International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION+MEXDYHAPODHAR OPFAHИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ+ORGANISATION INTERNATIONALE DE NORMALISATION

Grooved pulleys for joined narrow V-belts – Groove sections 9J, 15J, 20J and 25J

Poulies à gorges pour courroies trapézoïdales jumelées étroites - Sections de gorge 9J, 15J, 20J et 25J

Second edition – 1985-10-01 I Teh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 5290:1985</u> https://standards.iteh.ai/catalog/standards/sist/ace8d489-1a92-47c4-8f88-5d4b87t6d502/iso-5290-1985

Descriptors : belt drives, pulleys, grooved pulleys, dimensions.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

iTeh STANDARD PREVIEW International Standard ISO 5290 was prepared by Technical Committee JSO/TC 41, Pulleys and belts (including veebelts).

ISO 5290 was first published in 1978. This second edition can<u>cels and replaces</u> the first edition, to which Addendum 1, *Series of effective diameters* and the "References"-1a92-47c4-8f88-clause have been added. The presentation has also been altered 502/iso-5290-1985

© International Organization for Standardization, 1985 •

INTERNATIONAL STANDARD

Grooved pulleys for joined narrow V-belts – Groove sections 9J, 15J, 20J and 25J

1 Scope and field of application	3 Specifications
This International Standard specifies the principal charac- teristics of grooved pulleys (for groove sections 9J, 15J, 20J and 25J), intended to take joined narrow V-belts for industrial	3.1 Groove profiles
power transmission drives.	3.1.1 Groove angles, α
Some background information on the series of effective diameters is given in the annex.	The groove angle (see figure 1) shall have one of the following values:
NOTES	$\alpha = 36^{\circ}$ (for groove section 9J only)
1 The groove effective width is regarded as the basic dimension of standardization for the grooves and for the corresponding joined V-belts considered as a whole.	$\alpha = 38^{\circ}$ $\alpha = 40^{\circ}$ $\alpha = 42^{\circ}$
2 The pitch line position can only be given approximately. The approximate pulley pitch diameter can be calculated by the formula: 0.5.	The relationship of groove angle to the range of effective
$d_{\rm p} \approx d_{\rm e} - 2b_{\rm e, nom}$ ISO 5290:19	diameters which should be used is given in table 3.
https://standards.iteh.ai/catalog/standards/si	ist/ace8d489-1a92-47c4-8f88-
2 Reterences 5d4b87f6d502/iso-5	293.1.285Dimensions of profiles
ISO 1081, Drives using V-belts and grooved pulleys — Terminology.	The dimensions shown in figures 1 and 2 shall have the values specified in table 1.

ISO 8419, Pulleys and belts (including V-belts) — Narrow joined V-belts — Lengths in the effective system.¹⁾

NOTE — The straight sides of the groove should be at least as high as $d_{\rm e} - 2\delta h_2$.

Figure 1

Figure 2

1) At present at the stage of draft.

ď

Table 1

Dimensions and tolerances in millimetres

Groove section ¹⁾	w _e	δh_1	δh ₂	b _e nom.	h _g min.	е	Tolerance on e ²⁾	Sum of deviations of $e^{3)}$	f min.
9J	8,9	0,20	0,30	0,6	8,9	10,3	± 0,25	± 0,5	9
15J	15,2	0,25	0,40	1,3	15,2	17,5	± 0,25	± 0,5	13
20 J	20,9	0,30	0,45	1,8	20,9	24,4	± 0,30	± 0,6	17
25 J	25,4	0,30	0,50	2,5	25,4	28,6	± 0,40	± 0,8	19

1) It will be left to the discretion of the individual national standards organization whether either groove section 20J or groove section 25J will be adopted in their national standards.

2) These tolerances apply to the distance between the axes of two consecutive groove profiles.

3) The sum of all deviations from the nominal value e for all grooves in any one pulley should not exceed the value stated in this table.

3.2 Effective diameters, d_e

3.2.1 Series of effective diameters

See table 2.

3.2.2 Groove angles in relation to given effective diameters

See table 3.

iTeh STANDARD PREVIEW

3.2.3 Smallest effective diameters in relation to given groove sections 1.21)

See table 4.

