Designation: A934/A934M - 22

Standard Specification for Epoxy-Coated Prefabricated Steel Reinforcing Bars¹

This standard is issued under the fixed designation A934/A934M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

- 1.1 This specification covers deformed and plain steel reinforcing bars which prior to surface preparation are prefabricated and then coated with a protective fusion-bonded epoxy coating by electrostatic spray or other suitable method.
- 1.2 Prefabricated steel reinforcing bars coated with fusionbonded epoxy powder coating in accordance with this specification are intended to be fabricated before being coated.
- 1.3 Organic coatings other than epoxy may be used provided they meet the requirements of this specification.
- 1.4 Requirements for epoxy coatings are contained in Annex A1.
- 1.5 Requirements for patching material are contained in Annex A2 in Specification A775/A775M.
- 1.6 Guidelines for application process and product test procedures of epoxy coatings for steel reinforcing bars are presented in Appendix X1.
- 1.7 Guidelines for construction practices at the job-site for coated steel reinforcing bars are presented in Appendix X2.
- 1.8 This specification is applicable for orders in either inch-pound units (as Specification A934) or SI [metric] units [as Specification A934M].
- 1.9 The values stated in either inch-pound units or SI units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
- 1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

A615/A615M Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

A706/A706M Specification for Deformed and Plain Low-Alloy Steel Bars for Concrete Reinforcement

A775/A775M Specification for Epoxy-Coated Steel Reinforcing Bars

A944 Test Method for Comparing Bond Strength of Steel Reinforcing Bars to Concrete Using Beam-End Specimens

A996/A996M Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement

A1035/A1035M Specification for Deformed and Plain, Low-Carbon, Chromium, Steel Bars for Concrete Reinforcement

B117 Practice for Operating Salt Spray (Fog) Apparatus

D4060 Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser

E2937 Guide for Using Infrared Spectroscopy in Forensic Paint Examinations

G8 Test Methods for Cathodic Disbonding of Pipeline Coatings

G14 Test Method for Impact Resistance of Pipeline Coatings (Falling Weight Test)

G20 Test Method for Chemical Resistance of Pipeline Coatings

G42 Test Method for Cathodic Disbonding of Pipeline Coatings Subjected to Elevated Temperatures

G62 Test Methods for Holiday Detection in Pipeline Coatings

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.05 on Steel Reinforcement.

Current edition approved Sept. 1, 2022. Published November 2022. Originally approved in 1995. Last previous edition approved in 2019 as A934/A934M-19. DOI: $10.1520/A0934_A0934M-22$.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

2.2 NACE International Standard:³

RP 0287 Field Measurement of Surface Profile of Abrasive Blast Cleaned Steel Surfaces Using a Replica Tape

2.3 SSPC Specifications:⁴

SSPC-SP 10 Near-White Blast Cleaning

SSPC-VIS 1 Pictorial Surface Preparation Standards for Painting Steel Surfaces

SSPC-PA 2 Measurement of Dry Coating Thickness with Magnetic Gages

2.4 ACI Specifications:⁵

ACI 301 Specifications for Structural Concrete

ACI 315 Details and Detailing of Concrete Reinforcement

2.5 CRSI Documents:⁶

Voluntary Certification Program for Fusion-Bonded Epoxy Coating Applicator Plants

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 conversion coating, n—preparation of the blast-cleaned metal surface prior to coating application that is designed to pretreat the metal to promote coating adhesion, reduce metal coating reactions, improve corrosion resistance, and increase blister resistance.
- 3.1.2 *disbonding*, *n*—loss of adhesion between the fusion-bonded epoxy coating and the steel reinforcing bar.
- 3.1.3 fusion-bonded epoxy coating, n—product containing pigments, thermosetting epoxy resins, crosslinking agents, and other additives, which is applied in the form of a powder onto a clean, heated metallic substrate and fuses to form a continuous barrier coating.
- 3.1.4 *holiday*, *n*—discontinuity in a coating that is not discernible to a person with normal or corrected vision.
- 3.1.5 *patching material*, *n*—liquid two-part epoxy coating used to repair damaged coating and to coat uncoated areas on the surface of a coated bar.
- 3.1.6 *prefabricated bars*, *n*—steel reinforcing bars that are cut to specified lengths and bent to the required shapes prior to coating.
- 3.1.7 *wetting agent, n*—material that lowers the surface tension of water allowing it to penetrate more effectively into small discontinuities in the coating, giving a more accurate indication of the holiday count.

