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Standard Guide for

Evaluating and Expressing the Uncertainty of
Radiochemical Measurements1

This standard is issued under the fixed designation D8293; the number immediately following the designation indicates the year of

original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A

superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide provides concepts, terminology, symbols, and recommendations for the evaluation and expression of the

uncertainty of radiochemical measurements of water and other environmental media by testing laboratories. It applies to

measurements of radionuclide activities, including gross activities, regardless of whether they involve chemical preparation of the

samples.

1.2 This guide does not provide a complete tutorial on measurement uncertainty. Interested readers should refer to the documents

listed in Section 2 and References for more information. See, for example, GUM, QUAM, Taylor and Kuyatt (1)2, and Chapter

19 of MARLAP (2).

1.3 The system of units for this guide is not specified. Dimensional quantities in the guide are presented only as illustrations of

calculation methods. The examples are not binding on products or test methods treated.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility

of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of

regulatory limitations prior to use.

1.5 This international standard was developed in accordance with internationally recognized principles on standardization

established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued

by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:3

D1129 Terminology Relating to Water

D7902 Terminology for Radiochemical Analyses

E177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods

E288 Specification for Laboratory Glass Volumetric Flasks

E438 Specification for Glasses in Laboratory Apparatus

E456 Terminology Relating to Quality and Statistics

E542 Practice for Gravimetric Calibration of Laboratory Volumetric Instruments

E617 Specification for Laboratory Weights and Precision Mass Standards

1 This guide is under the jurisdiction of ASTM Committee D19 on Water and is the direct responsibility of Subcommittee D19.04 on Methods of Radiochemical Analysis.
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E898 Practice for Calibration of Non-Automatic Weighing Instruments

E969 Specification for Glass Volumetric (Transfer) Pipets

E1272 Specification for Laboratory Glass Graduated Cylinders

E2655 Guide for Reporting Uncertainty of Test Results and Use of the Term Measurement Uncertainty in ASTM Test Methods

2.2 ANSI Standards:4

ANSI N42.23 Measurement and Associated Instrumentation Quality Assurance for Radioassay Laboratories

2.3 BIPM Documents:

GUM: JCGM 100:2008 Evaluation of measurement data—Guide to the expression of uncertainty in measurement5

JCGM 101:2008 Evaluation of measurement data—Supplement 1 to the “Guide to the expression of uncertainty in

measurement”—Propagation of distributions using a Monte Carlo method6

JCGM 102:2011 Evaluation of measurement data—Supplement 2 to the “Guide to the expression of uncertainty in

measurement”—Extension to any number of quantities7

JCGM 200:2008 International vocabulary of metrology—Basic and general concepts and associated terms (VIM)8

2.4 OIML Documents:

OIML D 28: 2004 (E) Conventional value of the result of weighing in air9

2.5 Eurachem Guides:

QUAM Quantifying Uncertainty in Analytical Measurement, Eurachem/CITAC Guide CG 4, Third edition10

3. Terminology

3.1 Definitions:

3.1.1 conventional mass, n—property of a body equal to the mass of a standard of density 8000 kg/m3 that exactly balances that

body when weighed in air of density 1.2 kg/m3 at 20 °C, as defined in Specification E617 and International Document OIML D

28.

3.1.2 index of dispersion, J, n—ratio of the variance of a random variable or probability distribution to its mean; also called simply

the variance-to-mean ratio.

3.1.3 normalized absolute difference, NAD, n—absolute value of the normalized difference.

3.1.4 normalized difference, n—quotient of the difference between two measured values and the combined standard uncertainty

of that difference.

3.1.4.1 Discussion—

The normalized difference is similar to a zeta score (ζ score) as that term is commonly used in proficiency testing. Other terms may

be used for the same concept.

3.1.5 relative sensitivity factor, n—ratio of the relative change in an output quantity to a small relative change in a specified input

quantity.

3.1.6 For definitions of many other terms used in this guide, refer to Terminology D1129, Terminology D7902, Practice E177,

Terminology E456, Guide E2655, Test Method E898, JCGM 200, and the GUM.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 minimum detectable value, n—smallest true value of a nonnegative statistical parameter that ensures a specified high

probability of a positive result in a specified hypothesis test for that parameter.

3.2.2 subsampling factor, FS, n—ratio of the massic or volumic activity of a subsample to that of the sample from which it is taken.

4 Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.
5 Available from www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf, accessed June 2018.January 2021.
6 Available from www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf, accessed June 2018.January 2021.
7 Available from www.bipm.org/utils/common/documents/jcgm/JCGM_102_2011_E.pdf, accessed June 2018.January 2021.
8 Available from www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf, accessed June 2018.January 2021.
9 Available from www.oiml.org/en/files/pdf_d/d028-e04.pdf, accessed July 2018.January 2021.
10 Available from eurachem.org/index.php/publications/guides/quam, accessed June 2018.January 2021.
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4. Summary of Practice

4.1 General rules and recommendations for evaluating and expressing measurement uncertainty are given, followed by more

detailed discussions of uncertainty evaluation, propagation, and reporting. Topics include Type A and Type B evaluations of

uncertainty, correlations, coverage factors, rounding rules, and shorthand formats for expressing uncertainty. Guidelines for

determining the practical significance of uncertainty components are presented. Next, some of the most commonly encountered

components of uncertainty in radiochemical measurements are discussed, with suggested methods of evaluation and examples.

Topics include counting uncertainty, background, chemical yield, counting efficiency (calibration), aliquot sizes, decay and

ingrowth factors, and subsampling. A few other miscellaneous topics, such as the calculation of weighted averages with

uncertainties and non-Poisson counting, are also included. Special topics such as uncertainty budgets and evaluation of

uncertainties for mass measurements are presented in the appendices, followed by several applications and worked-out examples.