<u>ISO 5290:1985</u> https://standards.iteh.ai/catalog/standards/sist/ace8d489-1a92-47c4-8f88-5d4b87f6d502/iso-5290-1985

Table 2

							Bintonoloni	
	9	j	15	Groove	e section	J	25	J
min.	Status ¹⁾	d _e max.	Status ¹⁾	d _e max.	Status ¹⁾	d _e max.	Status ¹⁾	d _e max.
67,0 71,0	*	71,0 75,0						
75,0 80,0	* **	79,0 84,0						
85,0 90,0	*	89,0 94,0						
95,0 100,0	* **	99,0 104,0						
106,0 112,0	* **	110,0 116,0						
118,0 125,0	* **	122,0 129,0						
132,0 140,0	* **	136,0 144,0						
150,0 160,0	* **	154,0 164,0						
170,0 180,0	*	184,0	**	187,0				
190,0 200,0	**	204,0	* **	197,0 207,0				
	min. 67,0 71,0 75,0 80,0 85,0 90,0 95,0 100,0 106,0 112,0 118,0 125,0 132,0 140,0 150,0 160,0 170,0 180,0 190,0 200,0	min. Status ¹⁾ 67,0 * 71,0 ** 75,0 * 80,0 ** 80,0 ** 90,0 ** 95,0 * 100,0 ** 106,0 * 112,0 ** 132,0 * 140,0 ** 150,0 * 170,0 * 180,0 * 190,0 200,0	9J min. Status ¹⁾ d _e max. 67,0 * 71,0 71,0 ** 75,0 75,0 * 79,0 80,0 ** 84,0 85,0 * 89,0 90,0 ** 94,0 95,0 * 99,0 100,0 ** 104,0 112,0 ** 100,0 112,0 ** 122,0 125,0 ** 136,0 140,0 ** 136,0 140,0 ** 154,0 150,0 * 154,0 160,0 * 184,0 190,0 ** 204,0	$9J$ 15 min.Status1) d_{e} max.Status1) $67,0$ * $71,0$ 11 $67,0$ * $71,0$ 110 $71,0$ ** $75,0$ 110 $75,0$ * $79,0$ $80,0$ ** $84,0$ $85,0$ * $89,0$ $90,0$ ** $94,0$ $95,0$ * $99,0$ $100,0$ ** $104,0$ $112,0$ ** $110,0$ $112,0$ ** $122,0$ $132,0$ * $136,0$ $140,0$ ** $144,0$ $150,0$ * $154,0$ $170,0$ ** $184,0$ $180,0$ ** $204,0$	Grooved $9J$ $15J$ Status ¹) $d_e \\ max.$ Status ¹) $d_e \\ max.$ $67,0$ * $71,0$ ** $75,0$ * $75,0$ * $79,0$ * $84,0$ * $80,0$ ** $84,0$ * * $85,0$ * $89,0$ * * $95,0$ * $99,0$ * * $95,0$ * $99,0$ * * $106,0$ * $110,0$ * * $112,0$ ** $122,0$ * * $132,0$ * $136,0$ * * $140,0$ ** $144,0$ * * $180,0$ * $184,0$ ** $187,0$ $190,0$ * $204,0$ ** $197,0$	Groove section9J15J20min.Status1) d_{e} max.Status1) d_{e} max.Status1)67,0*71,0**75,0171,0**79,011180,0**84,011185,0*89,011190,0**94,011195,0*99,0111106,0*110,0111118,0*122,0111132,0*136,0111140,0**164,0111150,0*154,0111170,0*184,0**187,01190,0**204,0**207,01	Groove section $9J$ $15J$ $20J$ min. Status ¹⁾ $\frac{d_e}{max.}$ Status ¹⁾ $\frac{d_e}{max.}$ Status ¹⁾ $\frac{d_e}{max.}$ $67,0$ * $71,0$ Status ¹⁾ $\frac{d_e}{max.}$ Status ¹⁾ $\frac{d_e}{max.}$ $77,0$ * $79,0$ $80,0$ * $84,0$ $80,0$ * $89,0$ $90,0$ * $99,0$ $90,0$ * $99,0$ $90,0$ * $104,0$ $112,0$ * $110,0$ $125,0$ * $136,0$	Groove section 20 J 25 min. Status ¹¹ d_{e} max. Status ¹¹

Table 2 (concluded)