4. Ordering Information

- 4.1 Orders for epoxy-coated prefabricated steel reinforcing bars under this specification shall contain the following information:
- 4.1.1 Specification and year of issue for the reinforcing bars to be coated (5.1),
- ³ Available from NACE International (NACE), 15835 Park Ten Pl., Houston, TX 77084, http://www.nace.org.
- ⁴ Available from Society for Protective Coatings (SSPC), 800 Trumbull Drive, Pittsburgh, PA 15205, https://www.sspc.org.
- ⁵ Available from American Concrete Institute (ACI), 38800 Country Club Dr., Farmington Hills, MI 48331-3439, http://www.concrete.org.
- ⁶ Available from Concrete Reinforcing Steel Institute (CRSI), 933 N. Plum Grove Rd., Schaumburg, IL 60173-4758, http://www.crsi.org.

- 4.1.2 Quantity of bars,
- 4.1.3 Size and grade of bars, and
- 4.1.4 ASTM designation and year of issue.
- 4.2 The purchaser shall have the option to specify additional requirements, including but not limited to the following:
- 4.2.1 Requirements for review of test data to demonstrate that the powder coating meets Annex A1 (5.2),
- 4.2.2 Representative sample of epoxy powder coating (5.2.2),
 - 4.2.3 Quantity of patching material (5.3.3),
- 4.2.4 Additional requirements for test frequency (Section 10),
- 4.2.5 Coated specimens shall be provided by the manufacturer out of the same production lot of coated reinforcement being furnished to the purchaser (13.1).
 - 4.2.6 Requirements for inspection (13.1),
- 4.2.7 Manufacturer qualification and certification requirements (if any),
- 4.2.8 A report of the results of the tests performed on the coated steel reinforcing bars (Section 15),
- 4.2.9 Requirements for patching material to be sent to purchaser (5.3),
- 4.2.10 Special packing, bar or bundle marking, loading or storage requirements, and
 - 4.2.11 Other special requirements, if any.

Note 1—A typical ordering description is as follows:

Deformed Grade 60 bars to ASTM A615 – _____; 20 000 ft, No. 6; cut to specified lengths and fabricated prior to coating; epoxy-coated to ASTM A934 – ____; including written certifications for the powder coating and coated bars and 1 qt. of patching material.

[Deformed Grade 420 bars to ASTM A615M – ____; 6000 m, No. 19; cut to specified lengths and fabricated prior to coating; epoxy-coated to ASTM A934M – ____; including written certifications for the powder coating and coated bars and 1 L of patching material.]

5. Materials

5.1 Steel reinforcing bars to be coated shall meet the requirements of one of the following specifications: A615, A706, A996, or A1035 [A615M, A706M, A996M, or A1035M] as specified by the purchaser and shall be free of contaminants such as oil, grease, or paint.

Note 2—Prior to coating, the steel reinforcing bars should be inspected for their suitability for coating. Bars with sharp edges on the deformations, rolled-in slivers, or other surface imperfections are difficult to coat properly. The coating will flow away from the sharp edges and may result in inadequate coating thickness at these points.

- 5.2 The powder coating shall meet the requirements of Annex A1. Upon request, the purchaser shall be provided with test data for review.
- 5.2.1 A written certification shall be furnished to the purchaser that properly identifies the lot designation of the powder coating used in the order, material quantity represented, date of manufacture, name and address of the powder coating manufacturer, and a statement that the supplied powder coating is the same composition as that qualified according to Annex A1 of this specification. The powder coating shall be used within the powder coating manufacturer's written recommended shelf life.

