INTERNATIONAL STANDARD

ISO 5302

First edition 2003-07-15

Vacuum technology — Turbomolecular pumps — Measurement of performance characteristics

Technique du vide — Pompes turbomoléculaires — Mesurage des caractéristiques fonctionnelles

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5302:2003 https://standards.iteh.ai/catalog/standards/sist/ffd5b19f-1376-4c8f-a188-57b1e82cb06e/iso-5302-2003

Reference number ISO 5302:2003(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5302:2003 https://standards.iteh.ai/catalog/standards/sist/ffd5b19f-1376-4c8f-a188-57b1e82cb06e/iso-5302-2003

© ISO 2003

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Page

Forewo	ord	. iv
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Symbols and abbreviated terms	3
5 5.1 5.2 5.3	Apparatus for volume flow rate (pumping speed) measurement Test dome for the throughput method: Inlet pressures > 10^{-4} Pa (10^{-6} mbar) Test dome for the standard conductance method: Inlet pressures < 10^{-4} Pa (10^{-6} mbar) Pressure gauges	3 3 4 4
6 6.1 6.2 6.3	Test methods and procedures Principle Measurement of partial pressures Size of backing pump	5 5 5 5
6.4 6.5 6.6	Volume flow rate (pumping speed) Methods of measurement of volume flow rate (pumping speed) Test procedures	6 6 7
6.7 6.8 6.9	Maximum throughput (standards.itch.ai) Critical backing pressure Minimum operational pressure	10 10 10
6.10 6.11	Compression ratio ISO 5302:2003 Vibration https://standards.iteh.ai/catalog/standards/sist/ftd5b19f-1376-4c8f-a188-	11 12
7	Test report: Additional parameters	13
Annex	A (informative) Derivation of Equations (1) and (2)	14

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 5302 was prepared by Technical Committee ISO/TC 112, *Vacuum technology*, Subcommittee SC 3, *Vacuum pumps — Performance*.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5302:2003 https://standards.iteh.ai/catalog/standards/sist/ffd5b19f-1376-4c8f-a188-57b1e82cb06e/iso-5302-2003

Vacuum technology — Turbomolecular pumps — Measurement of performance characteristics

1 Scope

This International Standard specifies methods for the measurement of performance characteristics of turbomolecular pumps. It is applicable to all sizes and all types of turbomolecular pumps

- a) with mechanical or magnetic bearings, and
- b) with or without an additional drag stage.

NOTE Since turbomolecular pumps are backed by primary pumps, their performance cannot be completely defined without having the following in addition to the curve of the volume flow rate against suction pressure:

- the throughput curve,
- the compression ratio curve, and
- the curve for the variation in inlet pressure,

over the whole of the range concerned and for various gases 2003 https://standards.iteh.ai/catalog/standards/sist/ffd5b19f-1376-4c8f-a188-57b1e82cb06e/iso-5302-2003

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3529-2, Vacuum technology — Vocabulary — Part 2: Vacuum pumps and related terms

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 3529-2 and the following apply.

3.1

critical backing pressure

 p_{c}

maximum backing pressure p_2 while the pump still has a compression rate $p_2/p_1 \ge 2$ and the purge gas flow is on

NOTE p_1 is the (high) vacuum pressure on inlet.

3.2

maximum throughput

Q_{max}

highest gas load, in pascal litres per second (Pa·I/s) [millibar litres per second (mbar·I/s)], that can be pumped continuously without damage or destruction of the pump

The limiting parameter depends on the design of the pump. In most cases it will be given as a maximum NOTE temperature at a defined location. The value of Q_{max} depends on the gas pumped, the backing pump used, and the conditions of cooling, etc.

3.3

volume flow rate

 q_V

volume of gas which, under ideal conditions, flows from the test dome through the pump inlet per unit time

NOTE 1 For practical reasons, however, the volume flow rate of a given pump and for a given gas is conventionally taken as equal to the quotient of the throughput of this gas and of the equilibrium pressure at a given point. The units adopted for the volume flow rate are cubic metres per hour (m^{3}/h) or litres per second (I/s).

