_{0.99} \text{ at } df$$
(2)

where:

- \bar{X}_A = mean value found by laboratory, \bar{X} = mean value found in collaborativ
- = mean value found in collaborative study,
- S_T = overall standard deviation found in collaborative study, and
- S_{O} = single operator standard deviation found in collaborative study.
 - NOTE 2—If $S_O > S_T$ from the collaborative study, let $S_O = S_T$:

number of replicates used in laboratory's precision study (usually 7),

Student's t value at 99 % confidence level, and = $t_{0.99}$

degrees of freedom for the overall standard deviation estimate df = from the collaborative study (one less than the number of laboratories that provided usable data at the concentration being tested.)

See Example 1 in Appendix X2.

6.3.2 The test method shall contain the requirement that the initial demonstration shall be repeated until the results fall within these criteria.

6.4 Batch QC—The QC for routine operation is governed by a batch. A batch consists of a set of samples accompanied by QC samples. The QC samples are an LCS, blank, MS, and optionally, a Dup or MSD. The result obtained for the QC samples that accompany each batch shall meet performance criteria developed from collaborative study data using the procedures in this practice. The control limits are included in each test method. The task group shall specify in the test method the consequence of a result for a QC sample that fails to meet a performance criterion.

6.4.1 The size and frequency of the batch is determined by identifying the key variables affecting the batch and selecting a batch size and frequency so that these variables do not vary - are controlled - during analysis of the batch. The task group may specify any batch size or frequency, or both, so long as the results of analysis of the LCS, blank, MS, and Dup or MSD can be assured to be indicative of the variables affecting the remaining samples in the batch; that is, all samples in the batch are subject only to the same set of random variables. If the risk or consequence of failure of a QC sample is high, the batch size should be small; if the risk is low, the batch size may be large. The task group shall establish a maximum time between QC samples or the maximum number of samples in the batch, or both, or instruct the test method user of the risk. See Explanation 2 in Appendix X1.

6.4.2 Method Blank (Blank)—Each test method shall require that, where applicable, a blank shall be analyzed with each batch, as appropriate to the test method. The blank is taken through all the steps of the test method including any preservation and pretreatment that may be necessary for samples. The value found for the blank should be below the quantitation limit of the test method or significantly below the confidence limits of the known concentration of the analyte in the associated test sample.

6.4.3 LCS-Each test method shall require that, where applicable, an LCS shall be run with each batch, preferably at both the beginning and end of the batch, to determine if the measurement system is in control.

6.4.3.1 The LCS shall be prepared in the appropriate ASTM-grade water from a material that sufficiently challenges the test method (see Explanation 3 in Appendix X1). The LCS can be a CRM obtained from an outside source or prepared inhouse from materials of known purity and concentration. The LCS shall be taken through all steps of the test method. The concentration of the LCS shall be known within a specified range of error. It is recommended that an independent reference material be used as the LCS, where possible.

6.4.3.2 Selecting an analyte concentration for the LCS other than the one employed in the collaborative study will require, for purposes of comparison, using a mean and standard deviation obtained from the collaborative test regression expressions at the selected true concentration. In this instance, a procedure different from that in Example 1 in Appendix X2 shall be used to determine the degrees of freedom for the Student's *t* value for the two-sided test.

6.4.4 Matrix Spike (MS)—The MS tests the bias of the test method in the matrix being analyzed. A portion of at least one sample from each batch is spiked with a known concentration of the analyte and the sample is taken through the test method including any sample pretreatment that may be required. Guidance on spiking can be found in Guide D5810. The concentration of the analyte in the spiked sample should be at least double, but not over five times, the concentration of the analyte in the unspiked sample. For multi-analyte methods, such as gas chromatography (GC) or inductively coupled plasma (ICP) methods, it may be complicated to spike all analytes at a concentration in the range of two to five times the concentration of the analytes in the unspiked sample. For this condition, the analytes may be spiked at a fixed concentration or groups of analytes may be spiked at a few concentrations. The spike concentration plus the concentration found in the unspiked sample shall fall within the demonstrated working range for the test method.

6.4.4.1 Selecting an analyte concentration for the MS other than the one employed in the collaborative study will require, for purposes of comparison, using a mean and standard deviation obtained from the collaborative test regression expressions at the selected true concentration. In this instance, a procedure different from that in Example 1 in Appendix X2 shall be used to determine the degrees of freedom for the Student's *t* value for the two-sided test.

6.4.4.2 Two choices are available for development of performance criteria for MS recovery when multiple matrices are evaluated: (1) develop overall performance criteria by pooling data across all matrices. These criteria will reflect the performance of the test method across all matrices but will be broader than criteria developed for a specific sample matrix; (2) develop performance criteria for each matrix and include a table of matrices and their respective performance criteria in the test method. Use the test data from each matrix to develop the performance criteria for that matrix.