- 5.2.2 If specified in the order, a representative 8-oz [0.2-kg] sample of the powder coating shall be supplied to the purchaser from each batch. The sample shall be packaged in an airtight container and identified by the batch designation.
- 5.2.3 The powder coating shall be maintained in a temperature-controlled environment following the written recommendations of the powder coating manufacturer until ready for use, at which point the powder coating shall be given sufficient time to reach approximate plant ambient temperature.
- 5.3 Patching material for repairing damaged coating and uncoated areas of coated bars shall be inert in concrete and feasible for repairs at the applicator plant.
- 5.3.1 The powder coating manufacturer shall specify the approved patching material to be used with their powder.
- 5.3.2 Patching material shall be approved in accordance with Annex A2 in Specification A775/A775M prior to use.
- 5.3.3 If specified in the order, patching material shall be supplied to the purchaser.

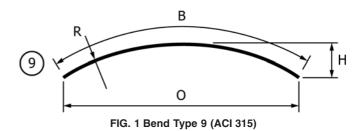
6. Prefabrication of Steel Reinforcing Bars

6.1 The steel reinforcing bars to be coated shall have been prefabricated in accordance with the purchaser's requirements or project specifications prior to surface preparation.

Note 3—Drive rolls on shear beds and backup barrels on benders should be protected with a suitable covering to minimize crushing or creating rollover damage to the steel reinforcing bar deformations during the fabrication process.

7. Surface Preparation of Steel Reinforcing Bars

- 7.1 The surface of the steel reinforcing bars shall be cleaned by abrasive blast steel grit to near-white metal in accordance with SSPC-SP 10.
- 7.1.1 The final surface condition shall be defined according to SSPC-VIS 1.
- 7.1.2 Average blast profile roughness depth readings of 1.5 mils to 4.0 mils [37 μ m to 100 μ m], as determined by replica tape measurements using RP 0287 or other methods acceptable to the purchaser, shall be considered suitable as an anchor pattern.


Note 4—The use of a profilometer type surface measurement instrument that measures the peak count as well as the maximum profile depth is recommended.

7.2 A steel grit of Rockwell Hardness C50 or higher shall be used. A maximum of 5 % steel shot is allowable in the media.

Note 5—Recycled steel grit abrasive should be maintained so as to minimize contaminants such as oil, salt, and dust caused by the blasting operation.

7.3 Multidirectional, high-pressure dry air knives shall be used after blast cleaning to remove dust, grit, and other foreign matter from the steel surface. The air knives shall not deposit oil on the steel reinforcing bars.

Note 6—It is recommended that incoming steel reinforcing bars and blast media be checked for salt contamination prior to use. Blast media found to be salt contaminated should be rejected. Steel reinforcing bars found to be salt contaminated from exposure to deicing salts or salt spray should be cleaned by acid washing or other suitable methods to remove salt contaminants from the surface prior to blast cleaning.

7.4 It shall be permissible for the manufacturer to use a chemical wash or conversion of the steel reinforcing bar surface, or both, to enhance coating adhesion. This pretreatment shall be applied after abrasive cleaning and before coating, in accordance with the written application instructions specified by the pretreatment manufacturer.

8. Coating Application

- 8.1 If pretreatment is used in the preparation of the surface the powder coating shall be applied to the cleaned and pretreated steel reinforcing bar surface as soon as possible after surface treatments have been completed, and before visible oxidation of the surface occurs as discernible to a person with normal or corrected vision. In no case shall application of the coating be delayed more than 3 h after cleaning.
- 8.2 The fusion-bonded epoxy powder coating shall be applied in accordance with the written recommendations of the manufacturer of the powder coating for initial steel surface temperature range and post application cure requirements. The temperature of the surface immediately prior to coating shall be measured using infrared guns or temperature-indicating crayons at least once every 30 min during continuous operations.

Note 7—The use of infrared and temperature-indicating crayon measurement of the steel reinforcing bars is recommended.