5. Significance and Use

5.1 This guide is intended to help testing laboratories and the developers of methods and software for those laboratories to apply

the concepts of measurement uncertainty to radiochemical analyses.

5.2 The result of a laboratory measurement never exactly equals the true value of the measurand. The difference between the two

is called the error of the measurement. An estimate of the possible magnitude of this error is called the uncertainty of the

measurement. While the error is primarily a theoretical concept, since its value is never known, the uncertainty has practical uses.

Together, the measured value and its uncertainty allow one to place bounds on the likely true value of the measurand.

5.3 Reliable measurement-based decision making requires not only measured values but also an indication of their uncertainty.

Traditionally, significant figures have been used with varying degrees of success to indicate implicitly the order of magnitude of

measurement uncertainties; however, reporting an explicit uncertainty estimate with each result is more reliable and informative,

and is considered an industry-standard best practice.

6. Procedure

6.1 General Rules and Recommendations:

6.1.1 Whenever a laboratory reports the result of a radioanalytical measurement, the report should include an explicit estimate of

the measurement uncertainty. The measured value and its uncertainty together constitute the overall result of the measurement.

General guidance for evaluating and expressing measurement uncertainty is provided in the GUM and in Guide E2655.

Supplemental guidance is given in JCGM 101 and JCGM 102. More specific guidance for radiochemical measurements, including

a list of recommended practices for radiation laboratories, can be found in MARLAP (2). Guidance for chemical measurement

laboratories, much of which is also applicable to radiochemistry, is provided in QUAM. Ref (3) also provides a set of detailed

examples related to radiochemical analyses.

6.1.2 Laboratories performing radiochemical analyses should follow the guidance of the GUM and its supplements, which provide

standards for terminology, notation, and methodology. The use of standard terminology and notation promotes clear communi-

cation between laboratories and their clients. Furthermore, the use of common methodologies promotes comparability of results

and effective decision-making based on those results.

6.1.3 Generally, the reported uncertainty represents an estimate of the “total uncertainty” of the measurement, which accounts for

all significant sources of inaccuracy in the result. However, for legal or contractual reasons, a laboratory may sometimes be

required to report only a partial uncertainty estimate. For example, U.S. laboratories analyzing drinking water for compliance with

the U.S. EPA’s National Primary Drinking Water Regulations may be required to report the counting uncertainty for each result

(see 6.12).

6.1.4 The estimate of total uncertainty accounts for both random and systematic effects in the measurement process, but not

spurious errors such as those due to instrument malfunctions and human blunders, which represent a loss of statistical control of

the process. Statistical control of the measurement process is a prerequisite for meaningful uncertainty evaluations.

6.1.5 The uncertainty of a measured value should always be positive, never zero or negative.

6.1.6 Typically, the result of a radiochemical analysis is not measured directly but is instead calculated from other measured

quantities, called input quantities, using a mathematical model of the measurement process. In this context, the final calculated
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result is called the output quantity. The uncertainty of each input is first estimated in the form of a standard deviation, called the

standard uncertainty. The laboratory then obtains the standard uncertainty of the final result by combining the standard

uncertainties of the inputs according to general mathematical rules applied to the measurement model. Mathematically combining

uncertainties in this manner is called propagation of uncertainty. A standard uncertainty obtained by uncertainty propagation is also

called a combined standard uncertainty.

6.1.7 The laboratory may report the uncertainty of the result either as the combined standard uncertainty or a specified multiple

thereof, called an expanded uncertainty. The analysis report should always specify which type of uncertainty is being reported, and

if it is an expanded uncertainty, the report should specify the multiplicative factor, called the coverage factor and denoted by k.

For an expanded uncertainty, the report should also state the approximate coverage probability, defined as the probability p that

the interval about the measured value described by its expanded uncertainty will contain the true value of the measurand.

6.2 Overview of Procedure:

6.2.1 Let the measurement model be given abstractly by the equation:

Y 5 f~X1 , X2 , … , XN! (1)

Y 5 f~X1,X2,…,XN! (1)

where Y denotes the output quantity, which is also the measurand, X1, X2, …, XN denote the input quantities, and f is the

measurement function. In practice the measurement model may be implemented as one or more equations—for example, in a

spreadsheet or specialized software application. What matters is that there are unambiguous rules for calculating the output

quantity from the input quantities. For a less abstract example of a measurement model, see Eq 38 in 6.11.

NOTE 1—The distinction between input quantities and output quantities depends on context. An input quantity in one measurement may be an output
quantity from another measurement.

6.2.2 When the laboratory makes a measurement, it finds particular values x1, x2, …, xN for the input quantities. These values may

be called input estimates. The lab applies the measurement function to the input estimates to calculate the output estimate.

y 5 f~x1 , x2 , … , xN! (2)

y 5 f~x1,x2,…,xN! (2)

This output estimate y is the measured value.

NOTE 2—In Eq 1, upper-case symbols (Y or Xi) denote random variables or abstract quantities, while in Eq 2, lower-case symbols (y or xi) denote particular
values of those random variables or quantities. This distinction is maintained when describing techniques for uncertainty evaluation and propagation;
however, in most applications of these equations, the distinction is dropped, and the same symbols are used for both the random variables and their values.

6.2.3 When the laboratory determines each input estimate xi, it determines the associated standard uncertainty u(xi), as described

in 6.3. If necessary, the lab also estimates the covariance of any pair of correlated input estimates, xi and xj. Given this information,

the laboratory then mathematically combines the uncertainties and covariances using standard techniques for uncertainty

propagation (6.4 – 6.6) to obtain the combined standard uncertainty uc(y).

6.2.4 The laboratory optionally multiplies uc(y) by a coverage factor k, described in 6.7, to obtain an expanded uncertainty U. It

then rounds and reports the result y with either the combined standard uncertainty uc(y) or the expanded uncertainty U, as described

in 6.8.

