INTERNATIONAL STANDARD

First edition 2003-01

Reference number IEC 62053-22:2003(E)

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

- IEC Web Site (<u>www.iec.ch</u>)
- Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/searchub) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

IEC Just Published

This summary of recently issued publications (www.iec.ch/online_news/justpub) is also available by email. Please contact the Customer Service Centre (see below) for further information.

Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

cc9-7f10-4a0e-acc8-4eac094dfead/iec-62053-22-2003

Email: <u>custeerv@iec.ch</u> Tel: +41 22 919 02 11 Fax: +41 22 919 03 00

INTERNATIONAL STANDARD

First edition 2003-01

$\ensuremath{\mathbb{C}}$ IEC 2003 Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

CONTENTS

FO	REWORD	5
INT	FRODUCTION	7
1	Scope	9
2	Normative references	9
3	Terms and definitions	11
4	Standard electrical values	11
5	Mechanical requirements	11
6	Climatic conditions	11
7	Electrical requirements	11
	7.1 Power consumption	11
	7.2 Influence of short-time overcurrents	13
	7.3 Influence of self-heating	13
	7.4 AC voltage test	13
8	Accuracy requirements	15
	8.1 Limits of error due to variation of the current	15
	8.2 Limits of error due to influence quantities	17
	8.3 Test of starting and no-load condition	21
	8.4 Meter constant	23
	8.5 Accuracy test conditions	23
	8.6 Interpretation of test results	25
Anr	nex A (normative) Test circuit diagram for sub-harmonics	
Anr	nex B (normative) Electromagnet for testing the influence of externally produced	
ma	ignetic fields	31-200
Fig	jure A.1 – Test circuit diagram (informative)	27
Fig	jure A.2 – Burst fired wave-form	29
Fig	jure A.3 – Informative distribution of harmonics (the Fourier analysis is not complete)	29
Fig	ure B.1 – Electromagne) for testing the influence of	
exte	ernally produced magnetic fields	31
Tab	ble 1 – Power consumption including the power supply	11
Tab	ble 2 – Variations due to self-heating	13
Tab	ble 3 – AC voltage tests	15
Tab	ble 4 – Percentage error limits (single-phase meters and polyphase meters with	-
bala	anced loads)	15
Tab with	ble 5 – Percentage error limits (polyphase meters carrying a single-phase load, but h balanced polyphase voltages applied to voltage circuits)	17
Tab	ble 6 – Influence quantities	17
Tab	ble 7 – Voltage and current balance	23
Tab	ble 8 – Reference conditions	25
Tab	ble 9 – Interpretation of test results	25

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRICITY METERING EQUIPMENT (AC) – PARTICULAR REQUIREMENTS –

Part 22: Static meters for active energy (classes 0,2 S and 0,5 S)

FOREWORD

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closel) with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of the IEC on technical matters, express as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
- 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.
- 6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
- International Standard IEC 62053-22 has been prepared by IEC technical committee 13: Equipment for electrical energy measurement and load control.

This standard together with IEC 62052-11 cancels and replaces IEC 60687 second edition 1992 and constitutes a technical revision.

The text of this standard is based on the following documents:

Ť	FDIS	Report on voting	
	13/1283/FDIS	13/1290/RVD	

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until 2012. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

INTRODUCTION

This part of IEC 62053 is to be used with the following relevant parts of the IEC 62052, IEC 62053 and IEC 62059 series, Electricity metering equipment:

- IEC 62052-11:2003, *Electricity metering equipment (a.c.) General requirements, tests and test conditions Part 11: Metering equipment*
- IEC 62053-11:2003, *Electricity metering equipment (a.c.) Particular requirements Part 11: Electromechanical meters for active energy (classes 0,5, 1 and 2)*

Replaces particular requirements of IEC 60521: 1988 (2nd edition)

IEC 62053-21:2003, Electricity metering equipment (a.c.) – Particular requirements – Part 21: Static meters for active energy (classes 1 and 2)

Replaces particular requirements of IEC 61036; 2000 (2Nd edition)

IEC 62053-22:2003, Electricity metering equipment (a.c.) Particular requirements – Part 22: Static meters for active energy (classes 0,2 S and 0,5 S)

Replaces particular requirements of IEC 60687: 1992 (2nd edition)

- IEC 62053-31:1998, Electricity metering equipment (a.c.) Particular requirements Part 31: Pulse output devices for electromechanical and electronic meters (two wires only)
- IEC 62053-61:1998, Electricity metering equipment (a.c.) Particular requirements Part 61: Power consumption and voltage requirements
- IEC 62059-11:2002, Electricity metering equipment (a.c.) Dependability Part 11: General concepts

IEC 62059-21:2002, Electricity metering equipment (a.c.) – Dependability – Part 21: Collection of meter dependability data from the field

This part is a standard for type testing electricity meters. It covers the particular requirements for meters, being used indoors. It does not deal with special implementations (such as metering-part and/or displays in separate nousings).

