

Designation: A473 - 21 A473 - 23

Standard Specification for Stainless Steel Forgings¹

This standard is issued under the fixed designation A473; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope*

- 1.1 This specification covers austenitic, austenitic-ferritic, ferritic, and martensitic stainless steel forgings for general use, and for low- or high-temperature service.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 Supplementary requirements from Specification A788/A788M may be specified when additional testing, inspection, or processing is required.
- 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

ASTM A473-23

2.1 ASTM Standards:²

A370 Test Methods and Definitions for Mechanical Testing of Steel Products

A751 Test Methods and Practices for Chemical Analysis of Steel Products

A788/A788M Specification for Steel Forgings, General Requirements

A1058 Test Methods for Mechanical Testing of Steel Products—Metric

E8/E8M Test Methods for Tension Testing of Metallic Materials

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.2 SAE Standard:³

SAE J1086 Numbering Metals and Alloys

3. Ordering Information

3.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Such requirements may include, but are not limited to, the following:

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.06 on Steel Forgings and Billets.

Current edition approved Sept. 1, 2021 March 1, 2023. Published September 2021 April 2023. Originally approved in 1962. Last previous edition approved in 2019 2021 as A473-19. DOI: 10.1520/A0473-21. DOI: 10.1520/A0473-23.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ Available from SAE International (SAE), 400 Commonwealth Dr., Warrendale, PA 15096, http://www.sae.org.

3.1.1 Quantity (weight or number of pieces);
3.1.2 Dimensions, including prints or sketches;
3.1.3 Name of material (stainless steel forgings);
3.1.4 Type or UNS designation (Table 1);
3.1.5 Condition (Table 2); and
3.1.6 ASTM designation and date of issue;
3.1.7 Test for magnetic permeability, if specified by customer purchase order when ordering Types 207 and 205; and
3.1.8 Special requirements.
3.2 If possible the intended end use of the item should be given on the purchase order especially when the item is ordered for a specific end use or uses.
Note 1—A typical ordering description is as follows: 5 stainless steel forgings, Type 410, Designation A, ASTM Specification A473 dated End use: pump blocks for oil well equipment.
4. General Requirements
4.1 Material supplied to this specification shall conform to the requirements of Specification A788/A788M, which outlines additional ordering information, manufacturing requirements, testing and retesting methods and procedures, marking, certification, product analysis variations, and additional supplementary requirements.
4.2 If the requirements of this specification are in conflict with the requirements of Specification A788/A788M, the requirements of this specification shall prevail.
5. Manufacture ASTM A473-23
5.1 Material for forgings shall consist of ingots or blooms, billets, slabs, or bars, either forged or rolled from an ingot, and cut to the required length by a suitable process.

