INTERNATIONAL STANDARD

ISO 5347-1

First edition 1993-12-15

Methods for the calibration of vibration and shock pick-ups —

Part 1: iTeh Primary vibration calibration by laser (nterferometryeh.ai)

<u>ISO 5347-1:1993</u>

https://standards.iMéthodès/pour/l'étalorinage4de8cápteurs-de7vibrations et de chocs — 72832512899/iso-5347-1-1993 Partie 1: Étalorinage primaire de vibrations avec interféromètre de laser

1JU

Reference number ISO 5347-1:1993(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting VIEW a vote.

International Standard ISO 5347-1 was prepared by Technical Committee ISO/TC 108, Mechanical vibration and shock, Sub-Committee SC 3, Use and calibration of vibration and shock measuring instruments.¹¹⁹⁹³ https://standards.iteh.ai/catalog/standards/sist/fba1a448-8240-4d93-b872-

ISO 5347 consists of the following parts, under the general title Methods for the calibration of vibration and shock pick-ups:

- Part 0: Basic concepts
- Part 1: Primary vibration calibration by laser interferometry
- Part 2: Primary shock calibration by light cutting
- Part 3: Secondary vibration calibration
- Part 4: Secondary shock calibration
- Part 5: Calibration by Earth's gravitation
- Part 6: Primary vibration calibration at low frequencies
- Part 7: Primary calibration by centrifuge
- Part 8: Primary calibration by dual centrifuge

© ISO 1993

Printed in Switzerland

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

- Part 9: Secondary vibration calibration by comparison of phase angles
- Part 10: Primary calibration by high-impact shocks
- Part 11: Testing of transverse vibration sensitivity
- Part 12: Testing of transverse shock sensitivity
- Part 13: Testing of base strain sensitivity
- Part 14: Resonance frequency testing of undamped accelerometers on a steel block
- Part 15: Testing of acoustic sensitivity
- Part 16: Testing of mounting torque sensitivity
- Part 17: Testing of fixed temperature sensitivity
- Part 18: Testing of transient temperature sensitivity
- Part 19: Testing of magnetic field sensitivity
- Part 20: Primary vibration calibration by the reciprocity method

iTeh SAnnexes A and B form an integral part of this part of ISO 5347. (standards.iteh.ai)

<u>ISO 5347-1:1993</u> https://standards.iteh.ai/catalog/standards/sist/fba1a448-8240-4d93-b872-72e32511e89a/iso-5347-1-1993

iTeh STANDARD PREVIEW (standards.iteh.ai) This page intentionally left blank

<u>ISO 5347-1:1993</u>

https://standards.iteh.ai/catalog/standards/sist/fba1a448-8240-4d93-b872-72e32511e89a/iso-5347-1-1993

*

Methods for the calibration of vibration and shock pick-ups -

Part 1:

Primary vibration calibration by laser interferometry

Scope 1

ISO 5347 comprises a series of documents dealing amplitude stability: better than \pm 0,01 % of readwith methods for the calibration of vibration and shock ing over the measurement period. II CH SIANDA pick-ups.

This part of ISO 5347 lays down detailed specific S. 12.3 Power amplifier/vibrator combination, having cations for the instrumentation and procedure to be the following characteristics: used for primary calibration of rectilinear accelerometers using laser interferometry for dynamic distortion 32% maximum;

placement measurements. 72e32511e89a/iso-5347-1-1993

It is applicable for a frequency range from 20 Hz to 5 000 Hz and a dynamic range from 10 m/s² to 1 000 m/s² (frequency-dependent).

The limits of uncertainty applicable are as follows:

± 0,5 % of reading at reference frequency (160 Hz or 80 Hz) and reference amplitude (100 m/s² or 10 m/s²) and reference amplifier gain setting;

- \pm 1 % of reading for frequencies \leq 1 000 Hz;
- \pm 2 % of reading for frequencies > 1 000 Hz.

2 Apparatus

2.1 Equipment capable of maintaining the ambient conditions, within the requirements specified in clause 3.

2.2 Frequency generator and indicator, having the following characteristics:

- uncertainty, for frequency: maximum ± 0,01 % of reading;

— frequency stability: better than \pm 0,01 % of reading over the measurement period;

- transverse, bending and rocking acceleration: kept to a minimum, maximum 10 % of the acceleration in the intended direction at frequencies used; above 1 000 Hz, a maximum of 20 % is permitted;
- hum and noise: 70 dB min. below full output;
- acceleration amplitude stability: better than 0,05 % of reading over the measurement period.

The attachment surface shall not introduce base strain to the accelerometer.

2.4 Seismic block for vibrator and laser interferometer (the same block), with a mass at least 2 000 times the mass of moving elements of vibrator. fixture and transducer.

The seismic block shall be suspended by low damped springs. If floor vibrations influence, the suspension resonance frequency vertically and horizontally shall be < 2 Hz.

2.5 Laser, of helium-neon type; in laboratory conditions of air pressure 100 kPa, temperature 23 °C and relative humidity 50 % the wavelength is 0,632.8 µm, which value is used in this part of ISO 5347.