6.3 Evaluating Measurement Uncertainties:

6.3.1 The GUM classifies methods for direct evaluation of uncertainty as either Type A or Type B. A Type A evaluation is an

evaluation of standard uncertainty by the statistical analysis of one or more series of observations. By definition, any evaluation

of standard uncertainty that is not Type A is Type B.

6.3.2 An uncertainty evaluated by a Type A method may be called a Type A uncertainty, and an uncertainty evaluated by a Type

B method may be called a Type B uncertainty. However, the rules of uncertainty propagation make no distinction between the two

types: all uncertainties are propagated in the same manner.
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6.3.3 Any Type A evaluation of uncertainty has a well-defined number of statistical degrees of freedom, as indicated in the

examples that follow.

6.3.4 One of the simplest examples of a Type A evaluation of uncertainty is the estimation of the standard uncertainty of a

measured value q by the experimental standard deviation of repeated observations made in the same manner. If the observed values

are q1, q2, …, qn, the arithmetic mean (average) and the experimental standard deviation are given by:

q̄ 5
1

n (
k51

n

qk and s~qk! 5Œ 1

n 2 1(
k51

n

~qk 2 q̄!2 (3)

q‾ 5
1

n (
k51

n

qk and s~qk! 5Œ 1

n 2 1(
k51

n

~qk 2 q‾ !2 (3)

The standard uncertainty of any single observation, u(qk), equals s(qk). The number of degrees of freedom for this evaluation

is n − 1.

Example—To evaluate the repeatability of an electronic balance (see 6.17.4), an analyst makes a series of 20 measurements of

a 1-gram weight, obtaining the values w1, w2, …, w20 listed below (all values in grams).

1.0002 0.9997 0.9999 1.0001 0.9999

1.0000 1.0000 0.9996 0.9997 0.9999

1.0000 0.9999 0.9998 0.9997 1.0000

1.0000 1.0002 1.0000 1.0000 0.9999

The analyst then calculates the average and standard deviation of the values as follows:

w̄ 5
1

20 (
k51

20

wk

5
19.9985g

20

50.999925g

(4)

w‾ 5
1

20 (
k51

20

wk

5
19.9985 g

20

5 0.999925 g

(4)

s~wk! 5Œ 1

20 2 1(
k51

20

~wk 2 0.999925 g!2

5Œ4.975 ×1027g2

19

50.00016g

(5)

s~wk! 5Œ 1

20 2 1(
k51

20

~wk 2 0.999925 g!2

5Œ4.975 ×1027 g2

19

5 0.00016 g

(5)

The standard deviation s(wk) is an estimate of the balance’s repeatability. (See also X2.1.)

6.3.5 Another simple example of a Type A evaluation is the estimation of the uncertainty of an average measured value, q̄, by the

experimental standard deviation of the mean,s(q̄), also known as the “standard error” of the mean. Given repeated observations

q1, q2, …, qn, the experimental standard deviation of the mean is given by:

s~ q̄! 5
s~qk!

=n
5Œ 1

n~n 2 1!(k51

n

~qk 2 q̄!2 (6)

s~q‾ ! 5
s~qk!

=n
5Œ 1

n~n 2 1!(k51

n

~qk 2 q‾ !2 (6)

When the average value q̄ is used to estimate a quantity, u~ q̄! equals s(q̄). The number of degrees of freedom is n − 1.
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6.3.6 A typical use for s(q̄) is to evaluate the uncertainty of a particular measured quantity from repeated observations of that

quantity. A typical use for s(qk) is to estimate the uncertainties of unrepeated future observations of particular quantities of the same

type measured by the same process, as in the example of balance repeatability above.

6.3.7 One may use s(q̄) to estimate the standard uncertainty of an average q̄ even when the individual observations qk have

different variances, although in such cases the Type A degrees of freedom, n − 1, may overestimate the quality of the uncertainty

evaluation. On the other hand, the use of s(qk) presumes that all the observations qk as well as future observations from the same

measurement process have the same variance.

6.3.8 A Type A evaluation of the covariance of two measured quantities involves a statistical analysis of a series of paired

observations of those quantities. To evaluate the experimental covariance of a pair of observed values, use the equation:

s~qk , rk! 5
1

n 2 1(
k51

n

~qk 2 q̄!~rk 2 r̄! (7)

s~qk,rk!5
1

n 2 1(
k51

n

~qk 2 q‾ !~rk 2 r‾! (7)

where qk and rk denote two simultaneously observed values and q̄ and r̄ denote the average values. To evaluate the experimental

covariance of the means, divide the preceding estimate by n, as shown below:

s~ q̄ , r̄! 5
1

n~n 2 1!(k51

n

~qk 2 q̄!~rk 2 r̄! (8)

s~q‾ ,r‾! 5
1

n~n 21!(k51

n

~qk 2 q‾ !~rk 2 r‾! (8)

6.3.9 Line- or curve-fitting by ordinary least squares (OLS) can also be used for a Type A evaluation of standard uncertainty. Since

OLS is most properly applied to homoscedastic data, in which the variance for each data point is the same, good examples of its

use in radiochemistry seem to be rare. However, X6.5 describes an example in which a logarithmic transformation is applied to

data assumed to have approximately the same relative variance, resulting in transformed data with nearly constant variance. OLS

is then used to fit a straight line to the transformed data and to estimate its Type A standard uncertainty.

6.3.10 A Type B evaluation of uncertainty typically involves an assumed probability distribution for the quantity being estimated.

The distribution is determined by the estimated value q and in most cases by one or more other parameters, often including a

tolerance that describes an interval about q within which the true value is believed to lie. The standard uncertainty u(q) equals the

standard deviation of the assumed distribution.

6.3.11 Type B evaluations are commonly used for the uncertainties of inputs for which repeated observations are impractical.