TABLE 1 Chemical Requirements^A

Solition 201	UNS Desig- nation ^B	Type Number	Carbon,	Manga- nese, %	Phos- phorus, %	Sulfur,	Silicon, %	Chromium,	Nickel, %	Molyb- denum, %	Nitrogen, %	Other Elements, %
\$20100	-11411011			70	,,,	Δι	ıstenitic Grade	29				,,,
\$20200 202	S20100	201	0.15	5.5–7.5	0.060				3.5–5.5		0.25	
\$26500 250 012-022 140-15.5 0.060 0.030 1.00 16.5-18.0 1.00-17.5 0.032-0.40 \$261900 XM-11 0.04 80-10.0 0.060 0.030 1.00 190-21.5 5.5-7.5 0.15-0.40 \$261904 XM-11 0.04 80-10.0 0.060 0.030 1.00 190-21.5 5.5-7.5 0.15-0.40 \$26200 0.0 0.15 2.00 0.045 0.030 1.00 170-19.0 80-10.0 0.075-1.25 0.40-0.60 \$26200 0.0 0.15 2.00 0.045 0.030 1.00 170-19.0 80-10.0 0.05 \$26201 0.0 0.15 2.00 0.045 0.030 1.00 170-19.0 80-10.0 0.60 \$26201 0.0 0.15 2.00 0.045 0.030 1.00 170-19.0 80-10.0 0.60 \$26201 0.0 0.15 2.00 0.045 0.030 1.00 170-19.0 80-10.0 0.60 \$26201 0.0 0.15 2.00 0.045 0.030 1.00 170-19.0 80-10.0 0.60 \$26201 0.0 0.0 0.0 0.0 \$26201 0.0 0.0 0.0 0.0 0.0 \$26201 0.0 0.0 0.0 0.0 \$26201 0.0 0.0 0.0 0.0 \$26201 0.0 0.0 0.0 0.0 \$26201 0.0 0.0 0.0 0.0 \$26201 0.0 0.0 0.0 0.0 \$26201 0.0 0.0 0.0 0.0 \$26201 0.0 0.0 0.0 0.0 \$26201 0.0 0.0 0.0 0.0 \$26201 0.0 0.0 0.0 0.0 \$26201 0.0 0.0 0.0 0.0 \$26200 0.0 0.0 0.0 0.0 0.0 \$26200 0.0 0.0 0.0 0.0 \$262	S20200		0.15				1.00		4.0-6.0			
S21904 MM-11	S20500		0.12-0.25	14.0-15.5	0.060	0.030	1.00	16.5-18.0	1.00-1.75		0.32-0.40	
S28200	S21900	XM-10	0.08	8.0-10.0	0.060	0.030	1.00	19.0-21.5	5.5-7.5		0.15-0.40	
\$39200 302 0.15 2.00 0.045 0.030 1.00 17.0-190 8.0-100 0.10 \$39300 303 0.15 2.00 0.045 0.030 2.00-3.00 17.0-190 8.0-100 0.60° \$39300 303 0.15 2.00 0.20 0.15 min 1.00 17.0-190 8.0-100 0.60° \$39300 303 0.15 2.00 0.20 0.046 1.00 17.0-190 8.0-100 0.60° \$39300 304 0.08 2.00 0.045 0.030 1.00 18.0-200 8.0-110 0.10 \$39400 304 0.08 2.00 0.045 0.030 1.00 18.0-200 8.0-110 0.10 \$39500 305 0.12 2.00 0.045 0.030 1.00 18.0-200 8.0-120 0.10 \$39500 306 0.08 2.00 0.045 0.030 1.00 19.0-210 10.0-120 0.10 \$39500 306 0.08 2.00 0.045 0.030 1.00 19.0-210 10.0-120 0.10 \$39500 309 0.02 2.00 0.045 0.030 1.00 19.0-210 10.0-120 0.10 \$39500 309 0.02 2.00 0.045 0.030 1.00 19.0-210 10.0-120 0.14-0.20 0.14-0.20 \$39500 309 0.02 2.00 0.045 0.030 1.00 22.0-240 12.0-150 0.15 \$39500 309 0.02 2.00 0.045 0.030 1.00 22.0-240 12.0-150 0.15 \$39500 309 0.02 2.00 0.045 0.030 1.00 22.0-240 12.0-150 0.15 \$39500 309 0.08 2.00 0.045 0.030 1.00 22.0-240 12.0-150 0.15 \$31000 310 0.25 2.00 