- 8.3 The powder coating shall be applied by electrostatic spray or other suitable method.
- 8.4 Cleaned, uncoated steel reinforcing bars shall be handled by personnel wearing clean gloves to prevent contamination of the steel surface.

9. Requirements for Coated Steel Reinforcing Bars

9.1 Coating Thickness:

9.1.1 The coating thickness on straight sections of bars after curing shall be 7 mils to 12 mils [175 μ m to 300 μ m]. The coating thickness on bent sections of bars after curing shall be 7 mils to 16 mils [175 μ m to 405 mm]. Bent sections of bars are defined as the entire radius of each bend and portions of the bar extending 6 in. [150 mm] beyond the beginning and ending bend points on the bar. Bars that are bent with a radius such as Bend Type 9 (Fig. 1) shall have the same coating thickness requirements as straight bars, when the "H" dimension is equal to or less than one-half of the "R" dimension.

Note 8—Section 9.1.1 permits a maximum coating thickness of 16 mils [405 μ m] on bent sections of bars. Discussion of the effect of the permissible increased coating thickness on the anchorage capacity of bent bars embedded in concrete is presented in Appendix X3.

- 9.1.2 A single recorded steel reinforcing bar coating thickness measurement is the average of three individual gauge readings obtained between three consecutive deformations. A minimum of five recorded measurements shall be taken approximately evenly spaced along each side of the test specimen (a minimum of ten recorded measurements per bar).
- 9.1.3 For acceptance purposes, the average of all recorded coating thickness measurements shall not be less than the specified minimum thickness or more than the specified maximum thickness. No single recorded coating thickness measurement shall be less than 80 % of the specified minimum thickness or more than 120 % of the specified maximum thickness.
- 9.1.4 Measurements shall be made in accordance with SSPC-PA 2 following the instructions for calibration and use recommended by the thickness gauge manufacturer. Pull-off or fixed probe gauges shall be used. Pencil-type pull-off gauges that require the operator to observe the readings at the instant the magnet is pulled from the surface shall not be used.
- 9.1.5 Approximately equal numbers of straight and bent sections of coated steel reinforcing bars shall be evaluated. On the bent sections, approximately half of these measurements shall be made on the inside radius and half on the outside radius.

9.2 Coating Continuity:

- 9.2.1 Holiday checks to determine the acceptability of the coated steel reinforcing bars prior to shipment shall be made at the manufacturer's plant with a handheld 67.5-V, 80 000- Ω , wet-sponge-type dc holiday detector.
- 9.2.2 There shall not be on average more than three holidays per metre [one holiday per linear foot] on the coated steel reinforcing bars. The average applies to the full production length of a bar. For coated bars less than 1 ft [0.3 m] in length, the maximum shall be one holiday.
- 9.2.3 A wetting agent shall be used in accordance with Test Methods G62 in the inspection for holidays on the coated steel reinforcing bars.
- 9.2.4 The coated steel reinforcing bars shall be inspected at a maximum rate of 0.2 ft/s [0.05 m/s], wiping one side of the coated bar and then the other with the wetted sponge or an equivalent method.

Note 9—Care should be taken that contact of the sponge along the entire steel surface being tested is maintained in order to obtain an accurate holiday count.

9.3 Coating Flexibility:

9.3.1 Coating flexibility shall be evaluated by bending production-coated steel reinforcing bars around a mandrel eight times the nominal diameter (*d*) of the bar at a uniform rate and within 5 s. The exception to the 8*d* mandrel requirement shall be Nos. 14 and 18 [Nos. 43 and 57] bars. A 17-in. [430-mm] mandrel (9.71*d*) shall be used when evaluating No. 14 [No. 43] bar, and a 23-in. [580-mm] mandrel (10.22*d*) shall be used with No. 18 [No. 57] bar. For Nos. 3 to 5 [Nos. 10 to 16] coated steel reinforcing bars, the bend angle after rebound shall be 9°. For Nos. 6 to 18 [Nos. 19 to 57] coated steel reinforcing bars, the bend angle after rebound shall be 6°. The two longitudinal deformations shall be placed in a plane

perpendicular to the mandrel radius. The temperature of the test specimens shall be between 68 °F and 86 °F [20 °C and 30 °C].