Examples of such inputs include the values for certified reference materials, radioactive half-lives, and capacities of volumetric

glassware. Since it is common for a testing lab to count a prepared sample test source only once, Type B (Poisson) evaluations

of counting uncertainty are also common. In fact, Type B evaluations of uncertainty are probably far more common than Type A

evaluations at most testing labs.

6.3.12 Appendix X1 describes Type B evaluations based on normal, rectangular, triangular, and U distributions. Evaluations based

on Poisson distributions are described in 6.12.

6.3.13 The statistical analysis that implements a Type A evaluation of a standard uncertainty u(xi) always has an associated number

of degrees of freedom, νvi. The larger the number νvi, the smaller the relative standard uncertainty of u(xi) as an estimator for the

true standard deviation of the distribution of Xi. Based on the approximate mathematical relationship between Type A degrees of

freedom and the relative standard uncertainty of u(xi), the number of degrees of freedom for a Type B evaluation is defined to be:

v i 5
1

2
S∆u~x i!

u~x i!
D 22

(9)

ν i 5
1

2
S∆u~x i!

u~x i!
D 22

(9)

where �u(xi) denotes the standard uncertainty of u(xi), and �u(xi) / u(xi) is its relative standard uncertainty—the “uncertainty of

the uncertainty.” While this equation is only approximately true for Type A degrees of freedom, it serves as a definition for Type

B degrees of freedom.
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6.3.14 Table 1 gives examples of Type B degrees of freedom calculated using Eq 9. Note that the calculated number νvi may not

be an integer. It may also be infinite if �u(xi) is considered to be zero, a case which is most likely when the Type B uncertainty

is based on a rectangular distribution with a well-known tolerance, as described in Appendix X1—for example, the uncertainty

due to rounding a number. For the degrees of freedom associated with Poisson uncertainty evaluations, see 6.12.11. For other Type

B evaluations, the value of �u(xi) is often based on available knowledge and professional judgment.

6.4 Propagation of Uncertainty:

6.4.1 After the uncertainties and covariances of the input estimates are determined, they are combined mathematically using

uncertainty propagation to obtain the combined standard uncertainty of the output estimate.

6.4.2 A component of the combined standard uncertainty is a portion of the total uncertainty attributed to a particular cause, such

as counting statistics, standards, tracers, volumetric glassware, and subsampling, to name only a few. The combined standard

uncertainty can be interpreted as a combination of its components.

6.4.3 Components of the combined standard uncertainty do not add linearly in the manner of a simple sum; instead, they add “in

quadrature.” To add components in quadrature, one squares each component, adds the squares, and takes the square root of the

resulting sum. This operation is described below in more detail.

6.4.4 The laboratory evaluates the standard uncertainty of each input estimate xi. An uncertainty u(xi) may be evaluated directly

by a Type A or Type B method, as described in 6.3 and Appendix X1. However, it often happens that an input estimate xi is obtained

as the output estimate from another measurement, in which case its uncertainty is typically obtained by uncertainty propagation.

In fact, when the measurement function f(X1, X2, …, XN) is complicated enough, it is common to break the full expression down

into subexpressions, each of which in effect represents a simpler measurement function to which the rules of uncertainty

propagation are applied first. For example, see 6.11, where four of the input estimates are calculated from other measured values.

6.4.5 The combined standard uncertainty of the output estimate y, denoted by uc(y), is found using the law of propagation of

uncertainty (also called simply the uncertainty propagation formula).

uc~y! 5Œ(
i51

N S ]f

]x i

D 2

u2~x i!1… (10)

uc~y! 5Œ(
i51

N S ]f

]x i

D 2

u2~x i!1· · · (10)

The partial derivatives ∂f / ∂xi, called sensitivity coeffıcients, are the first partial derivatives of f, evaluated at or near the observed

values of the xi. Each sensitivity coefficient ∂f / ∂xi represents the ratio of the change in the value of the output y to a tiny change

in the value of a single input xi. In measurement reports, a sensitivity coefficient ∂f / ∂xi is commonly denoted by ci.

NOTE 3—The partial derivative ∂f / ∂xi may also be denoted by ∂y / ∂xi.

6.4.6 Ideally, the partial derivatives ∂f / ∂xi would be evaluated at the true values of the input quantities Xi, if they were known,

but since they are unknown, the evaluation uses the observed values xi. In some cases, especially when measurements are

performed for purposes of quality control, there may be better prior estimates of the true values, which can be used to evaluate

the sensitivity coefficients.

6.4.7 Fig. 1 illustrates a partial derivative of a function of two variables. The figure depicts the function as a curved surface, y

TABLE 1 Type B Degrees of Freedom

∆u(xi) / u(xi) νvi

50 % 2

33.3 % 4.5

25 % 8

20 % 12.5

10 % 50

5 % 200

0 % `
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5f~x1 , x2!y5f~x1,x2!. A plane perpendicular to the x1-axis slices the surface at a chosen value of x1, intersecting the surface in a curve.

The value of ∂f / ∂x2 at any point on the curve equals the slope of the tangent line at that point.

6.4.8 The ellipsis (. . .) in Eq 10 indicates the possibility of additional terms under the radical. Additional terms appear when input

estimates are correlated with each other (see 6.5).

6.4.9 The component of the combined standard uncertainty uc(y) generated by the uncertainty of an input estimate xi can be found

as follows:

u i~y! 5 U ]f

]x i

Uu~x i! 5 ?c i?u~x i! (11)

u i~y! 5 U ]f

]x i

Uu~x i! 5 ?c i?u~x i! (11)

Here ui(y) denotes the component of uc(y) generated by u(xi). The law of propagation of uncertainty can then be written explicitly

in terms of uncertainty components, as shown below:

uc~y! 5Œ(
i51

N

u i
2~y!1… (12)

uc~y! 5Œ(
i51

N

u i
2~y!1· · · (12)

6.4.10 After the combined standard uncertainty uc(y) is calculated, it may be multiplied by a coverage factor,k, to obtain an

expanded uncertainty,U5k ·uc~y!. The expanded uncertainty describes an interval y 6 U that is believed to have a high probability

of containing the true value of the measurand. The value of k should be greater than 1 and typically ranges from 2 to 3. If the

distribution of the result is normal (Gaussian) and if the standard uncertainty is a good estimate of the true standard deviation, a

coverage factor of 2 provides approximately 95 % coverage probability, and a coverage factor of 3 provides more than 99 %

coverage probability. See 6.7 for more information about determining a coverage factor to provide a specified coverage probability

p.