The term "pumping speed" and symbol "S" are sometimes used instead of "volume flow rate". NOTE 2

3.4

ultimate pressure

value towards which the pressure in the test dome approaches asymptotically

It is the lowest pressure obtainable with the pump. ARD PREVIEW NOTE 1

NOTE 2 It is recommended not to give ultimate pressure values in the manufacturer's specification. Therefore, no procedure to measure the ultimate pressure is given in this International Standard, However, if the manufacturer lists the ultimate pressure, the operating conditions under which the measurement is made should be stated.

3.5

ISO 5302:2003 https://standards.iteh.ai/catalog/standards/sist/ffd5b19f-1376-4c8f-a188minimum operational pressure 57b1e82cb06e/iso-5302-2003

p_0

pressure obtained in the dome 48 h after the bake-out procedure

3.6

compression ratio

K_{eff} ratio of the backing pressure p_2 to the inlet pressure p_1 of the turbomolecular pump

$$K_{\text{eff}} = p_2/p_1$$

To obtain the compression rate at zero flow rate, K_0 , for a given gas, the partial pressure of this gas in the NOTE outlet duct should be at least 90 % of p_2 .

3.7

maximum working pressure

*p*_{1max}

highest pressure on the inlet side that the turbomolecular pump and the driving device can withstand without being damaged

4 Symbols and abbreviated terms

Symbol	Designation	Unit
С	conductance	m ³ /s (=10 ³ l/s)
d	orifice diameter	m
D	nominal diameter of test dome	m
K _{eff}	compression ratio of vacuum pump	—
$K_{\rm eff,a},K_{\rm eff,b}$	special values of compression ratio	—
<i>K</i> ₀	compression ratio at zero throughput	—
L	thickness of orifice wall	m
M	molecular mass of gas	kg/mol
<i>p</i> ₀	minimum operational pressure on inlet	Pa (or mbar)
<i>p</i> ₁	(high) vacuum pressure on inlet	Pa (or mbar)
<i>p</i> _{1max}	maximum working pressure on inlet	Pa (or mbar)
<i>p</i> ₂	vacuum pressure in backing line	Pa (or mbar)
p_{a}, p_{b}	special values of pressure	Pa (or mbar)
p _c	critical backing pressure	Pa (or mbar)
Q	throughput of vacuum pump \mathbf{RD} \mathbf{PREV}	Palls (or mbar·l/s)
Q_0	leakage gas load and ards, iteh, ai)	Pa·l/s (or mbar·l/s)
Q_{T}	test gas load	Pa·l/s (or mbar·l/s)
$Q_{\sf max}$	maximum throughput ISO 5302:2003	Pa·l/s (or mbar·l/s)
Q ₁ , Q ₂	https://standards.iteb.a/catalog/standards/sist/ftd5b19f-13/(special values of throughput 5/b162cp0be/iso-5302-2003	Pa·I/s (or mbar·I/s)
R	ideal gas constant	N⋅m/mol⋅K
q_V	volume flow rate	l/s
q_{V0}	volume flow rate at K_{eff} = 1	l/s
q_{VB}	volume flow rate of backing pump	l/s
$q_{V\mathbf{X}}$	maximum expected volume flow rate (see 6.3)	l/s
Т	absolute temperature	К

5 Apparatus for volume flow rate (pumping speed) measurement

5.1 Test dome for the throughput method: Inlet pressures $> 10^{-4}$ Pa (10⁻⁶ mbar)

For these measurements, use a test dome as shown in Figure 1 with the same nominal diameter D as that of the pump inlet. The face of the dome opposite the inlet flange may be flat, conical or slightly curved with the same average height above the flange as the flat face. The test dome shall be fitted with a device for bake-out ensuring uniform heating of the dome to achieve the minimum operational pressure.

For pumps with an inlet flange diameter less than the nominal diameter DN 100, the diameter of the dome shall correspond to DN 100. The transition to the pump inlet flange shall be made through a 45° taper fitting as short as possible according to Figure 1.

Dimensions in millimetres

Key

- 1 gas inlet
- 2 vacuum gauge connection

iTeh Sfigure 1 D Test dome REVIEW

5.2 Test dome for the standard conductance method: Inlet pressures < 10⁻⁴ Pa (10⁻⁶ mbar)

The test dome shall be cylindrical and of the shape shown in Figure 2. The dome shall be fitted with a device for bake-out that ensures uniform heating of the dome to achieve the minimum operational pressure.