9.3.2 Cracking or disbonding of the coating on the outside radius of the bent bar discernible to a person with normal or corrected vision shall be considered cause for rejection of the coated steel reinforcing bars represented by the bend test sample.

9.4 Coating Adhesion:

- 9.4.1 Coating adhesion shall be evaluated by cathodic disbondment testing of production-coated steel reinforcing bars. Test Method G42 shall be followed except, (I) the cathode shall be a 8-in. [200-mm] long coated steel reinforcing bar; (2) the anode shall be a 6-in. [150-mm] long solid platinum electrode (0.06-in. [1.6-mm] nominal diameter) or platinized wire (0.12-in. [3-mm] nominal diameter); (I) a calomel reference electrode shall be used; (I) the electrolyte solution shall be 3 % NaCl by mass dissolved in distilled water; (I) the electrolyte solution temperature shall be 150 °F I 3.6 °F [65 °C I 2 °C]; (I 6) the drilled coating defect shall be 0.12 in. [3 mm] in diameter; (I) a potential of I 3 V measured against the calomel reference electrode shall be applied and a 10-ohm shunt resistor used, and; (I 8) the test duration shall be 24 h.
- 9.4.2 Following the 24-h exposure and prior to coating evaluation, the coated steel reinforcing bar shall be given a minimum of a 1-h cooling-off period to allow the bar to reach 68 °F to 86 °F [20 °C to 30 °C].
- 9.4.3 Measurements of the cathodic disbondment radius shall be obtained at 0°, 90°, 180°, and 270°. The average of the four values shall not exceed 0.24 in. [6 mm] when measured from the edge of the intentional coating defect.
- 9.4.4 Approximately even numbers of straight and bent sections of coated steel reinforcing bars shall be evaluated (approximately half of these tests shall be made on the inside radius and half on the outside radius on the bent bar sections).

10. Frequency of Tests

- 10.1 Tests for coating thickness shall be made on a minimum of two bars of straight section and two bars of bent section of each size from each production hour.
- 10.2 Tests for coating continuity shall be conducted on a minimum of two bars of each size from each production hour.
- 10.3 Tests for coating flexibility shall be made on a minimum of one bar of each bar size from each four production hours.
- 10.4 Tests for coating adhesion shall be made on a minimum of two bars from each 8-h production shift: one straight bar section and one bent bar section. If there are no bent bars being coated during the production period, a second straight bar section shall be substituted for the test.

11. Retests

11.1 If any test specimen for coating thickness, continuity, flexibility, or adhesion fails to meet the specified requirements, the bar from which the test specimen was taken shall be rejected and two further coated steel reinforcing bars from the same lot shall be subjected to the test or tests in which the

original bar failed. If both additional coated steel reinforcing bars pass the retest, the lot from which they were taken shall be deemed to meet the requirements of this specification. If either of them fails, the lot shall be deemed not to comply with this specification.

- 11.2 If the lot does not comply with this specification, two coated steel reinforcing bars shall be selected from the lot immediately preceding and immediately following the non-compliant lot and subjected to the test or tests in which the original bars failed. If all bars pass the retests, then the lots shall be deemed to meet the requirements of this specification. If any bar fails a retest, the lot from which it originated shall be deemed not to comply with this specification.
- 11.3 In the case of a second noncompliant lot, the untested lot immediately next to it, which may be preceding or following, shall be subjected to retest. This procedure shall be repeated until a compliant lot is tested.

Note 10—In the use of the Retest provision of this specification, a "lot" is defined as the coated steel reinforcing bars that are represented by the sample which has been tested. A certain number of coated steel reinforcing bars will have been produced since the last acceptance test was performed and accepted. The steel reinforcing bars that have been coated since that last test should be divided into four equal time period groups according to when they were produced. Each lot should then be further defined as those coated steel reinforcing bars that have been produced in a given time period since the last accepted test.