NOTE 4—A testing lab should choose the coverage factor k = 2 or the coverage probability p = 95 % by default unless there are compelling reasons to
do otherwise.

6.4.11 Fig. 2 applies a geometric analogy to illustrate uncertainty propagation for a hypothetical measurement equation y

5f~x1 , x2!y5f~x1,x2! with two input quantities. The width and height of the rectangle represent the two uncertainty components while

the diagonal represents the combined standard uncertainty. In this analogy, Eq 12 for two uncorrelated input estimates is equivalent

to the Pythagorean Theorem: uc
2~y!5u1

2~y!1u2
2~y!.

6.4.12 Fig. 3 applies the same analogy in three dimensions for a measurement equation y5f~x1 , x2 , x3!y5f~x1,x2,x3! with three inputs.

Here the three uncertainty components are identified with the length, width, and height of a box, and the combined standard

FIG. 1 Partial Derivative ]f ⁄]x2 of a Function y = f (x1, x2)
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uncertainty is identified with the box’s diagonal. In this case, uc
2~y!5u1

2~y!1u2
2~y!1u3

2~y!uc
2~y!5u1

2~y!1u2
2~y!1u3

2~y!.

6.5 Correlations:

6.5.1 When input estimates may be correlated with each other, the complete law of propagation of uncertainty is written as

follows:

uc~y! 5Œ(
i51

N S ]f

]x i

D 2

u2~x i!12 (
i51

N21

(
j5i11

N ]f

]x i

]f

]x j

u~x i , x j! (13)

uc~y! 5Œ(
i51

N S ]f

]x i

D 2

u2~x i!12 (
i51

N21

(
j5i11

N ]f

]x i

]f

]x j

u~x i,x j! (13)

In this equation, u(xi, xj) denotes the estimated covariance of input estimates xi and xj. Note that u~x i , x j!5u~x j , x i!u~x i,x j!

5u~x j,x i! and u~x i , x i!5u2x iu~x i,x i!5u2~x i!.

6.5.2 The covariance u(xi, xj) can also be written as:

u~x i , x j! 5 r~x i , x j!u~x i!u~x j! (14)

u~x i,x j!5 r~x i,x j!u~x i!u~x j! (14)

where r(xi, xj) denotes the estimated correlation coeffıcient of xi and xj:

r~x i , x j! 5
u~x i , x j!

u~x i!u~x j!
(15)

r~x i,x j!5
u~x i,x j!

u~x i!u~x j!
(15)

The correlation coefficient is always a dimensionless real number between −1 and +1.

NOTE 5—The input estimates xi and xj are correlated if r~x i , x j!fi0r~x i,x j!fi0 and uncorrelated if r~x i , x j!50r~x i,x j!50. The correlation is strong if
|r~x i , x j! ||r~x i,x j! | is near 1 and weak if it is near 0.

6.5.3 Typically, few inputs in a radiochemical measurement are significantly correlated and usually only when they are calculated

from the same data. Common examples include calibration parameters, especially when the calibration involves a multi-parameter

curve or when calibrations for two radionuclides are based on one standard solution (for example, 90Sr and 90Y calibrations using

the same 90Sr standard, as described in X5.3). Another common example is a correlation between the counting efficiency and the

chemical yield, as described in 6.16.

FIG. 2 Combining Two Uncertainty Components

FIG. 3 Combining Three Uncertainty Components
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6.5.4 When two inputs xi and xj are correlated only because they are calculated from other variables w1, w2, …, wm, the covariance

u(xi, xj) may be calculated as described below in 6.5.8. Alternatively, one may recast the measurement equation y

5f~x1 , x2 , … , xN!y5f~x1,x2,…,xN!, replacing xi and xj by the expressions used to calculate them, thereby eliminating the correlated

inputs xi and xj from the equation and including new inputs w1, w2, …, wm, as shown below:

y 5 f~x1 , … , x i21 , x i11 , … , x j21 , x j11 , … , xN , w1 , … , wm! (16)

y 5 f~x1,…,x i21,x i11,…,x j21,x j11,…,xN,w1,…,wm! (16)

6.5.5 To evaluate the covariance of two input quantities experimentally, see 6.3.8.

6.5.6 Generally, one estimates the covariance of two inputs only when there is a reason to suspect it may be nonzero. One may

suspect a correlation whenever two inputs are measured using the same devices, or using different devices that are affected by the

same influence quantities, such as ambient temperature, pressure, and humidity. Even when a correlation exists, if the uncertainty

components generated by the two inputs are both small, the effect of the correlation is necessarily small, too, and might be ignored.

6.5.7 Fig. 2 graphically illustrated the propagation of uncertainty for two uncorrelated input estimates by analogy with the

Pythagorean Theorem. Fig. 4 extends the geometric analogy to cases where the two input estimates are correlated. A correlation

transforms the rectangle of Fig. 2 into a parallelogram with acute and obtuse angles, as shown. For either of the parallelograms

in Fig. 4, the cosine of the indicated angle has the same absolute value as the correlation coefficient r(x1, x2), with a sign that

depends on whether the correlation increases the total uncertainty (a, positive cosine) or decreases it (b, negative cosine).