Dimensions in millimetres

		T .			Groov	e section			
0	d _e	9J	1	15.	 	20	J	2	5J
nom.	min.	Status ¹⁾	d _e max.	Status ¹⁾	d _e max.	Status ¹⁾	d _e max.	Status ¹⁾	d _e max.
212 224	212,0 224,0	*	228,0	*	219,0 231,0				
236	236,0	**	254.0	*	243,0				
265	265,0		204,0	*	272,0	*	274,6		
280	280,0	*	284,5	**	287,0	**	289,6		•···
300 315	300,0 315,0	**	320,0	*	307,0 322,0	* **	309,6 324,6	**	320,0
335 355	335,0 355,0	*	360,7	*	362,0	*	344,6 364,6	* **	340,4 360,7
375 400	375,0 400,0	**	406.4	**	407.0	*	384,6 409.6	* **	381,0 406 4
425	425,0	*	457.2	*	AE7 2	*	434,6	*	431,8
475	475,0	**	F09.0	**	407,2 500.0	*	484,6	*	482,6
530	530,0		508,0		508,0		509,6	*	508,0 538,5
560	560,0	*	569,0	*	569,0	*	569,6	**	569,0
600 630	600,0 630,0	i Teh	S 640,1	NDARI	6 40, R	EVIEW	640,1	*	609,6 640,1
670 710	670,0 710,0	*	(751,4a	ndards.i	teh,₄a	i) .	721,4	*	721,4
750 800	750,0 800,0	*	812,8	ISO*3290:19	85 812,8	**	812,8	**	812,8
850 900	850,0 900,0	https://standar	ds.iteh.ai/ca 5d4	italog/standards/si b87f6d502/iso-5/	st/ace8d48 290 914 845	9-1a92-47c4-8 *	f88- 914,4	*	914,4
950 1 000	950,0 1 000,0			**	1 016,0	**	1 016,0	**	1 016,0
1 060 1 120	1 060,0 1 120,0			*	1 137,9	*	1 137,9	*	1 137,9
1 180 1 250	1 180,0 1 250.0			**	1 270.0	**	1 270.0	**	1 270.0
1 320 1 400	1 320,0			*	1 422 4	*	1 422 4	*	1 472 4
1 500	1 500,0			*	1 625 6	**	1 625 6	**	1 625 6
1 700	1 700,0			*	1 979 0	*	1 010 0	*	1 020,0
1 900	1 900,0				I 020,0		0.000.0		0.000.0
2 000	2 000,0					**	2 032,0	**	2 032,0
2 240 2 360	2 240,0 2 360.0							*	2 275,8
2 500	2 500,0							**	2 540,0

1) Effective diameters marked with a double asterisk (**) are especially recommended.

Effective diameters marked with a single asterisk (*) are recommended.

ו•

			Dim	ensions in millimetres
		Groove	angle, α	
Groove section	36°	38°	40°	42°
		Effective d	liameter, d _e	
9J	d _e ≤ 90	90 < d _e < 150	$150 < d_{\rm e} \leq 300$	d _e > 300
15J		$d_{\rm e} < 250$	$250 < d_{\rm e} \leq 400$	$d_{\rm e} > 400$
20 J		d _e ≤ 335	335 < d _e < 500	$d_{e} > 500$
25 J		d _e ≤ 400	400 < d _e < 560	d _e > 560

Table 3

Та	ы	A	4
		υ.	-

Groove	Smallest effective diameter
section	mm
9J	67
15J	180
20 J	265
25 J	315

iTeh STANDARD PREVIEW (standards.iteh.ai)

Annex 150 5290:1985

https://standards.iteh.ai/catalog/standards/sist/ace8d489-1a92-47c4-8f88-

Background information

A.1 In this International Standard, the effective width is used as a basic dimension to describe the pulley grooves. For this reason, only the effective diameter of the pulley can be considered as the nominal diameter.

A.2 A series of preferred numbers was considered a good basis on which to grade the diameters and it was decided that this should be the R20 series, which could be complemented, for smaller diameters, by intermediate values from the R40 series. It was also decided that values from the R10 series should be especially recommended.

A.3 As the industry in the USA requires a tolerance of ${}^{+1,6}_{0}$ % to allow for the difference between inch and millimetre dimensions, the interests of all parties can be covered by choosing, as the maximum effective diameter, the nominal diameter plus:

4 mm for pulleys with groove section 9J,

7 mm for pulleys with groove section 15J,

9,6 mm for pulleys with groove section 20J,

1,6 % for pulleys with groove section 25J.

The minimum effective diameter can be equal to the nominal diameter because all interested parties require positive tolerances only.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 5290:1985</u> https://standards.iteh.ai/catalog/standards/sist/ace8d489-1a92-47c4-8f88-5d4b87f6d502/iso-5290-1985

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 5290:1985</u> https://standards.iteh.ai/catalog/standards/sist/ace8d489-1a92-47c4-8f88-5d4b87f6d502/iso-5290-1985