INTERNATIONAL STANDARD

First edition
1989－07－15

Synchronous belt drives－Belts－
Part 2：
Pitch codes MXL and XXL－Metric dimensions
\section*{iTeh STANDARD PREVIEW}
Transmissions synchrones par courroies－Courroies－
Partie 2：Symboles de pas MXL et XXL－Dimensions métriques
ISO 5296－2：1989

https：／／standards．iteh．ai／catalog／standards／sist／e1d274e5－fea3－44fa－8a77－
4517096e4920／iso－5296－2－1989

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in, accordance with ISO procedures requiring at least 75% approval by the member bodiestvoting, _L International Standard ISO 5296-2 was prepared by fechnical committee isoltc 4n,i) Pulleys and belts (including veebelts).

ISO 5296-2:1989
ISO 5296 consists of the following parts, unders the general title Synchronous 2 belt5-fea3-44fa-8a77drives - Belts:

4517096e4920/iso-5296-2-1989

- Part 1: Pitch codes MXL, XL, L, H, XH and XXH - Metric and inch dimensions
- Part 2: Pitch codes MXL and XXL - Metric dimensions

Annex A of this part of ISO 5296 is for information only.

(C) ISO 1989

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization
Case postale $56 \bullet \mathrm{CH}-1211$ Genève 20 - Switzerland
Printed in Switzerland

Synchronous belt drives - Belts -

Part 2:

Pitch codes MXL and XXL - Metric dimensions

1 Scope

This part of ISO 5296 specifies the principal characteristics of synchronous endless belts for use in synchronous belt drives ${ }^{1)}$ for mechanical power transmission and where positive indexing or synchronization may be required.
The principal characteristics inclưde elh STANDART
a) nominal tooth dimensions;
b) length and width dimensions;
c) tolerances on these dimensionsdards.iteh ai/catalog/standards
d) length measuring specifications.

This part of ISO 5296 applies to synchronous belt drives having a pitch equal to $2,032 \mathrm{~mm}$ or $3,175 \mathrm{~mm}$ designated by the symbols MXL and XXL.

As far as the dimensions are concerned, belts with pitch code MXL are interchangeable with those of pitch code MXL in ISO 5296-1.

2 Normative reference

The following standard contains provisions which, through reference in this text, constitute provisions of this part of ISO 5296. At the time of publication, the edition indicated was valid. All standards are subject to revision, and parties to agreements based on this part of ISO 5296 are encouraged to investigate the possibility of applying the most recent edition of the standard indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 5296-1 : 1989, Synchronous belt drives - Belts - Part 1: Pitch codes MXL, XL, L, H, XH and XXH - Metric and inch dimensions

3 Pitch codes

The pitch code and corresponding belt pitch are given in table 1.

Table 1 - Pitch codes

PRPitch code IE	Belt pitch*) mm
UEII. ${ }^{\text {mxL }}$	2,032
XXL	3,175

4 Dimensions and tolerances

4.1 Tooth dimensions

The nominal belt tooth dimensions (see figure 1) are given in table 2.

Figure 1 - Tooth profile

[^0]Table 2 - Nominal tooth dimensions

									Dimensions in millimetres			
Pitch code	2β degrees	S	h_{t}	r_{r}	r_{a}							
MXL	40	1,14	0,51	0,13	0,13							
XXL	50	1,73	0,76	0,2	0,3							

4.2 Lengths

The belt pitch lengths and tolerances are given in table 3.

Table 3 - Pitch lengths and tolerances
Dimensions in millimetres

Number of teeth		Pitch length	Tolerance
MXL	XXL		
45	-	91,44	
50	-	101,6	
55	-	111,76	
60	-	121,92	
-	40	127	
70	-	142,24	
75	48	152,4	
80	-	162,56	
-	56	177,8	
90	-	182,88	
100	64	203,2	
110	-	223,52	
-	72	228,6	
125	80	254	
-	88	279,4	
140	-	284,48	
-	96	304,8	
155	-	314,96	
-	104	330,2	
175	112	355,6	
-	120	381	
200	128	406,4	
225	144	457,2	
250	160	508	
-	176	558	

4.3 Widths and heights

The belt widths and tolerances, and the nominal heights, are given in table 4.

Table 4 - Widths and heights

Pitch code	Nominal heights (see figure 1) h_{s}	Wimensions in millimetres		
		Dimension	Designation	Tolerance for belt width
$\mathbf{M X L}$	1,14	3,2	$\mathbf{3 , 2}$	
XXL	1,52	4,8	$\mathbf{4 , 8}$	$+0,5$
		6,4	$\mathbf{6 , 4}$	$-0,8$

5 Belt designation

The belt designation consists of the letter B (for belt), the number of teeth, the pitch code and the width designation in millimetres.

EXAMPLE

A synchronous belt of 100 teeth, pitch code MXL $(2,032 \mathrm{~mm}$ pitch) and belt width $4,8 \mathrm{~mm}$ is designated:

B 100 MXL 4,8

NOTE - The designation of this belt according to ISO 5296-1 is 80,0 MXL 019.

6 Pitch length measurement

6.1 Measurement

The pitch length shall be determined in accordance with ISO 5296-1 : 1989, clause 5.

6.2 Measuring pulleys

The dimensions and tolerances of the pulleys for use in measuring belt lengths are given in table 5 .

The appropriate minimum clearance, C_{m}, is shown in figure 2 and able 5: e1 d274e5-fea3-44fa-8a77-

Figure 2 - Clearance between measuring pulley and belt

Table 5 - Belt pitch length measuring pulleys
Dimensions in millimetres

Pitch code	Number of teeth	Pitch circumference	Outside diameter $\pm 0,013$	Radial run-out TIR1)	Axial run-out TIR	Minimum clearance C_{m}
MXL	20	40,64	12,428	0,013	0,025	0,25
XXL	16	50,8	15,662	0,3		
1$)$ Total indicator reading (maximum)						

6.3 Total measuring force

The total forces to be applied for measuring belt pitch lengths are given in table 6 .
Table 6 - Total measuring force

ISO 5296-2:1989
https://standards.iteh.ai/catalog/standards/sist/e1d274e5-fea3-44fa-8a77-4517096e4920/iso-5296-2-1989

Annex A

(informative)

Bibliography

ISO 5288 : 1982, Synchronous belt drives - Vocabulary.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5296-2:1989
https://standards.iteh.ai/catalog/standards/sist/e1 d274e5-fea3-44fa-8a77-
4517096e4920/iso-5296-2-1989

iTeh STANDARD PREVIEW (sthis page intentionally teft blank

ISO 5296-2:1989
https://standards.iteh.ai/catalog/standards/sist/e1d274e5-fea3-44fa-8a77-4517096e4920/iso-5296-2-1989

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5296-2:1989
https://standards. iteh.ai/catalog/standards/sist/e1d274e5-fea3-44fa-8a77-
4517096e4920/iso-5296-2-1989

[^0]: 1) Synchronous belt drives have been known by various titles in the past: for example, timing belt drives, positive belt drives, gear belt drives.
