

Designation: A581/A581M - 95b (Reapproved 2014) A581/A581M - 22

Standard Specification for Free-Machining Stainless Steel Wire and Wire Rods¹

This standard is issued under the fixed designation A581/A581M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope Scope*

1.1 This specification covers <u>free-machining stainless steels of cold-finished</u> wire and hot-finished wire rods in coils. Wire rods are a semi-finished product primarily for the manufacture of wire. Wire includes rounds, squares, hexagons, and special shapes in the more commonly used types of stainless free-machining <u>free-machining stainless</u> steels designed especially for optimum machinability and for general corrosion and high-temperature service.

Note 1—For wire other than those of the free-machining types, see Specification A580/A580M.

- 1.2 The following alloys are covered: 111 S / S 12 11 C 2 I C S . 1 Tell . 2 I
- 1.2.1 Austenitic alloys: UNS numbers \$20300, \$30300, \$30310, \$30323, and \$30345;
- 1.2.2 Martensitic alloys: UNS numbers \$41600, \$41610, and \$41623; and
- 1.2.3 Ferritic alloys: UNS numbers \$18200, \$18235, \$41603, \$43020, and \$43023. | 10e1e3972d19/astm-a581-a581m-22
- Note 1—For wire other than for free-machining applications, see Specification A580/A580M.
- Note 2—For Free-Machining Stainless Steel Bars, see Specification A582/A582M.
- 1.3 The values stated in either inch-pound units or SI (metric) units are to be regarded separately as standards; standard; within the text and tables, the SI units are shown in [brackets]. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.
 - 1.4 Unless the order specifies the applicable "M" specification designation, the material shall be furnished to the inch-pound units.
 - 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.17 on Flat-Rolled and Wrought Stainless Steel.

Current edition approved March 1, 2014Sept. 1, 2022. Published April 2014September 2022. Originally approved in 1967. Last previous edition approved in 20092014 as A581/A581M – 95b (2009).(2014). DOI: 10.1520/A0581_A0581M-95BR14.10.1520/A0581_A0581M-22.

2. Referenced Documents

2.1 ASTM Standards:²

A555/A555M Specification for General Requirements for Stainless Steel Wire and Wire Rods

A580/A580M Specification for Stainless Steel Wire

A751 Test Methods and Practices for Chemical Analysis of Steel Products

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.1 ASTM Standards:^{2,3}

A555/A555M Specification for General Requirements for Stainless Steel Wire and Wire Rods

A580/A580M Specification for Stainless Steel Wire

A582/A582M Specification for Free-Machining Stainless Steel Bars

A751 Test Methods and Practices for Chemical Analysis of Steel Products

A941 Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.2 SAE Standard:⁴

J 1086 Practice for Numbering Metals and Alloys (UNS)

3. Terminology

3.1 Refer to Terminology A941 for terms related to steel, stainless steel, and related alloys.

4. Ordering Information

4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Such requirements may include, but are not limited to, the following:

TABLE 1 Chemical Requirements

	Composition, %								
TunoC			Phos-		LIIU	VICW			
туре_	Carbon, max	Manga- nese ^B	phorus, max	Sulfur ^B	Silicon, max	Chromium	Nickel	Other Elements	
			Α	STM A 581	/A581M-2	7			
				AUSTENIT	IC ALLOYS				
XM-1 CS.	0.08	a 1a 5.0–6.5	0.04	0.18-0.35	2c8 1.00993-	6 16.0-18.0	972 5.0–6.5 stm-	a 5 8 Cu 1.75-2.25	
303	0.15	2.00	0.20	0.15 min	1.00	17.0-19.0	8.0-10.0		
_	_	_	0.20	_	_	_	_	_	
XM-5	0.15	2.5-4.5	0.20	0.25 min	1.00	17.0-19.0	7.0-10.0		
303 Se	0.15	2.00	0.20	0.06	1.00	17.0-19.0	8.0-10.0	Se 0.15 min	
XM-2	0.15	2.00	0.05	0.11-0.16	1.00	17.0-19.0	8.0-10.0	Mo 0.40-0.60	
								AI 0.60-1.00	
				MARTENSIT	TIC ALLOYS				
416	0.15	1.25	0.06	0.15 min	1.00	12.0-14.0			
XM-6	0.15	1.50-2.50	0.06	0.15 min	1.00	12.0-14.0			
XM-6	0.15	1.50-2.50	0.06	0.15 min	1.00	12.0-14.0			
416 Se	0.15	1.25	0.06	0.06	1.00	12.0–14.0		Se 0.15 min	
				FERRITIO	ALLOYS				
XM-34	0.08	2.50	0.04			17.5-19.5		Mo 1.50-2.50	
								Mo 2.00–2.50	
	0.020	0.00	0.000	00 0.00		17.0 .0.0		Ti 0.30–1.00	
								N 0.025 max	
								C+N 0.035 max	
	0.08	1.25	0.06	0.15 min	1.00	12.0-14.0			
									
