NOTICE: This standard has either been superseded and replaced by a new version or discontinued. Contact ASTM International (www.astm.org) for the latest information.

AMERICAN SOCIETY FOR TESTING AND MATERIALS 100 Barr Harbor Dr., West Conshohocken, PA 19428 Reprinted from the Annual Book of ASTM Standards. Copyright ASTM

Standard Specification for Copper-Base Alloy Continuous Castings¹

This standard is issued under the fixed designation B 505; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

9).

This standard has been approved for use by agencies of the Department of Defense.

1. Scope *

1.1 This specification establishes requirements for continuously cast rod, bar, tube, and shapes produced from copperbase alloys with nominal compositions as listed in Table $1.^2$

1.2 The values stated in inch-pound units are the standard. SI values given in parentheses are provided for information purposes only.

2. Referenced Documents

2.1 The following documents in the current issue of the Book of Standards form a part of this specification to the extent referenced herein:

2.2 ASTM Standards:

- B 208 Practice for Preparing Tension Test Specimens for Copper-Base Alloys for Sand, Permanent Mold, Centrifugal and Continuous Castings³
- B 824 Specification for General Requirements for Copper Alloy Castings³
- E 8 Test Methods for Tension Testing of Metallic Materials⁴
- E 10 Test Method for Brinell Hardness of Metallic Materials⁴
- E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials⁴

E 527 Practice for Numbering Metals and Alloys (UNS)⁵

3. Ordering Information

3.1 Orders for continuous castings under this specification should include the following information:

- 3.1.1 Specification title, number, and year of issue,
- 3.1.2 Quantity, dimensions, and temper,
- 3.1.3 Copper Alloy UNS Number,
- 3.1.4 Tolerances, if different from Section 8 and Tables 2-8,

3.1.5 ASME Boiler and Pressure Vessel Code⁶ requirements (Section 7),

3.1.6 When castings are purchased for agencies of the U.S. Government, the Supplementary Requirements of Specification B 824 may be specified.

3.2 The following requirements are optional and should be specified in the purchase order when required.

- 3.2.1 Chemical analysis of residual elements (Section 5),
- 3.2.2 Mechanical requirements, (Section 6),
- 3.2.3 Witness inspection (Specification B 824),
- 3.2.4 Certification (Specification B 824),
- 3.2.5 Foundry test report (Specification B 824),
- 3.2.6 Product marking (Specification B 824),
- 3.2.7 Castings for seawater service (Section 4),
- 3.2.8 Approval of weld repair and records of repair (Section

4. Materials and Manufacture

4.1 For better corrosion resistance in sea water applications, castings in Copper Alloy C95800 shall be given a temperature anneal heat treatment at $1250 \pm 50^{\circ}$ F (675 $\pm 10^{\circ}$ C) for 6 h minimum. Cooling shall be by the fastest means possible that will not cause excessive distortion or cracking. Propeller castings shall be exempt from this requirement.

4.2 Copper Alloy UNS Nos. C95300, C95400, C95410, and C95500 may be supplied in the heat-treated condition to obtain the higher mechanical properties shown in Table 9. Suggested heat treatments for these alloys and Copper Alloy UNS No. C95520 are given in Table 2. Actual practice may vary by manufacturer.

4.3 Copper Alloy UNS No. C95520 is used only in the quench-hardened and tempered (TQ30) condition.

4.4 Copper Alloy UNS No. C96900 is normally supplied heat treated at 1520°F (825°C) for 1 h followed by a water quench, then aged at 800°F (425°C) for 4 h followed by a water quench.

4.5 If test bar coupons representing castings made in Copper Alloy UNS Nos. C94700HT, C95300HT, C95400HT, C95410HT, C95500HT, C95520HT, C95800 temper annealed, C95900 annealed and C96900 are removed from the continuous castings before heat treatment, the coupons shall be heat

*A Summary of Changes section appears at the end of this standard.

¹ This specification is under the jurisdiction of ASTM Committee B-5 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.05 on Castings and Ingots for Remelting.

Current edition approved Sept. 10, 1996. Published November 1996. Originally published as B 505 – 70. Last previous edition B 505 – 95.

² The UNS system for copper and copper alloys (see Practice E 527) is a simple expansion of the former standard designation system accomplished by the addition of a prefix "C" and a suffix "00". The suffix can be used to accommodate composition variations of the base alloy.