12. Permissible Amount of Damaged Coating and Repair of Damaged Coating

- 12.1 Damaged coating discernible to a person with normal or corrected vision shall be repaired with patching material meeting the requirements of 5.3 in accordance with the written recommendations of the patching material manufacturer. Any rust shall be removed by suitable means before application of the patching material.
- 12.2 The maximum amount of repaired damaged coating shall not exceed 1 % of the total surface area in each 1-ft [0.3-m] length.

Note 11—If the amount of repaired damaged coating in any 1-ft [0.3-m] length of a coated bar exceeds 1 %, that section should be removed from the coated steel reinforcing bar and discarded. In patching damaged coating, care should be taken not to apply the patching material over an excessive area of the intact coating during the repair process. Too large an area of thick patching material, especially on smaller-size reinforcing bars, is likely to cause a reduction in bond strength of the bars to concrete

12.3 Repaired areas shall have a minimum thickness of 7 mils [175 μ m].

13. Inspection

13.1 Inspection of the epoxy-coated steel reinforcing bars shall be agreed upon between the purchaser and the manufacturer as part of the purchase order or contract.

14. Rejection

14.1 Coated steel reinforcing bars represented by test specimens that do not meet the requirements of this specification shall be rejected and marked with a contrasting color paint or other suitable identification. At the manufacturer's option, the

affected lot shall be replaced or, alternately, stripped of coating, recleaned, recoated, and resubmitted for acceptance testing in accordance with the requirements of this specification.

Note 12—If the coating is not to be stripped from the rejected steel reinforcing bars, the bars should be scrapped.

15. Certification

- 15.1 The purchaser shall be furnished, at the time of shipment, written certification that samples representing each lot of coated steel reinforcing bars have been either tested or inspected as directed in this specification and the requirements have been met. When specified in the purchase order or contract, a report of the test results shall be furnished.
- 15.2 A Material Test Report, Certificate of Inspection, or similar document printed from or used in electronic form from an electronic data interchange (EDI) transmission shall be regarded as having the same validity as a counterpart printed in the certifier's facility. The content of the EDI-transmitted document must meet the requirements of the invoked ASTM standard(s) and conform to any EDI agreements between the purchaser and the supplier. Notwithstanding the absence of a signature, the organization submitting the EDI transmission is responsible for the content of the report.

Note 13—The industry definition invoked here is: EDI is the computer-to-computer exchange of business information in a standard format such as ANSI ASC X12.

16. Handling and Identification

- 16.1 Coated steel reinforcing bars shall be transported and handled with care. All systems for handling coated steel reinforcing bars shall have padded contact areas. All bundling bands shall be padded, or suitable banding used to prevent damage to the coating. All bundles of coated steel reinforcing bars shall be lifted with a strong back, spreader bar, multiple supports, or a platform bridge to prevent bar-to-bar abrasion from sags in the bundles. The coated steel reinforcing bars or bundles shall not be dropped or dragged.
- 16.2 Smaller pieces of coated steel reinforcing bars, such as stirrups and ties, shall be packaged in such a way as to minimize damage to the coating during shipping and handling.
- 16.3 If circumstances require storing coated steel reinforcing bars outdoors for more than two months, protective storage measures shall be implemented to protect the material from sunlight, salt spray, and weather exposure. If the manufacturer stores coated steel reinforcing bars outdoors without cover, the date on which the coated bars are placed outdoor shall be recorded on the identification tag of the bundled steel. Coated steel reinforcing bars stored in severe corrosive environments will require protection sooner. Coated steel reinforcing bars or bundles shall be covered with opaque polyethylene sheeting or other suitable opaque protective material. For stacked bundles, the protective covering shall be draped around the perimeter of the stack. The covering shall be secured adequately, and allow for air circulation around the bars to minimize condensation under the covering.
- 16.4 All coated steel reinforcing bars or bundles shall be stored off the ground on protective cribbing.

- 16.5 The identification of all steel reinforcing bars shall be maintained throughout the fabrication and coating process to the point of shipment.
- 16.6 Quality assurance codes that certify compliance to this specification shall be placed on all identification tags of the coated steel reinforcing bars or bundles. These codes shall include references to the date of fabrication, the date of

coating, the powder coating lot designation and the quality assurance testing performed.