								Se 0.15 min	
	303 	Max Max Max Max Max Max Max Max	max nese ⁸ 1a XM-1 ds. 1c 0.08 √c 1a 5.0–6.5 and 303 0.15 2.00 303 0.15 2.5 – 4.5 303 Se 0.15 2.00 XM-2 0.15 2.00 416 0.15 1.25 XM-6 0.15 1.50 – 2.50 XM-6 0.15 1.25 XM-34 0.08 2.50 0.025 0.50 0.08 1.25 430 F 0.12 1.25	Type Carbon, max Manga-phorus, max A XM-1 ds. 10.08 Cata 5.0–6.5 and a 0.04 st./ 303 0.15 2.00 0.20 XM-5 0.15 2.5–4.5 0.20 303 Se 0.15 2.00 0.20 XM-2 0.15 2.00 0.05 416 0.15 1.25 0.06 XM-6 0.15 1.50-2.50 0.06 XM-6 0.15 1.50-2.50 0.06 XM-16 0.15 1.25 0.06 XM-2 0.15 1.25 0.06 XM-34 0.08 2.50 0.04 0.025 0.50 0.030 0.08 1.25 0.06 430 F 0.12 1.25 0.06 430 F 0.12 1.25 0.06	Type C Carbon, max Manga-nese Phosphorus, max Sulfur Max AUSTENITI XM-1 0.08	Type C Carbon, max Manga-nese Phos-phorus, max AUSTENITIC ALLOYS 303 0.15 2.00 0.20 0.15 min 1.00 XM-5 0.15 2.50 0.20 0.20 0.25 min 1.00 XM-2 0.15 2.00 0.20 0.06 1.00 XM-2 0.15 2.00 0.05 0.11-0.16 1.00 MARTENSITIC ALLOYS 416 0.15 1.25 0.06 0.15 min 1.00 XM-6 0.15 1.50-2.50 0.06 0.15 min 1.00 XM-6 0.15 1.25 0.06 0.15 min 1.00 XM-6 0.15 1.25 0.06 0.15 min 1.00 XM-7 0.15 1.25 0.06 0.15 min 1.00 XM-8 0.15 1.25 0.06 0.15 min 1.00 XM-10 0.15 0.15 0.00 0.00 0.15 min 1.00 XM-10 0.00 0.00 0.15 min 1.00 XM-10 0.00 0.00 0.15 min 1.00 XM-10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Type Carbon, max Manganese Phosphorus, max Sulfur Silicon, max Chromium AUSTENITIC ALLOYS AUSTENITIC ALLOYS 303 0.15 2.00 0.20 0.15 min 1.00 17.0−19.0	Type C Carbon, max Manganese Phosphorus, max Sulfur Silicon, max Chromium Nickel AUSTENITIC ALLOYS AUSTENITY	

^A-New UNS designation established in accordance with Practice E527 and SAE J 1086, Practice for Numbering Metals and Alloys (UNS).

^B Maximum unless otherwise noted.

^C Refer to Table X1.1 for guidance regarding type designations.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

⁴ Available from Society of Automotive Engineers (SAE), 400 Commonwealth Dr., Warrendale, PA 15096-0001, http://www.sae.org.

- 4.1.1 Quantity (weight),
- 4.1.2 Name of material (stainless Alloy UNS Designation (see Table 1 steel),),
- 4.1.3 Condition (see Section 57), and Table 2),
- 4.1.4 Finish (see Section 79),
- 4.1.5 Applicable dimensions <u>and tolerances</u>, <u>if different than Specification A555/A555M</u>, including size, thickness, width, and length or coil diameter (inside or outside diameter), and coil weights,
 - 4.1.6 Cross section (round, square, etc.),
 - 3.1.7 Type or UNS designation (Table 1),
- 4.1.7 ASTM designation (Specification A581/A581M) and date of issue; publication, and
 - 4.1.8 Exceptions to the specification or special requirements. Additional requirements agreed to between the supplier and purchaser.
 - Note 3—A typical-An example of ordering description is as follows: 5000 lb [2000 kg] stainless steel wire; wire 4 annealed; in. 4 in. [6.5 mm] round; eoils, Type 303, [6.5 mm], Alloy UNS No. designation, Condition B (cold worked), round, coils, ASTM Specification A581/A581M-dated ..-XX. End use: machined valve parts.

5. General Requirements

5.1 In addition to the requirements of this specification, all requirements of the current edition of Specification A555/A555M shall apply. Failure to comply with the general requirements of Specification A555/A555M constitutes nonconformance with this specification.

6. Chemical Composition

6.1 The steelmaterial shall conform to the requirements as to chemical composition requirements specified in Table 1.

TABLE 2 Condition

ı	UNS Designation	Type_	Condition A (Annealed)	Condition B (Cold Worked)	Condition T (Inter- mediate Temper)	Condition H (Hard Temper)						
	AUSTENITIC ALLOYS											
	S20300	XM-1	Α	В								
	S30300	303	Α	В								
	S30310	XM-5	Α	В								
	S30323	303 Se	Α	В								
	S30345	XM-2	Α	В								
			MARTENSIT	IC ALLOYS								
	S41600	416	Α		Т	Н						
1	S14160 -	XM-6	A		Ŧ	H						
	S41610	XM-6	Α		T T	<u>H</u> H						
	S41623	416 Se	$\frac{A}{A}$		Ŧ	H						
			FERRITIC	ALLOYS								
	S18200	XM-34	Α									
	S18235		Α	В								
	S41603		Α									
	S43020	430 F	Α									
	S43023	430 F Se	Α									

A Refer to Table X1.1 for guidance regarding type designations.