6.5.8 The covariance of two output estimates y and z calculated from input estimates x1, x2, …, xN can be calculated using a

formula similar to the law of propagation of uncertainty. Let y5f~x1 , x2 , … , xN!y5f~x1,x2,…,xN! and z5g~x1 , x2 , … , xN!z

5g~x1,x2,…,xN!. Then:

u~y , z! 5 (
i51

N

(
j51

N ]f

]x i

]g

]x j

u~x i , x j! (17)

u~y ,z!5 (
i51

N

(
j51

N ]f

]x i

]g

]x j

u~x i,x j! (17)

If x1, x2, …, and xN are uncorrelated, the preceding equation reduces to:

u~y , z! 5 (
i51

N ]f

]x i

]g

]x j

u2~x i! (18)

u~y ,z!5 (
i51

N ]f

]x i

]g

]x i

u2~x i! (18)

Example—Suppose two sources are counted separately using a liquid scintillation counter and the results are background-

corrected using the same background estimate. If the two gross count rates are RS1 and RS2 and the background count rate is RB,

FIG. 4 Combining Uncertainties of Two Correlated Inputs
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the net count rates are given by RN1 = RS1 − RB and RN2 = RS2 − RB. Since the variable RB appears in both expressions, its

uncertainty generates a covariance for RN1 and RN2.

u~RN1 , RN2! 5
]RN1

]RB

]RN2

]RB

u2~RB!

5~21!~21!u2~RB!
5u2~RB!

(19)

u~RN1,RN2! 5
]RN1

]RB

]RN2

]RB

u2~RB!

5~21!~21!u2~RB!
5 u2~RB!

(19)

6.5.9 The covariance of two calibration parameters calculated by least squares should be determined as part of the least-squares

analysis. The method of weighted least squares provides not only a solution vector but also the estimated covariance matrix for

the solution. The diagonal entries of this matrix are the variances of the estimated parameters, and the off-diagonal entries are the

covariances.

6.5.10 The covariance of any pair of parameters may be divided by the product of the two parameters’ uncertainties to obtain the

estimated correlation coefficient, which is generally more convenient for record-keeping.

6.5.11 See X5.3 for more examples of the use of Eq 18.

6.6 Alternatives for Uncertainty Propagation:

6.6.1 It is often possible to implement Eq 10 without explicit calculation of derivatives using only the rules of uncertainty

propagation for sums, differences, products, and quotients. Uncertainty propagation for sums and differences follows the pattern:

uc~x1 6 x2 6 … 6 xn! 5=u2~x1!1u2~x2!1…1u2~xn! (20)

uc~x16x26· · ·6xn!5=u2~x1!1u2~x2!1· · ·1u2~xn! (20)

6.6.2 More generally, if the variables xi are multiplied by any constants ai, the pattern becomes:

uc~a1 x1 1 a2x2 6 … 6 an xn!5

=a1
2u2~x1!1a2

2u2~x2!1…1an
2u2~xn!

(21)

uc~a1x11a2x21· · ·1anxn!5

=a1
2u2~x1!1a2

2u2~x2!1· · ·1an
2u2~xn!

(21)

NOTE 6—Eq 21 may be derived from the fact that:

]

]x i

~a1 x1 1 a2 x2 1 … 1 an xn! 5 a i (22)

]

]x i

~a1x11a2x21· · ·1anxn!5 a i (22)

6.6.3 For products and quotients, the pattern for uncertainty propagation is:

ucS x1x2…xn

w1w2…wm

D5

U x1x2…xn

w1w2…wm

UŒu2~x1!
x1

2 1…1
u2~xn!

xn
2 1

u2~w1!
w1

2 1…1
u2~wm!

wm
2

(23)

ucS x1x2…xn

w1w2…wm

D 5 U x1x2…xn

w1w2…wm

U
×Œu2~x1!

x1
2 1· · ·1

u2~xn!
xn

2 1
u2~w1!

w1
2 1· · ·1

u2~wm!
wm

2

(23)

provided that none of the factors xi or wj is zero. One may also rewrite Eq 23 in terms of relative variances:
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u rel
2 S x1x2…xn

w1w2…wm

D 5 u rel
2 ~x1!1…1u rel

2 ~xn!1u rel
2 ~w1!1…1u rel

2 ~wm! (24)

u rel
2 S x1x2…xn

w1w2…wm

D 5 u rel
2 ~x1!1· · ·1u rel

2 ~xn!

1u rel
2 ~w1!1· · ·1u rel

2 ~wm!
(24)

where urel(xi) denotes the relative standard uncertainty, u~x i! ⁄|x i|u~x i! ⁄ |x i|.

NOTE 7—Eq 23 may be derived from the fact that if y5~x1 x2 … xn!
⁄~w1 w2 … wm!
y5
~x1x2…xn! ⁄~w1w2…wm!, where none of the factors is zero, then:

]y

]x i

5
x1…x i21x i11…xn

w1w2…wm

5
y

x i

(25)

]y

]x i

5
x1…x i21x i11…xn

w1w2…wm

5
y

x i

(25)

and

]y

]w j

52
x1x2…xn

w1…w j
2…wm

52
y

w j

(26)

]y

]w j

52
x1x2…xn

w1…w j
2…wm

52
y

w j

(26)

6.6.4 If some of the xi may be zero, Eq 23 must be rearranged to avoid division by those factors. For example, if x1 could be zero,

one might write either:

ucS x1x2…xN

w1w2…xm

D5

FS x2x3…xn

w1w2…wm

D 2

u2 ~x1! 1 S x1x2…xn

w1w2…wm

D 2

Su2~x2!
x2

2 1 … 1
u2~xn!

xn
2 1

u2~w1!
w1

2 1 … 1
u2~wm!

wm
2 DG1⁄2

(27)

ucS x1x2…xn

w1w2…wm

D 5FS x2x3…xn

w1w2…wm

D 2

u2~x1!