17. Keywords

17.1 concrete reinforcement; corrosion resistance; epoxy coating; prefabrication; steel reinforcing bars

ANNEX

(Mandatory Information)

A1. REQUIREMENTS FOR FUSION-BONDED EPOXY POWDER COATINGS FOR PREFABRICATED STEEL REINFORCING BARS

A1.1 Epoxy Powder Coatings

- A1.1.1 This annex covers qualification requirements for fusion-bonded epoxy powder coatings for protecting steel reinforcing bars from corrosion.
- A1.1.2 Other organic coatings may be used provided they meet the requirements of this specification.

A1.2 Test Materials

- A1.2.1 A 1-lb [0.5-kg] sample of the powder coating with its generic description and its infrared spectrum shall be submitted to the testing agency. The infrared spectrum shall be obtained with Fourier Transform Infrared Spectroscopy (FTIR) using Guide E2937. The spectrum and generic description shall become an integral part of the qualification test report.
- A1.2.2 A sample of patching material shall be submitted to the testing agency. The product name and a description of the patching material shall be given in the test report.
 - A1.2.3 Test Specimens:
- A1.2.3.1 The following specimens shall be submitted as a minimum for testing:
- (1) Fourteen 4-ft [1.2-m] long No. 6 [No. 19], Grade 60 [Grade 420] deformed steel reinforcing bars, with a coating thickness of 7 mils to 12 mils [175 μ m to 300 μ m].
- (2) Six uncoated and uncleaned No. 6 [No. 19] steel reinforcing bars, 4 ft [1.2 m] long, from the same lot of steel as the coated bars.
- (3) Four 4 in. by 4 in. by 0.05-in. [100 mm by 100 mm by 1.3-mm] thick steel plates with center holes for Taber abrasers with a coating thickness of 10 mils \pm 2 mils [250 μ m \pm 50 μ m]
- (4) Four 4 in. by 4-in. [100 mm by 100-mm] free films of coating material with a thickness of 7 mils to 9 mils [175 μ m to 225 μ m].
- (5) Twelve coated No. 6 [No. 19] steel reinforcing bars, 10-in. [0.25-m] long, with a coating thickness of 7 mils to 12 mils [175 μ m to 300 μ m]. The coated bars shall have their ends sealed with a minimum of 10 mils [250 μ m] of patching material.

- (6) Ten coated No. 6 [No. 19] steel reinforcing bars, 8-in. [0.20-m] long, with a coating thickness of 7 mils to 12 mils [175 μ m to 300 μ m]. The coated bars shall have their ends sealed with a minimum of 10 mils [250 μ m] of patching material.
- A1.2.3.2 Steel reinforcing bars with a nominal diameter within ± 0.04 in. $[\pm 1 \text{ mm}]$ of No. 6 [No. 19] bars shall be acceptable for qualification testing.
- A1.2.3.3 The coating on the bars and films tested shall be free of holes, voids, contamination, cracks, and damaged areas. The coated bars shall be checked for holidays using a 67.5-V, $80~000-\Omega$, wet-sponge-type dc holiday detector in accordance with Test Methods G62. The total number of coating holidays found on the bar specimens tested shall be reported.
- A1.2.3.4 The powder coating manufacturer shall specify the method and grade of metal surface preparation and the coating application procedures for the test specimens and for contract production of coated steel reinforcing bars. These procedures shall be listed in the test report. Note that production-coated steel reinforcing bars shall be required to be manufactured in the same manner as the qualification bars. Therefore, it is necessary that the qualification coated steel reinforcing bars be prepared in the same manner proposed for production. Variations in the critical preparation, thermal treatment, coating procedures and cure methods known to be allowable without a compromise in quality shall also be detailed in the qualification report.