This standard is intended to be used in conjunction with IEC 62052-11. When any requirement in this standard concerns an item already covered in IEC 62052-11, the requirements of this standard take precedence over the requirements of IEC 62052-11.

This standard distinguishes:

- between accuracy class index 0,2 S and accuracy class index 0,5 S meters;
- between protective class I and protective class II meters;
- between meters for use in networks equipped with or without earth fault neutralizers.

The test levels are regarded as minimum values that provide for the proper functioning of the meter under normal working conditions. For special application, other test levels might be necessary and should be agreed on between the user and the manufacturer.

ELECTRICITY METERING EQUIPMENT (AC) – PARTICULAR REQUIREMENTS –

Part 22: Static meters for active energy (classes 0,2 S and 0,5 S)

1 Scope

This part of IEC 62053 applies only to newly manufactured static watt-hour meters of accuracy classes 0,2 S and 0,5 S, for the measurement of alternating current electrical active energy in 50 Hz or 60 Hz networks and it applies to their type tests only.

It applies only to transformer-operated static watt-hour meters for indeor application consisting of a measuring element and register(s) enclosed together in a meter case. It also applies to operation indicator(s) and test output(s). If the meter has a measuring element for more than one type of energy (multi-energy meters), or when other functional elements, like maximum demand indicators, electronic tariff registers, time switches, ripple control receivers, data communication interfaces, etc. are enclosed in the meter case, then the relevant standards for these elements also apply.

NOTE IEC 60044-1 describes transformers having a measuring range of 0.01 I_n to 1.2 I_n , or of 0.05 I_n to 1.5 I_n , or of 0.05 I_n to 2 I_n and transformers having a measuring range of 0.01 I_n to 1.2 I_n for accuracy classes 0.2 S and 0.5 S. As the measuring ranges of a meter and its associated transformers have to be matched and as only transformers of classes 0.2 S and 0.5 S have the accuracy required to operate the meters of this standard, the measuring range of the meter will be 0.01 I_n to 1.2 I_n .

It does not apply to:

- watt-hour meters where the voltage across the connection terminals exceeds 600 V (lineto-line voltage for meters for polyphase systems);
- portable meters and meters for outdoor use; -22:20

https://stadata interfaces to the register of the meter; c9-7f10-4a0e-acc8-4eac094dfead/iec-62053-22-2003

reference meters.

The dependability aspect is covered by the documents of the IEC 62059 series.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60044-1:1996, Instrument transformers – Part 1: Current transformers

IEC 60736:1982, Testing equipment for electrical energy meters

IEC 62052-11:2002, *Electricity metering equipment (a.c.) – General requirements, tests and test conditions – Part 11: Metering equipment*

IEC 62053-61:1998, *Electricity metering equipment (a.c.) - Particular requirements - Part 61: Power consumption and voltage requirements*

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 62052-11 apply.

4 Standard electrical values

The values given in IEC 62052-11 apply.

5 Mechanical requirements

The requirements of IEC 62052-11 apply.

6 Climatic conditions

The conditions given in IEC 62052-11 apply.

7 Electrical requirements

In addition to the electrical requirements in IEC 62052-11, meters shall fulfil the following requirements.

7.1 Power consumption

The power consumption in the voltage and current circuits shall be determined at reference conditions given in 8.5 by any suitable method. The overall maximum error of the measurement of the power consumption shall not exceed 5 %.

The active and apparent power consumption taken at reference temperature and reference https://frequency, by each voltage circuit at reference voltage and by each current circuit at rated 2003 current, shall not exceed the values shown in Table 1.

Table 1 - Power consumption including the power supply

	iner eeneempron menering me			
$\langle V \rangle$	Power supply connected to the voltage circuits	Power supply not connected to the voltage circuits		
Voltage circuit	2 W and 10 VA	0,5 VA		
Current circuit	1 VA	1 VA		
Auxiliary power supply	_	10 VA		

NOTE 1 In order to match voltage and current transformers to meters, the meter manufacturer should state whether the burden is inductive or capacitive.