The diameter of the thin wall orifice plate shall be chosen according to the expected flow rate and shall be such that the ratio of the pressures measured at p_a and p_b lies between 3 and 50. Care shall be taken to ensure that at the inlet pressure p_1 the mean free path of the gas particles is not smaller than the orifice diameter *d*.

For pumps with an inlet flange diameter less than the nominal diameter DN 100, the diameter of the dome shall correspond to DN 100. Then the transition to the pump inlet flange shall be made through a 45° taper fitting according to Figure 1.

For pumps with an inlet flange diameter greater than DN 100, the nominal diameter D of the dome shall be equal to the actual diameter of the inlet flange.

5.3 Pressure gauges

Total pressure measurements shall be made using pressure gauges calibrated to within 5 % accuracy for pressures greater than 10^{-4} Pa (10^{-6} mbar), or within 10 % for pressures less than this value.

It is recommended that after completion of the tests, the calibration of the vacuum gauge(s) is checked, for example by comparison with a reference gauge *in situ*.

With the test dome (5.2), the pressure gauge agreement may be ensured by fitting at B a gas admission pipe leading to the pump orifice in the lower part of the dome (see Figure 2). The adjustable valve for gas admission in this pipe line shall be opened so as to obtain approximately the desired pressure. After stabilization, the pressure gauges at the points shown shall give the same readings (p_a and p_b). If not, the required correction can be deduced.

iTeh STANDARD PREVIEW Figure 2 – Test dome (standards.iteh.ai)

6 Test methods and procedures ISO 5302:2003

https://standards.iteh.ai/catalog/standards/sist/ffd5b19f-1376-4c8f-a188-57b1e82cb06e/iso-5302-2003

6.1 Principle

Measurements are made with 99,9 % (by mass) pure test gas: nitrogen, hydrogen, helium and argon.

6.2 Measurement of partial pressures

For measurements of backing pressure, a pressure gauge with a trap may be used. For measurements of inlet pressure, a partial pressure gas analyser supplemented by a total pressure gauge may be used.

Partial pressure gas analysers used at the pump inlet shall have sufficient resolving power in the mass range from 1 to 100.

6.3 Size of backing pump

The effective volume flow rate, q_V , of a turbomolecular pump depends on the volume flow rate q_{V0} at zero pressure difference ($p_1 = p_{2}$), the compression ratio K_0 at zero rate of throughput (Q = 0) and the volume flow rate q_{VB} of the backing pump according to the relationship

$$q_{V} = q_{V0} \left(\frac{K_{0} - q_{V}/q_{VB}}{K_{0} - 1} \right)$$
(1)

which may be solved to give

$$q_{V} = \frac{q_{V0}}{1 - 1/K_{0} + q_{V0}/(K_{0} \cdot q_{VB})}$$
(2)

See Annex A for the derivation of these equations.

For small values of K_0 (e.g. for hydrogen, $K_0 \approx 1000$), the volume flow rate of the turbomolecular pump is influenced by the size of the backing pump. This influence may be regarded as small if a backing pump is used with a volume flow rate q_{VB} deduced from

$$\frac{q_{V\mathbf{x}}}{q_{V\mathbf{B}}} < 0.05 \ K_0 \qquad \text{or} \qquad q_{V\mathbf{B}} > 20 \left(\frac{q_{V\mathbf{x}}}{K_0}\right) \tag{3}$$

for the whole pressure range, where $q_{V\mathbf{X}}$ is the expected maximum volume flow rate of the turbomolecular pump.

From Equation (3), the choice of a suitable backing pump may be made for a gas with known value of K_0 from the specification of the turbomolecular pump.

6.4 Volume flow rate (pumping speed)

Under ideal conditions, the volume flow rate is the volume of gas which flows from the test dome through the pump inlet per unit time. For practical reasons, however, the volume flow rate of a given pump and for a given gas is conventionally taken as equal to the quotient of the throughput of this gas and of the equilibrium pressure at a given location.

The units adopted for the volume flow rate q_V are cubic metres per hour (m³/h) or litres per second (l/s).