1S x1x2…xn

w1w2…wm

D 2Su2~x2!
x2

2 1 · · · 1
u2~xn!

xn
2

1
u2~w1!

w1
2 1 · · · 1

u2~wm!
wm

2 DG1/2

(27)

or

ucS x1x2…xn

w1w2…wm

D5

Œu2~x1!1x1
2Su2~x2!

x2
2 1 … 1

u2~xn!
xn

2 1
u2~w1!

w1
2 1 … 1

u2~wm!
wm

2 D
×U x2x3…xn

w1w2…wm

U
(28)

ucS x1x2…xn

w1w2…wm

D 5 U x2x3…xn

w1w2…wm

U
×Œu2~x1!1x1

2Su2~x2!
x2

2 1· · ·1
u2~xn!

xn
2 1

u2~w1!
w1

2 1· · ·1
u2~wm!

wm
2 D

(28)

The last two equations are equivalent to Eq 23 when all the factors are nonzero, but both are still valid if x1 happens to be zero.

For a less abstract example, see Eq 39 in 6.11.2, where the uncertainty equation is written to avoid division by the variable RN.

6.6.5 More generally, if p1, p2, …, pn are any exponents, not necessarily 61, and if none of the factors xi is zero:

uc~x1
p1 x2

p2 … xn
pn!5

?x1
p1x2

p2…xn
pn?Œp1

2
u2~x1!

x1
2 1p2

2
u2~x2!

x2
2 1…1pn

2
u2~xn!

xn
2

(29)
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uc~x1
p1x2

p2…xn
pn!5 ?x1

p1x2
p2…xn

pn?

×Œp1
2
u2~x1!

x1
2 1p2

2
u2~x2!

x2
2 1· · ·1pn

2
u2~xn!

xn
2

(29)

In terms of relative variances:

u rel
2 ~x1

p1 x2
p2 … xn

pn! 5 p1
2u rel

2 ~x1!1p2
2u rel

2 ~x2!1…1pn
2u rel

2 ~xn! (30)

u rel
2 ~x1

p1x2
p2…xn

pn!5 p1
2u rel

2 ~x1!1p2
2u rel

2 ~x2!1· · ·1pn
2u rel

2 ~xn! (30)

6.6.6 These simplified rules do not apply if the same input quantity appears more than once in the expression whose uncertainty

is being evaluated. For example, the variance of x + x is not u2(x) + u2(x), or 2u2(x), as one might infer incorrectly from Eq 20;

it actually equals uc
2(2x), or 4u2(x), as implied by Eq 21. When a variable appears more than once, it may be possible to recast

the expression algebraically so that each variable appears only once, and the simplified rules can still be used. However, in some

cases algebra fails and calculus is needed.

6.6.7 For measurement functions with more than a few input quantities, an explicit expression for the combined standard

uncertainty can become quite complex, even using the rules described above. A number of software applications have been

developed and are available to assist in reliably developing, testing, and documenting uncertainty models.

6.6.8 Other options for calculating the combined standard uncertainty without calculus often involve approximations for the

sensitivity coefficients. For i = 1, 2, …, N, the sensitivity coefficient ∂f / ∂xi may be approximated by:

]f

]x i

'

f~x1 , … , x i 1 u ~x i! ,…,xN! 2 f~x1 , … , x i 2 u ~x i! ,…,xN!
2u~x i!

(31)

]f

]x i

'
1

2u~x i!
@f~x1,…,x i1u~x i! ,…,xN!M‾_

M‾_ 2 f~x1,…,x i 2 u~x i! ,…,xN!#

(31)

Recognizing this fact, the GUM allows the approximation:

uc~y!'Œ(
i51

N

Z i
2 (32)

uc~y!'Œ(
i51

N

Z i
2 (32)

where:

Z i 5
1

2
@f ~x1 , … , x i 1 u ~x i! ,…,xN! 2 f~x1 , … , x i 2 u ~x i! ,…,xN!# (33)

Z i 5
1

2
@f~x1,…,x i1u~x i! ,…,xN!M‾_

M‾_ 2 f~x1,…,x i 2 u~x i! ,…,xN!#

(33)

6.6.9 The Kragten spreadsheet method for propagating uncertainty (4) is based on a similar one-sided approximation of each

sensitivity coefficient:

uc~y!'Œ(
i51

N

D i
2 (34)

uc~y!'Œ(
i51

N

D i
2 (34)

where:

D i 5 f~x1 , … , x i 1 u ~x i! ,…,xN! 2 f~x1 , … , xN! (35)

D i 5 f~x1,…,x i1u~x i!,…,xN!2 f~x1,…,xN! (35)

6.6.10 Another method for uncertainty propagation is Monte Carlo simulation, described in JCGM 101. The Monte Carlo method
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evaluates both the output estimate y and its standard uncertainty u(y) by analyzing the distribution of results produced in many

trials of a computer simulation of the measurement. In each trial, the algorithm generates pseudo-random values for the input

quantities Xi by sampling from their estimated or assumed distributions, and uses the measurement function f(x1, x2, …, xN) to

calculate a value for the output quantity Y. The output estimate y and its standard uncertainty u(y) are then given by the average

and experimental standard deviation of all the trial results. For details of the method and a discussion of its advantages and

disadvantages in relation to the standard GUM approach, see JCGM 101.

6.7 Calculating Coverage Factors:

6.7.1 As discussed earlier, the combined standard uncertainty uc(y) may be multiplied by a coverage factor k to obtain an expanded

uncertainty U = k  uc(y) such that the coverage interval from y − U to y + U is believed to contain the true value of the measurand

with high probability. The coverage factor most commonly used in reports of radiochemical measurement results is k = 2, which

is usually assumed to produce a coverage interval with approximately 95 % coverage probability. For some purposes, especially

internal laboratory quality control, the coverage factor k = 3 is often used. The coverage probability at k = 3 is assumed to be more

than 99 %, so that the interval from y − U to y + U should “almost always” contain the true value of the measurand.