NOTE 2 The above figures are mean values. Switching power supplies with peak power values in excess of these specified values are permitted, but it should be ensured that the rating of associated voltage transformers is adequate.

NOTE 3 For multifunctional meters see IEC 62053-61.

7.2 Influence of short-time overcurrents

Short-time overcurrents shall not damage the meter. The meter shall perform correctly when back to its initial working condition and the variation of error at rated current and unity power factor shall not exceed 0.05 %.

The test circuit shall be practically non-inductive and the test shall be performed for polyphase meters phase-by-phase.

After the application of the short-time overcurrent with the voltage maintained at the terminals, the meter shall be allowed to return to the initial temperature with the voltage circuit(s) energized (about 1 h).

The meter shall be able to carry for 0,5 s a current equal to 20 I_{max} with a relative tolerance of +0 % to -10 %.

7.3 Influence of self-heating

The variation of error due to self-heating shall not exceed the values given in Table 2.

Value of current	Power factor	in percentage error s of class
	0,25	0,5 S
I.	0,1	0,2
max	0,5 inductive 0,1	0,2

Table 2 – Variations due to self-heating

The test shall be carried out as follows: after the voltage circuits have been energized at reference voltage for at least 2 h without any current in the current circuits, the maximum current shall be applied to the current circuits. The meter error shall be measured at unity power factor immediately after the current is applied and then at intervals short enough to 200

allow a correct drawing to be made of the curve of error variation as a function of time. The test shall be carried out for at least 1 h, and in any event until the variation of error during 20 min does not exceed 0.05%.

The same test shall then be carried out at 0,5 (inductive) power factor.

The cable to be used for energizing the meter shall have a length of 1 m and a cross-section of between 1,5 mm² and 2,5 mm².

7.4 AC voltage test

The a.c. voltage test shall be carried out in accordance with Table 3.

The test voltage shall be substantially sinusoidal, having a frequency between 45 Hz and 65 Hz, and applied for 1 min. The power source shall be capable of supplying at least 500 VA.

During the tests relative to earth, the auxiliary circuits with reference voltage equal to or below 40 V shall be connected to earth.

All these tests shall be carried out with the case closed and the cover and terminal covers in place.

During this test no flashover, disruptive discharge or puncture shall occur.

Test	Applicable to	Test voltage r.m.s	Points of application of the test voltage	
A	Protective class I meters	2 kV	 a) Between, on the one hand, all the current and voltage circuits as well as the auxiliary circuits whose reference voltage is over 40 V, connected together, and, on the other hand, earth. 	
		2 kV	 b) Between circuits not intended to be connected together in service. 	
	Protective class II meters	4 kV	 a) Between, on the one hand, all the current and voltage circuits as well as the auxiliary circuits whose reference voltage is over 40 V, connected together, and, on the other hand, earth. 	
В		2 kV	 b) Between circuits not intended to be connected together in service. 	
		_	 c) A visual inspection for compliance with the conditions of 5.7 of IEC 62052-11. 	

Table	3 –	AC	voltage	tests
-------	-----	----	---------	-------

8 Accuracy requirements

Tests and test conditions given in IEC 62052-11 apply.

8.1 Limits of error due to variation of the current

When the meter is under the reference conditions given in 8.5, the percentage errors shall not exceed the limits for the relevant accuracy class given in Tables 4 and 5.

If the meter is designed for the measurement of energy in both directions, the values in Table 4 and Table 5 shall apply for each direction.

(single-phase meters and polyphase meters with balanced loads)				
Value of augrent	Dower feator	Percentage error limits for meters of class		
value of current	Power lactor	0,2 S	0,5 S	
0,01 / _n ≤ / < 0,05 / _n	1	±0,4	±1,0	
$0,05 I_{n} \le I \le I_{max}$	1	±0,2	±0,5	
	0,5 inductive	±0,5	±1,0	
$0,02 I_{n} \le I \le 0,1 I_{n}$	0,8 capacitive	±0,5	±1,0	
0112121	0,5 inductive	±0,3	±0,6	
$0, 1 I_n \leq I \leq I_{max}$	0,8 capacitive	±0,3	±0,6	
When specially requested by the user: from	0,25 inductive	±0,5	±1,0	
$0,1 I_{n} \le I \le I_{max}$	0,5 capacitive	±0,5	±1,0	

Table 4 – Percentage error limits single-phase meters and polyphase meters with balanced loads)