³ Annual Book of ASTM Standards, Vol 02.01.

⁴ Annual Book of ASTM Standards, Vol 03.01.

⁵ Annual Book of ASTM Standards, Vol 01.01.

⁶ Available from the American Society of Mechanical Engineers, United Engineering Center, 345 East 47th St., New York, NY 10017.

NOTICE: This standard has either been superseded and replaced by a new version or discontinued. Contact ASTM International (www.astm.org) for the latest information.

TABLE 1 Nominal Composition

Copper Alloy UNS	Desimution	Composition, %							
No.	Designation -	Copper	Tin	Lead	Zinc	Nickel	Aluminum	Iron	Manganese
C83600	leaded red brass	85	5	5	5				
C83800	leaded red brass	83	4	6	7				
C84200	leaded semi-red brass	80	5	2	13				
C84400	leaded semi-red brass	81	3	7	9				
C84800	leaded semi-red brass	76	3	6	15				
C85700	leaded naval brass	61	1	1	37				
C86200	high-strength yellow brass	66			23		5	3	3
C86300	high-strength vellow brass	62			26		6	3	3
C86500	high-strength yellow brass	58			39		1	1	1
C89320 ^A	bismuth tin bronze	89	6						
C90300	tin bronze	88	8		4				
C90500	tin bronze	88	10		2				
C90700	tin bronze	89	11						
C91000	tin bronze	85	15						
C91300	tin bronze	81	19						
C92200	leaded tin bronze	88	6	2	4				
C92300	leaded tin bronze	87	8	1	4				
C92500	nickel-phosphor bronze	86.5	11	1		1.5			
C92700	leaded tin bronze	88	10	2					
C92800	leaded tin bronze	79	16	5					
C92900	leaded nickel-tin bronze	84	10	25		3.5			
C93200	high-leaded tin bronze	83	7	2.0	3	0.0			
C93400	high-leaded tin bronze	84	8	8	0				
C93500	high-leaded tin bronze	85	5	q					
C93600	high-leaded tin bronze	81	7	12					
C93700	high-leaded tin bronze	80	10	10					
C93800	high-leaded tin bronze	78	7	15					
C93000	high loaded tin bronze	70	6	16					
C93900	high-leaded tin bronze	70	13	15					
C94000	high-leaded tin bronze	75	5	20 20	rde				
C94300	high loaded tin bronze	70	5	20					
C94300	night-leaded till bronze	20	5	25					
C94700	loaded nickel tin bronze	97	J	doid		J			
C95200	aluminum bronzo	99	Stall	uaiu	S.Itt				
C95200	aluminum bronze	80					10	1	
C95400	aluminum bronzo	85		J D-			10	1	
C95400	aluminum bronzo	84	Imren		evrev		10	4	
C95500	nickol aluminum bronzo	91				2	11	4	
C95500	nickel aluminum bronze	79 5				-4 	11	50	
C95520	manganoso nickol aluminum	76.5				5.5	0	3.0	
095700	bronze	75	<u>ASTM</u>	<u>B505-96</u>		2	0	5	12
C95800	nickel-aluminum bronze	81.31	:	-0	1-04 - 1	4.5	21109205/	4	505 12
C95900	aluminum bronze	82.5	asva3048	euc-a432-	4890-80	/1-984Cl	13 11 /3000/	4.5	202-20
C96400	copper-nickel	70				30			
C96900	copper-nickel	76.6				15			0.4
C97300	leaded nickel bronze	57	2		20	12			
C97600	leaded nickel bronze	64	4	4		20			
C97800	leaded nickel bronze	66	5	2	2	25			
C99500 ^B	special alloy	87		-	1.5	4.5	1.7	4.0	

A Bismuth 5.0

^B Silicon 1.3

TABLE 2 Suggested Heat Treatments

Copper Alloy UNS No.	Solution Treatment (not less than 1 h followed by water quench), °F(°C)	Annealing Treatment (not less than 2 h followed by air cool), °F(°C)
C95300	1585–1635 (860–890)	1150–1225 (620–660)
C95400,		
C95410,	1600–1675	1150-1225
C95500	(870–910)	(620–660)
C95520	(2 h followed by water quench) 1600–1700 (870–925)	925–1000 (495–540)

treated with the continuous castings.