A1.3 Coating Requirements

A1.3.1 Infrared Spectroscopy (IR)—Variations in the gel and cure time of the powder coatings shall be permitted, if the resulting powder spectrum is comparable to the reference spectrum of the original powder that was submitted for initial qualification. Differences between powders are indicated by the presence or absence of one or more absorption peaks or significant differences in shape or position (frequency) of the bands in the spectra. The reference and sample spectra are considered to represent the same material when the position of corresponding peaks in the two spectra are within plus/minus 5 cm⁻¹. The IR test shall be performed using the FTIR. The spectral range should cover at least 4000 cm⁻¹ to 650 cm⁻¹.

Test Bar Preparation

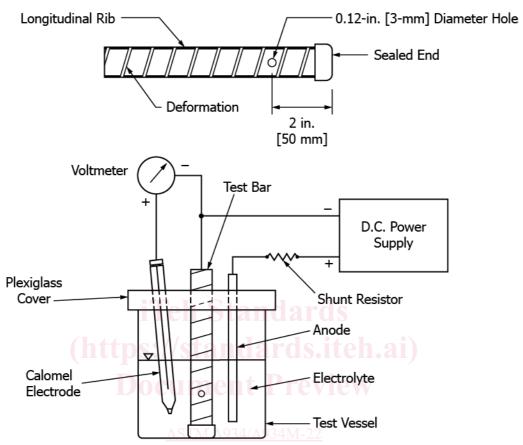


FIG. A1.1 Cathodic Disbondment Test Equipment Configuration $\frac{1}{2}$ $\frac{1}$

Samples being compared shall be prepared in the same manner (for example, KBr, cast film, ATR) as the reference material and the IR scans shall be obtained using equivalent parameters. Spectral differences associated with sample concentration (the overall level of transmittance or absorbance across the entire spectrum of the sample or other effects unrelated to the composition such as incidental presence of atmospheric peaks) shall not be considered as non-conforming differences when making the comparison.

A1.3.2 Chemical Resistance—The chemical resistance of the coating shall be evaluated in accordance with Test Method G20 by immersing coated steel reinforcing bars in each of the following: distilled water, a 3-M aqueous solution of $CaCl_2$, a 3-M aqueous solution of NaOH, and a solution saturated with $Ca(OH)_2$. Specimens without holidays and specimens with an intentional 0.25-in. [6-mm] diameter hole drilled through the coating shall be tested. The temperature of the test solutions shall be 75 °F \pm 3.6 °F [24 °C \pm 2 °C]. The immersion shall last 45 days. The coating must not blister, soften, lose bond, or develop holidays during this period. The coating surrounding the intentionally made hole shall exhibit no undercutting during the 45-day period.

A1.3.3 Cathodic Disbondment—The effects of electrical and electrochemical stresses on the bond of the coating to steel and on the film integrity shall be assessed in elevated and ambient temperature cathodic disbondment tests. Fig. A1.1 presents the recommended equipment configuration for performing cathodic disbondment testing on steel reinforcing bars. The intentional coating defect shall be placed approximately 2 in. [50 mm] from the sealed end of the test bar centered between the longitudinal and transverse ribs. It shall be drilled just deep enough to expose a full 0.12-in. [3-mm] diameter in the steel. The test bar shall be inserted with the sealed end of the bar resting on the bottom of the test vessel and electrolyte added until 4 in. [100 mm] of the bar length is submerged.

A1.3.3.1 Test A—Test Method G42 shall be followed except, (1) the cathode shall be a 8-in. [200-mm] long coated steel reinforcing bar; (2) the anode shall be a 6-in. [150-mm] long solid platinum electrode (0.06-in. [1.6-mm] nominal diameter) or platinized wire (0.12-in. [3-mm] nominal diameter); (3) a calomel reference electrode shall be used; (4) the electrolyte solution shall be 3 % NaCl by mass dissolved in distilled water; (5) the electrolyte solution temperature shall be $150 \,^{\circ}\text{F} \pm 3.6 \,^{\circ}\text{F}$ [65 $\,^{\circ}\text{C} \pm 2 \,^{\circ}\text{C}$]; (6) the drilled coating defect