6.5 Methods of measurement of volume flow rate (pumping speed)

6.5.1 Method for inlet pressures > 10^{-4} Pa (10^{-6} mbar): Throughput method

The method adopted for the measurement of the volume flow rate q_V is the steady pressure method for which the gas throughput, Q, is measured outside the dome. If the pressure p_1 in the test dome, which is measured by a vacuum gauge in the determined area (Figure 1), is held constant, the volume flow rate q_V is obtained by the relationship $\frac{1}{57b1e82cb06e/iso-5302-2003}$

$$q_V = \frac{Q}{p_1 - p_0} \tag{4}$$

where p_0 is the minimum operational pressure in the test dome (see 6.9).

This pressure limit may be shifted to lower pressures, if the accuracy of the flow meter is appropriate.

6.5.2 Method for inlet pressures $< 10^{-4}$ Pa (10^{-6} mbar): Standard conductance method

The method adopted for the measurement of the volume flow rate q_V is the steady pressure method known as "standard conductance" method, in which a thin orifice plate divides the test dome (Figure 2) into two volumes. If pressure is measured in each volume by pressure gauges having the same sensitivity, the volume flow rate is then given by

$$q_V = C \left(\frac{p_a - p_{0a}}{p_b - p_{0b}} - 1 \right)$$
(5)

where *C* is the calculated conductance, taking account of the orifice size and the gas properties. Pressures p_{0a} and p_{0b} are measured inside the dome before admission of the gas. The conductance of the orifice with diameter *d* and thickness *L* may be calculated using the following formula:

$$C = \sqrt{\frac{\pi RT}{32M}} \left(\frac{1}{1 + L/d}\right) d^2$$
(6)

The term 1/(1 + L/d) is a correction factor that can be defined as the average throughput probability.

The formula shall be applied with consistent units. Special values such as

 $R = 8,314 \text{ N} \cdot \text{m/(mol} \cdot \text{K})$

 $M_{\rm air} = 28,8 \times 10^{-3} \, \rm kg/mol$

T = 293 K = 20 °C

will give

 $C_{air} = 91 d^2 / (1 + L/d) \text{ m}^3/\text{s}$

or

 $C_{air} = 91000 d^2 / (1 + L/d) l/s$

where L and d are measured in metres.

6.6 Test procedures

6.6.1 Procedure for the throughput method: Inlet pressures > 10⁻⁴ Pa (10⁻⁶ mbar)

The arrangement of the measuring equipment with the test dome from Figure 1 is given in Figure 3. First, with valve 5 closed, the minimum operational pressure shall prevail in the test dome (see 3.4). Then gas is admitted to the test dome through the adjustable valve 5. Measurements are made with increasing pressures from a threshold value allowing the correct use of the throughput meter 6.

When the required pressure is obtained, wait for at least 5 min. Then measure the pressure, temperature, barometric pressure and either the admitted volume flow rate (when using a flow meter) or the displaced gas volume and time (when using a calibrated burette). If the flow rate remains steady to within ± 1 % for the subsequent 5 min, the measurement at this point may be regarded as valid. If the flow rate is unsteady due to a transient condition, wait until it stabilizes.

If the throughput measurement lasts for more than 60 s, the pressure p_1 in the dome shall be noted at least every minute. If during measurement the pressure varies by more than ± 1 %, the measurement shall be repeated until the readings are stable. Then the throughput is the average of the measured values.

Measurement at three points per pressure decade shall be made up to a value p_1 where the ratio p_2/p_1 becomes 2, or

$$p_2 = 2 p_1$$

(7)

6.6.2 Procedure for the standard conductance method: Inlet pressures $< 10^{-4}$ Pa (10⁻⁶ mbar)

The arrangement of the measuring equipment is given in Figure 4. First, with all valves closed, the minimum operational pressure shall prevail in the test dome (see 6.9). Then the gas is admitted to the test dome through the adjustable valve 5. Take measurements with increasing pressures, beginning from a threshold value of twice that of the minimum operational pressure. When the required pressure p_1 is obtained and remains stable for the following 5 min to within ± 5 %, this point may be regarded as valid.

If pressure is unsteady due to a transient condition, wait until it stabilizes. Measure the pressures p_a and $p_b \equiv p_1$ together with the backing pressure p_2 , and the temperature. If during this measurement one of the pressures varies by more than \pm 5 %, the measurement shall be repeated until stability is obtained. Then the throughput is calculated from the average of the measured values.