6.7.2 If the distribution of the measurement result y is normal (Gaussian) and if its combined standard uncertainty uc(y) is a

sufficiently accurate estimate of the standard deviation of that distribution, then the coverage factor kp that provides a specified

coverage probability p is approximated by the (1 + p) / 2-quantile of the standard normal distribution, z(1 + p) / 2. Table 2 lists several

values of kp based on this approximation.

6.7.3 Laboratories often use the approximation described above by default regardless of whether the uncertainty is well-known.

In most cases, the combined standard uncertainty uc(y) is not known well enough to justify retaining more than two significant

figures in the value of kp.

6.7.4 As discussed in 6.3.13, one may calculate the number of degrees of freedom νvi for the Type A or Type B standard

uncertainty u(xi) of each input estimate. Given the degrees of freedom νvi for all the input estimates, it is possible to calculate the

effective degrees of freedom, νeff, for the combined standard uncertainty and to use νeff to estimate a somewhat better coverage

factor kp for a specified coverage probability p.

6.7.5 Assuming that none of the input estimates are correlated with each other and that the combined standard uncertainty uc(y)

is not dominated either by a Type A uncertainty component with only a few degrees of freedom or by a Type B component based

on a distribution that is very different from a normal distribution, one may use the Welch-Satterthwaite formula, shown below, to

calculate the effective degrees of freedom for uc(y).

veff 5
uc

4~y!

(
i51

N u i
4~y!
v i

(36)

νeff 5
uc

4~y!

(
i51

N u i
4~y!
ν i

(36)

Note that if the number of Type B degrees of freedom vvi for an input estimate xi is infinite, the ith term of the sum in the

denominator of Eq 36 is zero and should be omitted.

6.7.6 Given νeff, estimate the coverage factor kp by the (1 + p) / 2-quantile of the t-distribution with νeff degrees of freedom.

kp 5 t
~1 1 p! ⁄2~veff! (37)

kp 5 t ~11p! ⁄ 2~νeff! (37)

Round kp to either 2 or 3 figures. Table 3 provides examples of kp calculated in this manner.

TABLE 2 Coverage Factors: Well-Characterized Uncertainty

p (1+p) / 2 kp = z(1+p) / 2

95.0 % 0.975 2.0

99.0 % 0.995 2.6

99.5 % 0.9975 2.8

99.7 % 0.9985 3.0
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NOTE 8—The calculated value of νeff is generally not an integer. Some software packages may be able to calculate the quantile t(1 + p) / 2((ννeff) for
non-integral degrees of freedom. When such software is unavailable, either interpolate between values of t for integral degrees of freedom or truncate
νeff to a whole integer.

6.8 Reporting the Uncertainty:

6.8.1 The report of the measurement should indicate whether the uncertainty is the combined standard uncertainty or an expanded

uncertainty. For an expanded uncertainty, the report should state the coverage factor k and the approximate coverage probability

p. The report should also include a statement if the stated uncertainty does not represent the total uncertainty of the

measurement—as for example, if it represents only the counting uncertainty.

6.8.2 In most cases, the uncertainty of a measured value is expressed in the same measurement unit as the value itself. One may

also report the relative uncertainty as a percentage, provided that the measured value is nonzero and especially if its uncertainty

is relatively small, as for example when analyzing high-activity samples, spikes, or reference materials.

6.8.3 Rounding:

6.8.3.1 For most purposes, the reported uncertainty should be rounded to either one or two figures and the measured value should

then be rounded to the same power of 10 as the uncertainty. A traditional rule is to round the uncertainty to one figure unless the

resulting figure is a 1, in which case the uncertainty is rounded to two figures. A simpler rule, recommended by ANSI N42.23 and

MARLAP (2), is to round the uncertainty to two figures in all cases. This simpler rule is also recommended by the NIST Weights

and Measures Division in Good Laboratory Practice (5) and is used at the “NIST Reference on Constants, Units, and Uncertainty”

(6).

6.8.3.2 Never round the reported result of a measurement to a power of 10 that is larger than the combined standard uncertainty.

Such rounding would introduce significant additional uncertainty, which might dominate all other components.

6.8.3.3 Do not round intermediate results of calculations unnecessarily. Round only final results and their uncertainties as

described above.

6.8.4 Shorthand Formats:

6.8.4.1 When the laboratory reports a measurement result, it may present the measured value and the uncertainty as distinct,

clearly identified items—for example, in different columns of a table. Alternatively, it may present the value and its uncertainty

in a single expression using one of the shorthand formats described below.

6.8.4.2 The most common shorthand format for reporting a result with its combined standard uncertainty places the digits of the

rounded uncertainty in parentheses immediately after the final digits of the rounded measured value. For example, a value of 0.124

Bq/g with combined standard uncertainty 0.037 Bq/g is represented by 0.124(37) Bq/g. When scientific notation is used, the

expression becomes 1.24(37) × 10−1 Bq/g. For examples of the use of this format, see the “NIST Reference on Constants, Units,

and Uncertainty” (6).

6.8.4.3 It is also possible to put the entire expression for the combined standard uncertainty inside parentheses, as in 0.124(0.037)

Bq/g, although this format is less commonly used.

6.8.4.4 The shorthand format for reporting a result with its expanded uncertainty places the symbol 6 between the numerical

measured value and uncertainty. When the unit of measurement is included, the entire expression is placed in parentheses and

TABLE 3 Coverage Factors (Examples)

kp = t(1+p)/2((νveff)

vνeff p = 95.0% 99.0% 99.5% 99.7%

5 2.57 4.03 4.77 5.38

10 2.23 3.17 3.58 3.89

15 2.13 2.95 3.29 3.54

20 2.09 2.85 3.15 3.38

25 2.06 2.79 3.08 3.29

30 2.04 2.75 3.03 3.23

50 2.01 2.68 2.94 3.12

100 1.98 2.63 2.87 3.04

` 1.96 2.58 2.81 2.97
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