

Designation: B701/B701M - 13 (Reapproved 2018) B701/B701M - 22

Standard Specification for Concentric-Lay-Stranded Self-Damping Aluminum Conductors, Steel Reinforced (ACSR/SD)¹

This standard is issued under the fixed designation B701/B701M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This specification covers concentric-lay-stranded self-damping aluminum conductor, steel-reinforced (ACSR/SD), and its component wires for use as overhead electrical conductors (Explanatory Notes 1 and 2).
- 1.2 The values stated in inch-pound or SI units are to be regarded separately as standard. Each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the specification. For conductor sizes designated by AWG or kcmil, the requirements in SI units have been numerically converted from corresponding values stated or derived in inch-pound units. For conductor sizes designated by SI units only, the requirements are stated or derived in SI units.
- 1.2.1 For density, resistivity, and temperature, the values stated in SI units are to be regarded as standard.

Note 1—ACSR/SD is designed to control aeolian vibration by integral damping. The conductors consist of a central core of a round steel wire or wires surrounded by two layers of trapezoidal aluminum 1350-H19 wires or two layers of trapezoidal aluminum 1350-H19 wires and one layer of round aluminum 1350-H19 wires (Fig. 1). The trapezoidal-wire layers are separated from each other and from the steel core by two small annular gaps that provide the conductors self-damping characteristics. The round aluminum wires are in tight layer contact between themselves and the underlying trapezoidal wire layer. Different strandings of the same size of conductor are identified by type, which is the approximate ratio of steel area to aluminum area, expressed in percent (Table 1 and Table 2).

Note 2—The aluminum and temper designations conform to ANSI Standard H 35.1. Aluminum 1350 corresponds to UNS A91350 in accordance with Practice E527.

- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein.

¹ This specification is under the jurisdiction of ASTM Committee B01 on Electrical Conductors and is the direct responsibility of Subcommittee B01.07 on Conductors of Light Metals.

Current edition approved March 1, 2018. Published March 2018December 2022. Originally approved in 1981. Last previous edition approved in 20132018 as B701/B701M-13.- 13 (2018). DOI: 10.1520/B0701_B0701M-13R18.10.1520/B0701_B0701M-22.

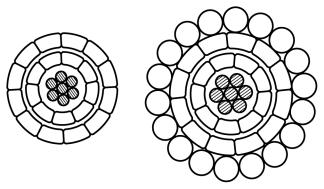


FIG. 1 Illustrations of Typical ACSR/SD Strandings

2.2 ASTM Standards:²

B230/B230M Specification for Aluminum 1350–H19 Wire for Electrical Purposes

B232/B232M Specification for Concentric-Lay-Stranded Aluminum Conductors, Coated-Steel Reinforced (ACSR)

B263B263/B263M Test Method for Determination of Cross-Sectional Area of Stranded Conductors

B354 Terminology Relating to Uninsulated Metallic Electrical Conductors

B498/B498M Specification for Zinc-Coated (Galvanized) Steel Core Wire for Use in Overhead Electrical Conductors

B500/B500M Specification for Metallic Coated or Aluminum Clad Stranded Steel Core for Use in Overhead Electrical Conductors

B502B502/B502M Specification for Aluminum-Clad Steel Core Wire for Use in Overhead Electrical Aluminum ConductorsB549 Specification for Concentric-Lay-Stranded Aluminum Conductors, Aluminum-Clad Steel Reinforced for Use in Overhead Electrical Conductors

B606B606/B606M Specification for High-Strength Zinc-Coated (Galvanized) Steel Core Wire for Aluminum and Aluminum-Alloy Conductors, Steel Reinforced

B802/B802M Specification for Zinc-5 % Aluminum-Mischmetal Alloy-Coated Steel Core Wire for Aluminum Conductors, Steel Reinforced (ACSR)

B803B803/B803M Specification for High-Strength Zinc-5 % Aluminum-Mischmetal Alloy-Coated Steel Core Wire for Use in Overhead Electrical Conductors

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.3 ANSI Documents:³

ANSI H35.1 American National Standard Alloy and Temper Designation Systems for Aluminum

2.4 NIST Documents:⁴

NBS Handbook 100 —Copper Wire Tables of the National Bureau of Standards

2.5 Aluminum Association Documents:⁵

Publication 50, Code Words for Overhead Aluminum Electrical Conductors

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 ACSR/SD covered by this specification has five types of coated core wire and one type of aluminum-clad core wire which are designated by abbreviations as follows (Explanatory Notes 2 and 109):
- 3.1.2 ACSR/SD/AW2—ACSR/SD using aluminum-clad steel wire (Specification B502B502/B502M).
 - 3.1.3 ACSR/SD/GA2—ACSR/SD using Class A zinc-coated steel wire (Specification B498/B498M).
 - 3.1.4 ACSR/SD/GC2—ACSR/SD using Class C zinc-coated steel wire (Specification B498/B498M).