0.045 0.030 1.00 22.0-240 12.0-150 0.15 \$31000 310 0.025 2.00 0.045 0.030 1.00 22.0-240 12.0-150 0.15 \$31000 310 0.025 2.00 0.045 0.030 1.50 24.0-260 19.0-220 0.15 \$31000 310 0.025 0.00 0.045 0.030 1.50 24.0-260 19.0-220 0.15 \$31000 310 0.025 0.00 0.045 0.030 1.50 24.0-260 19.0-220 0.15 \$31000 310 0.025 0.00 0.045 0.030 1.50 24.0-260 19.0-220 0.15 \$31000 316 0.026 0.00 0.045 0.030 1.50 24.0-260 19.0-220 0.15 \$31000 316 0.026 0.00 0.045 0.030 1.50 18.0-200 19.0-20 10.0-140 2.00-30 0.010 \$31700 317 0.08 2.00 0.045 0.030 1.00 18.0-200 11.0-150 3.0-40 0.010 \$31700 317 0.08 2.00 0.045 0.030 1.00 18.0-200 11.0-150 3.0-40 0.00 0.10 \$321700 317 0.08 2.00 0.045 0.030 1.00 18.0-200 11.0-150 3.0-40 0.00 0.10 \$321700 317 0.08 2.00 0.045 0.030 1.00 18.0-200 11.0-150 3.0-40 0.00 0.10 \$322500 0.00 0.00 0.00 0.00 0.00 0.00 0.00		XM-11	0.04	8.0-10.0	0.060	0.030	1.00	19.0-21.5	5.5-7.5		0.15-0.40	
Sagart S										0.75-1.25		Cu 0.75-1.25
\$39300											0.10	
\$30303												
\$30400										0.60 ^C		
\$39000 304L 0.030 2.00 0.045 0.030 1.00 18.0-20.0 8.0-12.0 0.10 \$39000 305 0.12 2.00 0.045 0.030 1.00 17.0-19.0 10.5-13.0 \$39000 306 0.08 2.00 0.045 0.030 1.00 19.0-21.0 10.0-12.0 \$39000 308 0.08 2.00 0.045 0.030 1.00 19.0-21.0 10.0-12.0 \$39000 309 0.20 2.00 0.045 0.030 1.00 22.0-24.0 12.0-15.0 \$39000 309 0.20 2.00 0.045 0.030 1.00 22.0-24.0 12.0-15.0 \$31000 310 0.25 2.00 0.045 0.030 1.50 24.0-26.0 19.0-22.0 \$31000 310 0.25 2.00 0.045 0.030 1.50 24.0-26.0 19.0-22.0 \$31000 310 0.25 2.00 0.045 0.030 1.50 24.0-26.0 19.0-22.0 \$31000 310 0.25 2.00 0.045 0.030 1.50 24.0-26.0 19.0-22.0 \$31200 310 0.25 2.00 0.045 0.030 1.50 24.0-26.0 19.0-22.0 \$31200 310 0.25 2.00 0.045 0.030 1.50 24.0-26.0 19.0-22.0 \$31200 310 0.25 2.00 0.045 0.030 1.50 24.0-26.0 19.0-22.0 \$31200 316 0.030 2.00 0.045 0.030 1.00 16.0-18.0 10.0-14.0 2.00-3.00 0.10 \$31200 316 0.08 2.00 0.045 0.030 1.00 16.0-18.0 10.0-14.0 2.00-3.00 0.10 \$31200 316 0.08 2.00 0.045 0.030 1.00 16.0-18.0 10.0-14.0 2.00-3.00 0.10 \$31200 317 0.08 2.00 0.045 0.030 1.00 16.0-18.0 10.0-14.0 2.00-3.00 0.10 \$31200 317 0.08 2.00 0.045 0.030 1.00 17.0-19.0 9.0-13.0 \$31200 347 0.08 2.00 0.045 0.030 1.00 17.0-19.0 9.0-13.0 \$32200 347 0.08 2.00 0.045 0.030 1.00 17.0-19.0 9.0-13.0 \$32200 348 0.08 2.00 0.045 0.030 1.00 17.0-19.0 9.0-13.0 \$32250F												Se 0.15 min
\$39500 306 0.12 2.00 0.045 0.030 1.00 17.0-19.0 10.5-13.0 \$39815												
\$39800												