6.4.4.3 If, after the test method is balloted and approved, the test method will be applied to a matrix considerably different from those used to create the performance criteria included in the test method, it may be appropriate for the task group to develop additional performance criteria and add these criteria to the test method. Also, if the test method will be applied to a matrix considerably different from that used in the collaborative study, the task group may stipulate in the test method that the method user may develop performance criteria as specified in Guide D3856. In this event, the task group shall also stipulate that if the performance criteria developed by the test method user are less stringent than those specified in the test

method, the client or data user shall be informed that less stringent performance criteria are being used. See Explanation 5 in Appendix X1.

6.4.4.4 The following procedure is used for development of performance criteria for recovery. An example is given as Example 2 in Appendix X2.

6.4.4.5 Include a test for percent recovery (P) of the spike using Eq 3:

$$P = 100 \frac{\left|A\left(V_s + V\right) - BV_s\right|}{CV} \tag{3}$$

where:

- A = estimated concentration obtained from analysis of the spiked sample,
- B = estimated concentration obtained from analysis of the unspiked sample,
- C = known concentration of analyte in the spiking solution,
- V_s = volume of sample used, and

V = volume of spiking solution added.

Because both A and B are experimentally determined, the mean percent spike recovery (\overline{P}) shall be estimated as follows:

$$P = (100/CV)(\bar{x}_T(V_s + V)) \tag{4}$$

where:

Dray

where:

 \bar{x}_T = expected mean of analytical results at concentration T, when $T = CV / (V_s + V)$ and

Standard deviation of such percent spike recoveries (s_P) is estimated as:

$$s_{P} = (100/CV) (s_{A}^{2} (V_{s} + V)^{2} + s_{B}^{2} (V_{s})^{2})^{1/2}$$
(5)

 s_A = expected standard deviation of analytical results at measured concentration A, and

 s_B = expected standard deviation of analytical results at measured concentration B.

6.4.4.6 A specific *P* value is acceptable if it is in the following interval developed from the collaborative test:

$$\left(\bar{P} - 3(s_P)\right) \le P \le \left(\bar{P} + 3(s_P)\right) \tag{6}$$

6.4.4.7 If P does not fall within these limits, a matrix interference may be present in the sample selected for spiking. Under these circumstances, the test method should state one or more of the following corrective actions: the selected sample and all samples in the batch should be reanalyzed, the selected sample and all samples in the batch should be analyzed by a test method not affected by the matrix interference, the matrix interference should be removed, or the related analytical results shall be qualified with an indication that they do not fall within the performance criteria of the test method or that a matrix effect exists for the affected samples.

6.5 *Duplicate (Dup)*—As an ongoing check on the precision of the analyses of samples, the test method writer should include the requirement that a sample be analyzed in duplicate with each batch. If the sample contains the analyte at a level greater than five times the detection limit of the test method, the sample and Dup may be analyzed unspiked; otherwise, an MSD should be used.

6.5.1 Two choices are available for development of a performance criterion for precision of the Dup (or MSD) when multiple matrices are evaluated. The choice shall be consistent for development of performance criteria for recovery of the MS (6.4.4).

6.5.1.1 Develop an overall performance criterion by pooling data across all matrices. This criterion will reflect the performance of the test method across all matrices but will likely be broader than criteria developed for a specific sample matrix.

6.5.1.2 Develop a separate performance criterion for each matrix and include a table of matrices and their respective performance criteria in the test method. Use the test data from each matrix to develop the performance criterion for that matrix.

6.5.2 An appropriate statistical test such as an *F* test at the $\alpha = 0.01$ significance level (99 % confidence level) shall be applied to compare the precision of the sample analyses with the single operator precision in a collaborative study for similar concentrations. This is done to determine whether the precision of routine analyses is satisfactory. Refer to Example 3 in Appendix X2 for information on carrying out the F test. To carry out this comparison properly, the concentration range studied in the collaborative study. As sufficient data are accumulated from the duplicate analyses performed by the laboratory, a relationship between single operator precision and concentration within the laboratory could be developed and used instead of the precision found in the collaborative study whenever the laboratory's precision is better. Refer to Guide

D3856 for more information on determining the acceptability of accumulated duplicate results. See Explanation 5 in Appendix X2.

6.6 *CRM*—To verify the quantitative value of the laboratory's calibration standards, each test method shall contain a requirement for periodic analysis of a CRM (if available) submitted as a regular sample (when practical) to the laboratory. This may be a standard reference material (SRM) from NIST, a reference material from a government agency, or a reputable commercial source. Results from analysis of the CRM shall be within the control limits specified by the outside source or those used to evaluate the laboratory's routine calibration checks. Refer to Guide D3856 for further information on calibration checks.

7. Approval

7.1 For a test method that is required to contain a QC section, the final QC section to appear in the test method, along with documentation of all related calculations, shall be reviewed and approved by the D19 Results Advisor or equivalent before the test method can appear on a committee ballot.

7.2 When an interlaboratory study has been conducted, the final QC section and all related calculations are submitted for approval at the same time as the precision and bias statement.

7.3 After approval, the D19 Results Advisor or equivalent shall send all materials submitted to him to ASTM International for filing.