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

⁴ Available from National Institute of Standards and Technology (NIST), 100 Bureau Dr., Stop 1070, Gaithersburg, MD 20899-1070, http://www.nist.gov.

⁵ Available from Aluminum Association, Inc., 1525 Wilson Blvd., Suite 600, Arlington, VA 22209, http://www.aluminum.org.

TABLE 1 Construction Requirements of Aluminum Conductors, Self Damping, Concentric-Lay-Stranded, Steel-Reinforced

		Stranding Number of Wires and Diameter, in. ^A						Rated	Nominal
Conductor Size		Aluminum			Steel ^C	Alumi- num Lay	Mass per 1000 ft, lb	Strength, kip ^{A,B}	Outside Diameter
kcmil	Type ^D	Code Word ^E	Round	Trapezoidal ^F	Round	Factor			in.
2156	8	Bluebird		10×0.2179 15×0.2184	19 × 0.0961	14.5 12.1	2504	60.7	1.716
1700	0	Obstant	21 × 0.2145	0 - 0 0044	10 0 0074	11.0	0000	54.4	4 505
1780	8	Chukar		9 × 0.2041 13 × 0.2150	19 × 0.0874	14.5 12.0	2068	51.1	1.565
			21 × 0.1957	10 / 0.2.00		11.0			
1780	5	Smew		8 × 0.2171	7 × 0.1144	16.0	1921	43.6	1.531
			21 × 0.1914	14 × 0.2128		12.5 11.5			
1590	13	Falcon	21 x 0.1914	10 × 0.1891	19 × 0.1030	13.5	2039	55.1	1.521
				14×0.1977		11.7			
1500	7	Lanuina	24 × 0.1690	0 0 0050	70.1050	11.5	1701	40.6	1 400
1590	7	Lapwing		8×0.2059 12×0.2130	7 × 0.1253	15.9 12.8	1791	42.6	1.468
			21 × 0.1835	12 × 0.2100		11.5			
1590	5	Ratite		8 × 0.2095	7 × 0.1083	15.4	1715	39.1	1.447
			23 × 0.1669	13 × 0.2143		12.5 11.5			
1431	13	Plover	20 × 0.1009	10 × 0.1792	19 × 0.0977	13.5	1835	49.6	1.448
				14×0.1868		11.7			
4 404	_	D	24×0.1609	0 0 10 10	7 0 1100	11.5	1010	00.0	4 000
1431	7	Bobolink		8 × 0.1946 12 × 0.2015	7 × 0.1189	15.1 12.2	1612	38.9	1.398
			21 × 0.1747	12 × 0.2010		11.5			
1431	5	Popinjay		8 × 0.1936	7×0.1025	16.0	1544	35.3	1.381
			01 0 1706	13×0.1972		12.5			
1351.5	13	Martin	21 × 0.1726	11 × 0.1604	19 × 0.0949	11.5 14.7	1733	46.8	1.417
1001.0	10	Maran		15 × 0.1652		12.8	1700	10.0	1.117
			21 × 0.1772			11.5			
1351.5	10	Frigate		9 × 0.1786 14 × 0.1757	7 × 0.1377	14.5 12.2	1629	41.7	1.389
			21 × 0.1735	14 X 0.1757		11.0			
1351.5	7	Dipper	Do	8 × 0.1890	7 × 0.1155	15.2	1522	36.7	1.361
				12 × 0.1954		12.2			
1351.5	5	Ringdove	21 × 0.1701	8 × 0.1946	7 × 0.0997	11.0 16.0	1458	33.4	1.344
1001.0	5	Tilliguove		12 × 0.1949	7 × 0.0997	12.8	1430	55.4	1.044
			21×0.1680			11.5			
1272	andards	Pheasant		11 × 0.1552	19×0.0921	-a614.7 2a	91c 1 ¹⁶³¹	n-b ⁴⁴ .1 _{1-b}	7 1.378
			21 × 0.1723	15 × 0.1599		12.8 ^{2.4} 11.5			
1272	7	Bittern	21 × 0.1720	8 × 0.1829	7 × 0.1121	14.5	1433	34.6	1.323
				12×0.1894		12.3			
1070	-	0-1	21 × 0.1653	7 0 4000	7 0 0007	11.5	1070	04.4	4 005
1272	5	Scissortail		7×0.1929 11 × 0.2029	7 × 0.0967	15.7 12.3	1372	31.4	1.305
			21 × 0.1631	11 × 0.2020		11.5			
1192.5	13	Grackle		10×0.2147	19×0.0892	14.2	1526	41.9	1.274
1192.5	7	Punting		16 × 0.2138 8 × 0.1768	7 × 0.1085	11.5	1343	32.4	1.284
1192.5	/	Bunting		12 × 0.1831	7 × 0.1085	15.1 12.2	1343	32.4	1.264
			21 × 0.1604			11.5			
1192.5	5	Oxbird		7×0.1868	7×0.0936	15.7	1286	29.5	1.266
			01 0 1500	11 × 0.1960		12.3			
1113	13	Finch	21 × 0.1582	9 × 0.2188	19 × 0.0862	11.5 14.2	1424	39.1	1.233
				15 × 0.2133		11.5		30	00
1113	7	Bluejay		8 × 0.1705	7 × 0.1049	15.9	1254	30.3	1.242
			21 × 0.1553	12 × 0.1765		12.8 11.5			
			Z1 X U.1003			11.5			
1113	5	Avocet		7 × 0.1818	7 × 0.0904	16.0	1200	27.5	1.226
			04 0 1=00	12×0.1798		12.4			
1033.5	13	Curlew	21 × 0.1533	9 × 0.2106	7 × 0.1383	11.5 14.2	1329	36.3	1.191
1000.0	13	Guilew		9 × 0.2106 14 × 0.2129	1 ^ 0.1303	11.5	1323	30.3	1.181
1033.5	7	Ortolan		8 × 0.2168	7 × 0.1010	15.2	1161	28.1	1.145
				14×0.2167		11.5			