5. Chemical Composition

5.1 The continuous castings shall conform to the require-

TABLE 3 Finishing Allowances for Tube (Round Only)

	Finish Allowances Added to Finished or			
Finished Outside Diameter,	Print			
in. (mm)	Dimensions of the Part, in. (mm)			
	Inside Diameter	Outside Diameter		
All Alloys Exce	pt as Noted Below			
Up to 4 (102), excl	-0.031 (-0.79)	+ 0.031 (0.79)		
4 (102)–5 (127), incl	-0.063 (-1.6)	+ 0.063 (1.6)		
Over 5 (127)	-0.094 (-2.4)	+ 0.094 (2.4)		
Copper Alloy UNS Nos. C86200, C86	300, C86500, C9520	0, C95300, C95400,		
C95500, C95800, C95900, and C96400				
Up to 3 (76.2), incl	-0.125 (-3.2)	+ 0.063 (1.6)		
Over 3 (76.2)-4 (102), incl	-0.125 (-3.2)	+ 0.094 (2.4)		
Over 4 (102)-51/2 (140), incl	-0.188 (-4.8)	+ 0.125 (3.2)		
Over 51/2 (140)	-0.250 (-6.4)	+ 0.188 (4.8)		

ments for major elements shown in Table 10.

5.2 These specification limits do not preclude the presence of other elements. Limits may be established and analysis

NOTICE: This standard has either been superseded and replaced by a new version or discontinued. Contact ASTM International (www.astm.org) for the latest information.

₩ B 505

TABLE 4 Finishing Allowances for Rod and Bar

Finished Outside Diameter or Distance Between Parallel Surfaces, in. (mm)	Rounds	Squares, Rectangles, Hexagons, Octagons				
All Alloys Ex	All Alloys Except as Noted Below					
Up to 4 (102), excl 4 (102)–5 (127), incl Over 5 (127)	+ 0.031 (0.79) + 0.063 (1.6) + 0.094 (2.4)	+ 0.031 (0.79) + 0.063 (1.6) + 0.094 (2.4)				
Copper Alloy UNS Nos. C86200, C86300, C86500, C95200, C95300, C95400, C95500, C95800, C95900, C96400						
Up to 3 (76.2), incl Over 3 (76.2)–4 (102), incl Over 4 (102)–5½ (140), incl Over 5½ (140)	+ 0.0625 (1.6) + 0.093 (2.4) + 0.125 (3.2) + 0.188 (4.8)	+ 0.0625 (1.6) + 0.0625 (1.6) + 0.0625 (1.6) + 0.0625 (1.6)				

TABLE 5 Diameter Tolerances for Rod and Bar

Diamatar ar Diatanaa Ba	Tolerances, Plus ^A and Minus, ^A in. (mm)			
tween Parallel Surfaces		Squares, Rectangles,		
in (mm)	Rounds	Hexagons,		
III: (IIIII)		Octagons		
All Alloys E	Except as Noted Below	V		
Up to 4 (102), excl	0.005 (0.13)	0.016 (0.41)		
4 (102)–5 (127), incl	0.008 (0.20)	0.016 (0.41)		
Over 5 (127)	0.016 (0.41)	0.016 (0.41)		
Copper Alloy UNS Nos. C86200,	C86300, C86500, C9	5200, C95300, C95400,		
C95500, C95800, C95900, and C96400				
Up to 3 (76.2), incl	0.010 (0.25)	0.020 (0.51)		
Over 3 (76.2)-4 (102), incl	0.015 (0.38)	0.020 (0.51)		
Over 4 (102)-51/2 (140), incl	0.020 (0.51)	0.020 (0.51)		
Over 51/2 (140)	0.025 (0.64)	0.025 (0.64)		

^A When tolerances are specified as all plus or all minus, double the values given.

TABLE 6 Diameter Tolerances for Tube (Round Only)

	Tolerances, in. (mm)				
Average Outside Diameter,	Outside	Inside Dia	ameter		
in. (mm) -	Plus ^A or				
	Minus ^A	Plus ^B	Minus ^B		
All Alloys	Except as No	ted Below	1.0.110		
Up to 4 (102), excl / standard	0.005 (0.13)	0.012 (0.30)	0.033 (0.84) 64		
4 (102)–5 (127), incl	0.008 (0.20)	0.016 (0.41)	0.046 (1.2)		
Over 5 (127)	0.016 (0.41)	0.032 (0.81)	0.064 (1.6)		
Copper Alloy UNS Nos. C86200, C86300, C86500, C95200, C95300, C95400,					
C95500, C95800, C95900, and C96400					
Up to 3 (76), incl	0.010 (0.25)	0.012 (0.32)	0.033 (0.84)		
Over 3 (76)-4 (102), incl	0.015 (0.38)	0.015 (0.38)	0.050 (1.3)		
Over 4 (102)-51/2 (140), incl	0.020 (0.51)	0.025 (0.64)	0.070 (1.8)		
Over 51/2 (140)	0.025 (0.64)	0.035 (0.86)	0.090 (2.3)		