8. Keywords

8.1 bias; precision; quality control

APPENDIXES

https://standards.iteh.ai/catalog/standards/s (Nonmandatory Information) b502-3fa7f7030fae/astm-d5847-22

X1. EXPLANATIONS

X1.1 Explanation 1—Reasons for Inapplicability of This Practice

X1.1.1 If the laboratory participates in a quality assurance/ quality control program that includes the extensive laboratory auditing and performance evaluation that occurs with some radiochemistry programs, the QC requirements listed in this practice may not be necessary.

X1.1.2 Portions or all of the QC required by this practice may be inapplicable to certain test methods. For example, the MS is not applicable to pH because the buffering capacity of a sample cannot be determined readily. Therefore, a test method for determination of pH would not be required to contain a requirement or a performance specification for recovery of the MS.

X1.2 Explanation 2—Batch Size and Frequency of QC Samples

X1.2.1 The batch size and frequency of QC samples will be dependent on the number and frequency of analysis of test

samples. For example, if samples are analyzed monthly and there are ten samples in the batch, ten months would elapse between analysis of QC samples. If any QC sample fails (LCS, Blank, MS, Dup, or MSD), results from analysis of all samples during the ten-month period would be suspect. Because it would likely be impossible to reanalyze many of the intervening samples within the holding time or reporting period, recovery from the QC failure would not be possible.

X1.2.2 Because the consequence of failure of a QC sample at the end of a batch may be severe, great pressure could be brought to bear on the analyst. History has shown that, under this pressure, some analysts have manipulated QC results to meet performance criteria. Because increasing the batch size or the time between calibration verifications or QC sample batches increases the financial loss that will occur if the QC is failed and the batch shall be reanalyzed, the task group should weigh the economic and legal consequences as a component of the decision on the appropriate batch size and the frequency of QC samples. X1.2.3 If the test method or practice will be used for reporting results to a regulatory authority for permitting or regulatory compliance purposes, the task group should consider batch size and frequency requirements that will satisfy the regulatory authority. For example, EPA has established a batch size of 10 or 20 samples and a frequency in the range to 8 to 12 h as reasonable for a batch.

X1.3 Explanation 3—Examples of Reference Materials that Challenge Test Methods

X1.3.1 The analytes selected for evaluating a test method should sufficiently challenge the test. The following examples illustrate this challenge:

X1.3.1.1 An amino acid should be used for checking a Kjeldahl nitrogen test because an ammonia standard would not sufficiently challenge the test.

X1.3.1.2 Various forms and species of metals should be used in checking whether a test method for total metals recovers all forms and species.

X1.3.1.3 Various species of cyanides should be used in checking whether a test method for total cyanide recovers all species.

X1.3.2 For some test methods, a more suitable material may be more applicable or appropriate than reagent water. The following examples illustrate alternatives:

X1.3.2.1 Ocean water (Practice D1141) for tests to be performed in a seawater matrix.

X1.3.2.2 Methanol as a conventional turbidity blank. X1.3.2.3 A filter or suspended solid material, or both, for total suspended solids (TSS).

X1.4 Explanation 4—Duplicate or Matrix Spike Duplicate

X1.4.1 The determination that a duplicate analysis is required shall be made by the task group responsible for the test method. The purpose of the duplicate is to determine the precision of measurements of the analyte(s) when the test method is applied to a specific sample in the batch and the result is applied to the validity of the test method for analysis of all samples in the batch.

X1.5 Explanation 5—Applicability of Performance Criteria to Sample Matrices

X1.5.1 Committee D19 test methods are typically validated in a variety of matrices. From this validation, a composite precision and bias statement is prepared. These tested matrices are considered to be those matrices for which the test method has been validated. Validation assures that the precision and bias of results on a given matrix is known (characterized) and of sufficient quality for its intended use. So long as the test remains in statistical control, further testing of the characterized matrix should result in a similar precision and bias.

X1.5.2 Performance specifications for the MS in a test method are applicable to the matrices tested in the collaborative study. This applicability may be extended to other matrices that present less of a challenge to the test method. For example, a test method validated on wastewaters from a variety of industries can be assumed to be applicable to drinking water. The task group should recognize this applicability and not unnecessarily restrict the test method to only those matrices on which the test method has been validated.

X1.5.3 It is an objective of this practice to establish absolute standards of performance for test methods so that data users know the limits within which the test method is being operated. Allowing development of less stringent performance criteria compromises this standard. For some intractable matrices, this compromise may be desirable. If the task group expects that such matrices will be encountered in the use of a test method, the task group should evaluate the intractable matrices and either find the means for overcoming the matrix problem or develop a separate set of MS and Dup performance criteria to allow for the matrix. Alternatively, if the task group believes that it is appropriate to allow for development of less stringent performance criteria by the test method user, the task group should insert the necessary language in the QC section of the test method that the test method user shall document the justification for use of less stringent performance criteria and make this documentation available to the user or client to whom the data will be reported.