TABLE 1 Continued

		Stranding Number of Wires and Diameter, in. ^A					minal			Nominal
Conductor Size		Aluminum			Steel	c r	Alumi- num Lay	Mass per 1000 ft, lb	Rated Strength, kip ^{A,B}	Nominal Outside Diameter,
kcmil	Type ^D	Code Word ^E	Round	Trapezoidal ^F	Rour		actor			in.
1033.5	5	Snowbird	04 - 0 4 404	7 × 0.1746 12 × 0.1731	7 × 0.8	1	16.0 12.4	1115	25.9	1.185
954	13	Cardinal	21 × 0.1481	8 × 0.2147 13 × 0.2122	7 × 0.1	329 1	1.5 4.2 1.5	1227	33.5	1.147
954	7	Rail		8 × 0.2080 13 × 0.2163	7 × 0.0	971 1	15.2 11.5	1073	26.1	1.103
954	5	Phoenix		7 × 0.2196 13 × 0.2178	7 × 0.0	336 1	15.6 11.5	1027	23.7	1.088
795	16	Drake		9 × 0.1865 13 × 0.1926	7 × 0.1	360 1	13.9 11.5	1093	31.8	1.077
795	13	Condor		8×0.1957 12×0.2018	7 × 0.1		14.2 11.5	1023	28.2	1.055
795	10	Puffin		7×0.2067 12×0.2033	7 × 0.1	1	14.7 11.5	956	25.1	1.034
795	7	Tern		7 × 0.2034 11 × 0.2144	7 × 0.0	1	15.2 11.5	893	21.9	1.013
795	5	Macaw		6 × 0.2167 11 × 0.2160	7 × 0.0	1	15.6 11.5	856	19.8	0.999
636	16 13	Grosbeak Rook		9 × 0.1666 13 × 0.1723	7 × 0.1	1	3.9 1.5 4.3	874 818	25.4 22.9	0.975 0.955
636 636	10	Goldfinch		8 × 0.1749 12 × 0.1806 7 × 0.1848	7 × 0.1	1	14.3 11.5 14.7	765	20.1	0.955
636	7	Killdeer		12 × 0.1819 7 × 0.1815	7 × 0.0	1	11.5 15.2	705	17.7	0.935
636	5	Pipit		12 × 0.1838 6 × 0.1938	7 × 0.0		11.5 15.8	684	16.1	0.903
556.5	16	Dove		11 × 0.1932 9 × 0.1557	7 × 0.1	I UIS	11.5 14.0	765	22.6	0.919
556.5	13	Parakeet		13 × 0.1613 8 × 0.1637	$0.27_{\times 0.1}$		11.5 14.3	716	20.0	0.901
556.5	10	Sapsucker		13 × 0.1662 7 × 0.1728	7 × 0.0	384	l1.5 l4.7	669	17.8	0.882
556.5	7	Sunbird		12 × 0.1702 7 × 0.1707	7 × 0.0	741 1	11.5 15.2	625	15.5	0.863
556.5	5	Blackbird		11 × 0.1790 6 × 0.1820	1 × 0.1	692 1	11.5 15.8	599	13.6	0.843
477 https://st	andards	Hawk s.iten.ai/cata		10×0.1892 9×0.1438 13×0.1496	$-ab50^{7} \times 0.1$	053	11.5 14.0 11.5 2a	91c1 ^{655.8} /astn	n-b ^{19.5} 1-b	7010.860