If the laser has manual or automatic atmospheric compensation, this shall be set to zero or switched off.

2.6 Interferometer, of Michelson type, with light detector for sensing the interferometer bands and having a frequency response from d.c. to 15 MHz.

2.7 Counting instrumentation, (for Method 1, frequency range from 20 Hz to 800 Hz), having the following characteristics:

- frequency range: 10 Hz to 20 MHz;

- uncertainty, maximum: ± 0,01 % of reading.

The counter can be substituted by a ratio counter having the same uncertainty.

2.8 Tunable band-pass filter or spectrum analyser, (for Method 2, frequency range from 1 000 Hz

to 5 000 Hz), having the following characteristics:

- frequency range: 100 Hz to 10 000 Hz;
- bandwidth: < 12 % of centre frequency;
- filter slopes: better than 24 dB/octave; (standards.preferred amplitudes and frequencies
- signal-to-noise ratio: better than 70 dB beloveo 534 Six1am plitudes and six frequencies equally covering https://standards.iteh.ai/catalog/standathesiaccelerometen_range_shall be chosen from the maximum signal; 72e32511e89a/ifollowing series:
- dynamic range: better than 60 dB.

2.9 Instrumentation for zero detection, (for Method 2 - not needed with spectrum analyser), with a frequency range from 30 Hz to 5 000 Hz. The range shall be sufficient for detection of output noise from the bandpass filter.

2.10 Voltage instrumentation, measuring true r.m.s. accelerometer output, having the following characteristics:

- frequency range: 20 Hz to 5 000 Hz;
- uncertainty, maximum: ± 0,01 % of reading; below 40 Hz: 0,1 %.

The r.m.s. value shall be multiplied by a factor of $\sqrt{2}$ to obtain the (single) amplitude used in the formulae.

2.11 Distortion-measuring instrumentation, capable of measuring total distortion of 0 to 5 % and having the following characteristics:

- frequency range: 5 Hz to 10 kHz;
- uncertainty, maximum: ± 10 % of reading.

2.12 Oscilloscope (optional), for checking the waveform of the accelerometer signal, with a frequency range from 5 Hz to 5 000 Hz.

2.13 Other apparatus requirements.

In order to achieve the required 0,5 % accuracy, the accelerometer and accelerometer amplifier shall be considered as one unit and calibrated together.

The accelerometer shall be structurally rigid. The base strain sensitivity shall be $< 0.2 \times 10^{-8} \text{ m/s}^2$ at a base strain of $2.5 \times 10^{-4} \text{ m/s}^2$, the transverse sensitivity shall be < 1 % and the stability of the accelerometer/amplifier combination shall be better than 0,2 % of the reading per year.

3 Ambient conditions

Calibration shall be carried out in the following ambient conditions:

- room temperature: (23 ± 3) °C;
- air pressure: (100 ± 5) kPa;

a) Acceleration (Method 1 only), in metres per square second:

10, 20, 50, 100, 500;

reference acceleration 100 m/s² (second choice: 10 m/s^2).

b) Frequency, in hertz:

20, 40, 80, 160, 315, 630, 1 250, 2 500, 5 000:

reference frequency 160 Hz (second choice: 80 Hz).

5 Method 1, for frequency range from 20 Hz to 800 Hz

5.1 Test procedure

After optimizing the interferometer (2.6) settings, determine the reference calibration factor at preferably 160 Hz (second choice: 80 Hz), 100 m/s² (second choice: 10 m/s²) and the standard position of amplifier range switch by measuring either the fringe frequency with the counter (2.7) — the fringe-counting method in accordance with figure 1 shall be used — or the ratio between the vibration frequency and the fringe frequency with a ratio counter (2.7).

Then determine the calibration factor at the other selected standard acceleration levels and frequencies. The results shall be given as a percentage deviation from the reference calibration factor.

For every frequency and acceleration combination, the distortion, the transverse, bending and rocking accelerations, hum and noise shall be measured and the values shall be within the limits specified in 2.3.

5.2 Expression of results (see also B.1, annex B)

Calculate the acceleration amplitude, *a*, of the accelerometer, expressed in metres per second squared, from the fringe frequency readings using the following formula:

 $a = 3,122 \ 8 \times 10^{-6} \times f \times f_{\rm f}$

and calculate the calibration factor, *S*, from the following formula:

$$S = 0,320 \ 2 \times 10^6 \times \frac{V}{f \times f_f}$$

where

- *V* is the accelerometer output, in volts (single) amplitude;
- f is the frequency of the vibrator, in hertz;
- f is the number of fringe signal periods over a time period which is long compared with the vibration period — the number of periods is divided by the time in order to obtain the fringe frequency in hertz;

If a ratio counter is used, calculate the acceleration amplitude, *a*, expressed in metres per second squared, using the following formula:

$$a = 3,122 \ 8 \times 10^{-6} \times f^2 \times R_{\rm f}$$

and calculate the calibration factor, *S*, from the following formula:

$$S = 0,320 \ 2 \times 10^6 \times \frac{V}{f^2 \times R_{\rm f}}$$

where $R_{\rm f}$ is the ratio between the vibration frequency and the fringe frequency, $f_{\rm f}$, over at least 100 vibration periods.