^A When tolerances are specified as all plus or all minus double the values given.
^B When tolerances are specified as all plus or all minus, total the values given.

required for unnamed elements agreed upon between the manufacturer or supplier and the purchaser. Copper or zinc may be given as remainder and may be taken as the difference between the sum of all elements analyzed and 100 %. When all named elements in Table 10 are analyzed, their sum shall be as specified in Table 11.

5.3 It is recognized that residual elements may be present in cast copper-base alloys. Analysis shall be made for residual elements only when specified in the purchase order.

6. Mechanical Properties

6.1 Reference should be made to Table 9 for minimum mechanical requirements.

6.2 Mechanical tests are required only when specified by the purchaser in the purchase order.

TABLE 7 Roundness Tolerances				
Outside Diameter, in. (mm)	Maximum Out-of-Roundness, ^A in. (mm)			
Up to 4 (102), excl	0.020 (0.51)			
4 (102)–5 (127), incl	0.032 (0.81)			
Over 5 (127)	0.064 (1.6)			
Copper Alloy UNS Nos. C86200, C86300, C86500, C95200, C95300, C9540 C95500, C95800, C95900, and C96400				
Up to 3 (76.2), incl 0.025 (0.64)				
Over 3 (76.2)-4 (102), incl	0.040 (1.0)			
Over 4 (102)-51/2 (140), incl	0.060 (1.5)			
Over 51/2 (140)	0.075 (1.9)			

^A The deviation from roundness is measured as the difference between major and minor diameters as determined at any one cross section of the tube.

TABLE 8 Tolerances for Shapes

Outside Dimension, ^A in. (mm)		Inside Dimension, ^B in. (mm)		
	All Alloys Except	t as Noted Below		
Plus	Minus	Plus	Minus	
0.016 (0.41)	0.016 (0.41)	0.032 (0.81)	0.064 (1.6)	
Copper Alloy UNS Nos. C86200, C86300, C86500, C95200, C95300, C95400,				
C95500, C95800, C95900, and C96400				
Dimensional tolerances for all other shapes (not covered by 4.1 or 4.2) shall be				
subject to agreement between purchaser and manufacturer.				

^A When tolerances are specified as all plus or all minus, double the values given. ^B When tolerances are specified as all plus or all minus, total the values given.

6.3 Exceptions to mechanical property requirements may be taken in the case of small diameter solids or castings having section thicknesses less than the $\frac{1}{2}$ -in. (12.7-mm) diameter nominal size of the standard tension test specimen. In these cases, mechanical property requirements shall be subject to agreement between the purchaser and the manufacturer. For suggested dimensions of subsize test bars see Test Methods E 8.

7. ASME Requirements

7.1 When specified in the purchase order to meet *ASME Boiler and Pressure Vessel Code* requirements, continuous castings shall comply with the following:

7.1.1 Certification requirements of Specification B 824.

7.1.2 Foundry test report requirements of Specification B 824.

7.1.3 Continuous castings shall be marked with the manufacturer's name, the Copper Alloy UNS No., and the casting quality factor. In addition, heat numbers, or serial numbers that are traceable to heat numbers, shall be marked on all pressure-containing castings individually weighing 50 lb. (22.7 kg) or more. Pressure-containing castings weighing less than 50 lb. (22.7 kg.) shall be marked with either the heat number or a serial number that will identify the casting as to the month in which it was poured. Marking shall be in such a position as not to injure the usefulness of the casting.

7.1.4 When Copper Alloy UNS No. C95200 is specified to meet *ASME Boiler and Pressure Vessel Code* requirements a sample from each 2000-lb interval or continuous casting shall be tested. Each continuous casting from which the test bar was taken shall be identified should retesting be required. If all of the test bars from the initial sampling meet the requirements the lot shall be acceptable. The fractured bars shall be retained for chemical verification.