477	13	Flicker		8 × 0.1515 13 × 0.1502	7 × 0.0	940 1	14.4 11.5	613.5	17.2	0.843
477	10	Toucan		7 × 0.1599 12 × 0.1576	7 × 0.0	318 1	14.8 11.5	573.4	15.3	0.824
477	7	Jackdaw		7 × 0.1577 12 × 0.1589	7 × 0.0	886 1	15.2 11.5	535.8	13.3	0.808
477	5	Kestrel		6×0.1656 10×0.1768	1 × 0.1		l6.0 l1.5	513.3	11.7	0.787
397.5	16	Ibis		9×0.1278 14×0.1338	7 × 0.0	1	14.2 11.5	546.5	16.4	0.771
397.5	10	Stork		7×0.1424 12×0.1459	7 × 0.0	1	15.0 11.5	477.9	12.9	0.750
397.5	7	Longspur		6 × 0.1501 11 × 0.1544	1 × 0.1	1	15.8 11.5	446.1	10.6	0.725
397.5	5	Erne		6 × 0.1558 10 × 0.1587	1 × 0.1	1	15.6 11.5	427.7	9.74	0.717
336.4 336.4	16 10	Linnet Woodcock		10×0.1041 16×0.1194 8×0.1215	7 × 0.0	1	4.7 1.5 5.1	462.4 404.5	14.3 11.0	0.716 0.688
336.4	7	Hummingbird		8 × 0.1215 14 × 0.1249 6 × 0.1406	7 × 0.0	1	15.1 11.5 15.6	404.5 377.7	9.13	0.688
336.4	5	Cowbird		11 × 0.1407 6 × 0.1416	1 × 0.1	1	15.6 11.5 15.9	361.9	8.5	0.667
266.8	16	Partridge		10 × 0.1470 10 × 0.0881	7 × 0.0	1	11.5 15.0	367.0	11.35	0.645
266.8	10	Spoonbill		12 × 0.1256 8 × 0.0978	1 × 0.1	1	11.5 16.0	320.0	8.45	0.610
266.8	7	Eider		11 × 0.1315 7 × 0.1080	1 × 0.1	1	I1.3 I6.0	299.4	7.61	0.601
				13 × 0.1193			11.2			

TABLE 1 Continued

		Str	Nominal Alumi-		Datad	Nominal			
Conductor Size			Aluminum		Steel ^C	num	Mass per 1000 ft, lb	Rated Strength,	Outside Diameter,
kcmil	Type ^D	Code Word ^E	Round	Trapezoidal ^F	Round	Lay Factor		kip ^{A,B}	in.
266.8	5	Titmouse		6 × 0.1183	1 × 0.1171	16.0	286.9	6.92	0.593
				12×0.1234		11.1			

A Conversion Factors:

TABLE 2 Comparison of ACSR/SD with Equivalent Stranding of

AC	on
ACSR/SD Type Number ^B	Conventional ACSR Stranding ^C
5	42/7
7	45/7
8	84/19
10	22/7
13	54/7
13	54/19
13	24/7
16	26/7

^A The equivalent stranding is that stranding of conventional ACSR that has the same area of aluminum and steel as a given ACSR/SD type.