S, from the fol-When the calibration results are reported, the total uncertainty of the calibration and the corresponding confidence level, calculated in accordance with (standards.ianex A, shall also be reported.

A confidence level of 99 % shall be used (second <u>ISO 5347-1:19</u>Choice: 95 % confidence level).

https://standards.iteh.ai/catalog/standards/sist/fba1a448-8240-4d93-b872-72e32511e89a/iso-5347-1-1993

Figure 1 — Measuring system for the fringe-counting method (Method 1)

6 Method 2, for frequency range from 800 Hz to 5 000 Hz

6.1 Test procedure

Minimum point

١

Filter the signal from the light detector (2.6) through a bandpass filter (2.8) with the centre frequency equal to the accelerometer frequency. This filtered signal has a number of minimum points at accelerometer displacements in accordance with table 1.

After setting the frequency, adjust the vibrator amplitude from zero to the value at which the filtered light detector signal, after reaching maximum value, returns to a minimum value. This minimum value is minimum point No. 1, at which the amplitude is 0,193.0 μ m. The amplitude for the other minimum points in order can be taken from table 1. The measuring system for the minimum point method is shown in figure 2.

Table 1 — Displacement amplitudes for minimum points

Displacement amplitude, d

6.2 Expression of results (see also B.2, annex B)

Calculate the acceleration, a, expressed in metres per second squared, from the following formula:

$$a = 39,478 \times 10^{-6} \times d \times f^{2}$$

and calculate the calibration factor, S, from the following formula:

$$S = 0,253 \ 31 \times 10^5 \times \frac{V}{d \times f^2}$$

where

- Vis the accelerometer output, in volts (single) amplitude;
- d is the displacement amplitude, in micrometres, for the different minimum points in accordance with table 1;

in the face f the vibrator in h

No.		f is the frequency of the vibrator, in hertz.
	I Leh STANDA	RD_PREVIEW
0	0	to balantito the deviations relative to the 160 Hz
1	0,193 0standar	(15.1) (20 Hz)/100 m/s ² (10 m/s ²) value obtained in accord
2	0,353 3	ance with Method 1 (see clause 5)
3	0,512.5	
7	https://standards.iteh.ai/catalog/stand	ards/sist/Mhen/4the?dalibration?results are reported the total
5	0,829 4 72e32511e89a	iso_53400 certainty of the calibration and the corresponding
6	0,987 8 720525110054	confidence level calculated in accordance with
0	1,140 1	annex A shall also be reported
q	1,304 4	
U	1,402 /	A confidence level of 99 % (second choice: 95 %
10	1,621 0	confidence level) shall be used.
11	1,779 2	
12		
13	2,030 7	
15	2,412 2	
10	0.570.4	
16 17	2,570 4	
17	2,720 0	
19	3.045 0	
20	3,203 3	
01	2.261 E	
21	3,501 5	
23	3.677 9	
24	3,836 1	
25	3,994 3	
26	4 152 5	
27	4.310 7	
28	4,468 9	
29	4,627 1	
30	4,785 3	

Figure 2 — Measuring system for the minimum-point method (Method 2)

Annex A

(normative)

Calculation of uncertainty

A.1 Calculation of total uncertainty

The total uncertainty of the calibration for a specified confidence level CL (for the purposes of this part of ISO 5347, CL = 99 % or 95 %), X_{CL} , shall be calculated from the following formula:

$$X_{\rm CL} = \pm \sqrt{X_{\rm r}^2 + X_{\rm s}^2}$$

where

*X*_r is the random uncertainty;

X_s is the systematic uncertainty. **CANDARD PREVIEW**

The random uncertainty for a specified confidence level, $X_{r(CL)}$, is calculated from the following formula:

$$X_{r(CL)} = \pm t \left[\frac{e_{r1}^{2} + e_{r2}^{2} + e_{r3}^{2} + \dots + e_{rn}^{2}}{n(n-1)} \right]^{T/2} \frac{ISO 5347 - 1:1993}{ISO 5347 - 1:1993}$$

https://standards.iteh.ai/catalog/standards/sist/fba1a448-8240-4d93-b872-
72e32511e89a/iso-5347 - 1-1993

where

 e_{r1} , e_{r2} , etc. are the deviations from the arithmetic mean of single measurements in the series;

- *n* is the number of measurements;
- *t* is the value from Student's distribution for the specified confidence level and the number of measurements.

The systematic errors shall, first of all, be eliminated or corrected. The remaining uncertainty, $X_{s(CL)}$, shall be taken into account by using the following formula:

$$X_{\rm s(CL)} = \frac{K}{\sqrt{3}} \times e_{\rm S}$$

where

- *K* equals 2,0 for the 95 % confidence level (CL = 95 %) or *K* equals 2,6 for the 99 % confidence level (CL = 99 %);
- e_s is the absolute uncertainty for the calibration factor at calibration frequency, amplitude and amplifier gain settings, expressed in volts per (metre per second squared) (see A.2).