Document Preview

- 3.1.5 <u>ACSR/SD—ACSR/SD/GA3—ACSR/SD</u> using extra high-strength high-strength Class A zinc-coated steel wire (Specification B606B606/B606M).
- 3.1.6 ACSR/SD/MA2—ACSR/SD using Class A zinc-5 % aluminum-mischmetal alloy-coated steel core wire (Specification B802/B802M).
- 3.1.7 ACSR/SD/MB2—ACSR/SD/MC2—ACSR/SD using Class BC zinc-5 % aluminum-mischmetal alloy-coated steel core wire (Specification B802/B802M).
- 3.1.8 ACSR/SD/MC2—ACSR/SD using Class V zinc-5 % aluminum-mischmetal alloy-coated steel core wire (Specification B802/B802M).
- 3.1.8 <u>ACSR/SD—ACSR/SD/MA3—ACSR/SD</u> using high-strength <u>Class A</u> zinc-5 % Aluminum-mischmetal alloy-coated steel core wire (Specification <u>B803B803/B803M</u>).
- 3.2 For definitions of terms relating to conductors, refer to Terminology Standard B354.

4. Ordering Information

- 4.1 Orders for material under this specification shall include the following information:
- 4.1.1 Quantity of each size and type (Note 1),
- 4.1.2 Conductor size: kcmil area,

¹ kcmil = 0.5067 mm 2 ; 1 in. = 25.4 mm1-mm; 1 kip = 1000 lbf = 4.448 kN.

B Rated strengths of complete conductors are calculated in accordance with 9.1 and with Class A zinc-coated steel core wire in accordance with Specification B498/B498M.

 $^{^{\}it C}$ Lay factors for steel core are the same as for equivalent stranding of conventional ACSR.

^D The type number is the approximate ratio of the steel to aluminum area in percent.

^E Code words shown in this column are obtained from, "Publication 50, Code Words for Overhead Aluminum Electrical Conductors," by the Aluminum Association. They are provided here for information only

F Wire size indicates equal area round wire diameter.

^BACSR/SD type number is the approximate ratio of the steel area to the aluminum area in %.

^C See Specifications B232/B232M and B549.

- 4.1.3 Conductor type and number of wires, aluminum and steel (Table 1),
- 4.1.4 Type of steel core wire and if zinc or Zn-5 % Al-MM alloy coated, area density (Classes A, B, A and C) of coating (see 5.2),
 - 4.1.5 Special tension test, if required (see 9.2),
 - 4.1.6 Place of inspection (Section 15),
 - 4.1.7 Package size (see 16.1),
 - 4.1.8 Special package marking, if required (Section 17), and
 - 4.1.9 Heavy wood lagging, if required (see 16.3).

5. Requirement For Wires

- 5.1 Before stranding, the round and trapezoidal aluminum wires shall conform to the requirements of Specification B230/B230M except for shape and diameter tolerance of the trapezoidal wires. The tensile strength and elongation requirements of trapezoidal wires shall be the same as for round wires of equal area. The area tolerances shall be such that the finished conductor conforms to Section 12.
- 5.2 Before stranding, the steel core wire shall meet the requirements of Specifications B498/B498M, B502B502/B502M, B606B606/B606M, B802/B802M, or B803B803/B803M, whichever is applicable.

6. Joints

(https://standards.iteh.ai)

6.1 Electric-butt welds, electric-butt, cold-upset welds, or cold-pressure welds may be made in the individual aluminum wires during the stranding process. No weld shall occur within 50 ft. [15 m] of any other weld in the completed conductor (Explanatory Note 3).

ASTM B701/B701M-22

6.2 There shall be no joints made in the finished steel wires. [-ab50-4c40-8a23-a6a8 | 2a91c | 7/astm-b70 | -b70 | m-22

7. Lay

- 7.1 The nominal lay factors for the trapezoidal aluminum wires are shown in Table 1 (Explanatory Note 1 and Note 4).
- 7.2 The <u>length of lay factor</u> for the round aluminum wires shall <u>be</u> not <u>be</u> less than 10 nor more than 13.13 times the outside diameter of that layer.
- 7.3 In a conductor having multiple layers of aluminum wires, the length of lay of any aluminum layer shall not be less than the length of lay of the aluminum layer immediately beneath it.
- 7.4 The lay factor for the steel core shall be set forth by length of lay of the various layers of steel wires shall conform to the requirements of Specification B500/B500M.
- 7.5 The direction of lay of the outside layer of aluminum wires shall be right-hand.
- 7.6 The direction of lay of the aluminum and steel wires shall be reversed in successive layers.
- 7.7 For the purpose of this specification the lay factor is the ratio of the length of lay to the external diameter of the corresponding layer of wires or members in the stranded conductor.

8. Construction

- 8.1 The nominal aluminum cross-sectional area, type, stranding, and equivalent wire diameters shall be as shown in Table 1 (Explanatory Note 1).
- 8.2 The smaller sizes of ACSR/SD consist of a steel core, an inner gap surrounded by a layer of trapezoidal aluminum wires (called the inner layer), and an outer gap surrounded by a second layer of trapezoidal aluminum wire (called the outer layer). The larger sizes of ACSR/SD consist of a steel core, an inner gap surrounded by a layer of trapezoidal aluminum wires (called the inner layer), an outer gap surrounded by a layer of trapezoidal aluminum wires (called the middle layer), and a layer of round aluminum wires (called the outer layer) fitting tightly over the middle layer. The diameter and number of steel core wires, the number and equivalent round wire diameters of the trapezoidal aluminum wires, and the number and diameter of the round aluminum wires shall be as shown in Table 1.
- 8.3 All conductor gaps shall be measured radially. The nominal thickness of the gap is 0.030 in. [0.75 mm]. 0.030 in. [0.75 mm]. The tolerance of both the inner and outer gaps shall be plus 0.000 in. [0.00 mm] and minus 0.010 in. [0.25 mm]. 0.000 in. [0.00 mm] and minus 0.010 in. [0.25 mm].
- 8.4 Tests to determine the actual diameter of the conductor are not required by this specification but shall be made if agreed upon between the manufacturer and purchaser at the time of placing the order. When measurements of the diameter are made, these shall be made in the manufacturer's premises during fabrication and at the central point between the final closing die of the strander and the capstan when the conductor is under tension. When so measured the maximum difference in mean diameter from the nominal diameter shall be 1 % (measured in the transverse plane), and the maximum difference in diameter at any transverse section shall be not greater than 3 %.

9. Strength of Conductor

- iTeh Standards
- 9.1 The rated strength of a complete conductor, as shown in Table 1, shall be taken as the aggregate strength of the aluminum and steel components calculated as follows. The strength contribution of the aluminum 1350-H19 wires shall be taken as the percentage indicated in Table 3, in accordance with the number of aluminum layers, of the sum of the wire strengths calculated from the specified diameter of the round wires and from the diameters of round wires having the same area as the trapezoidal wires shown in Table 1, and the appropriate minimum average tensile strength given in Specification B230/B230M. The strength contribution of the steel core wires shall be taken as the percentage, indicated in Table 3, of the sum of the strengths of the steel wires calculated from their specified nominal wire diameter and the appropriate specified minimum stress at 1 % extension given in Specifications B498/B498M, B502B502/B502M, B606B606/B606M, B802/B802M, or B803B803/B803M, whichever is applicable (Explanatory Note 5).
- 9.1.1 The rated strengths of conductors calculated in accordance with 9.1 and 9.3, using Class A zinc-coated steel wires in accordance with Specification B498/B498M, are listed in Table 1.
- 9.2 Routine production testing after stranding is not required. However, when such tests are requested by the purchaser and agreed to by the manufacturer at the time of ordering (or made for other reasons) aluminum wires removed from the completed conductor shall have tensile strengths of not less than 95 % of the minimum tensile strength specified for the wire before stranding. The electrical resistivity shall meet the minimum resistivity specified for wire before stranding. Elongation tests may be made for

TABLE 3 Rating Factors

N	lumber of Layers	3	No. of	Rating Factor, %		
Alur	minum	Steel	Steel Wires			
Round	Round Trapezoidal		- WIICS	Aluminum	Steel	
	2	Α	1	95	96	
	2	1	7	95	96	
	2	2	19	95	93	
1	2	1	7	93	96	
1	2	2	19	93	93	

^A Central steel wire only; the 96 % rating factor is applied to the single steel wire core as a factor of safety in the event the steel wire contains a weld (made prior to drawing).