S30816												
\$39900 309												0 000 000
\$39088 309\$ 0.08 2.00 0.045 0.030 1.00 22.0-24.0 12.0-15.0 \$31000 310 0.25 2.00 0.045 0.030 1.50 24.0-26.0 19.0-22.0 \$31000 310 0.25 2.00 0.045 0.030 1.50 24.0-26.0 19.0-22.0 \$31000 314 0.25 2.00 0.045 0.030 1.50 24.0-26.0 19.0-22.0 \$31400 314 0.25 2.00 0.045 0.030 1.50 30.00 19.0-22.0 \$31500 316 0.08 2.00 0.045 0.030 1.00 16.0-18.0 10.0-14.0 2.00-3.00 0.10 \$31503 316. 0.030 2.00 0.045 0.030 1.00 16.0-18.0 10.0-14.0 2.00-3.00 0.10 \$31503 316. 0.08 2.00 0.045 0.030 1.00 16.0-18.0 10.0-14.0 2.00-3.00 0.10 \$31503 316. 0.08 2.00 0.045 0.030 1.00 18.0-20.0 11.0-15.0 3.0-4.0 0.10 \$32100 321 0.08 2.00 0.045 0.030 1.00 18.0-20.0 11.0-15.0 3.0-4.0 0.10 \$32100 321 0.08 2.00 0.045 0.030 1.00 17.0-19.0 9.0-12.0												Ce 0.03-0.08
\$\frac{\text{S31000}}{\text{S31000}}\$ \ \ \frac{310}{\text{S0108}}\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \												
\$\frac{\text{S31088}}{\text{S31088}}\$ = \frac{\text{10}}{\text{C0}}\$ = \frac{\text{C0}}{\text{C0}}\$ = \frac{\text{C0}}{\text												
S31254 0.020												
S31400 314												Cu 0 50 1 00
S31600 316												Cu 0.50-1.00
S31603 316L 0.030 2.00 0.045 0.030 1.00 16.0-18.0 10.0-14.0 2.00-3.00 0.10 3.01 3												
S31700 317 0.08 2.00 0.045 0.030 1.00 18.0-2.00 11.0-15.0 3.0-4.0 0.10 S32100 321 0.08 2.00 0.045 0.030 1.00 17.0-19.0 9.0-13.0 Cb+Ta 10xC, min ^D S34800 348 0.08 2.00 0.045 0.030 1.00 17.0-19.0 9.0-13.0 Cb+Ta 10xC, min ^D S34800 348 0.08 2.00 0.045 0.030 1.00 17.0-19.0 9.0-13.0 Cb+Ta 10xC, min ^D Ta 0.10 Cc 0.20 S22550 ^E												
S32100 321 0.08 2.00 0.045 0.030 1.00 17.0-19.0 9.0-12.0 Cb+Ta 10xC, min or min o												
Sample												Ti 5×C min
S34800 348 3												
Sample S	004700	047	0.00	2.00	0.040	0.000	1.00	17.0 10.0	3.0 10.0			min ^D
Austenitic-Ferritic Grades S32550 [©]	S34800	348	0.08	2.00	0.045	0.030	1.00	17.0–19.0	9.0–13.0			Cb+Ta 10×C, min ^D
\$32550 ^E 0.04 1.50 0.040 0.030 1.00 24.0-27.0 4.5-6.5 2.9-3.9 0.10-0.25 Cu 1.50-2.50 \$32760 ^E 0.030 1.00 0.030 0.010 1.00 24.0-26.0 6.0-8.0 3.0-4.0 0.20-0.30 Cu 0.50-1.00 W 0.50-1.00 \$\text{S32950}\$ 0.03 2.00 0.035 0.010 0.60 26.0-29.0 3.5-5.2 1.00-2.50 0.15-0.35\$ \$\text{V0.50-1.00}\$ W 0.50-1.00 \$\text{V0.50-1.00}\$ W 0.50-1.00 \$\text{V0.50-1.00}\$ \$\					4	11 4			4 1	• \		Co 0.20
S32760F 0.030 1.00 0.030 0.010 1.00 24.0−26.0 6.0−8.0 3.0−4.0 0.20−0.30 W 0.50−1.00	0005505		0.04	1.50	0.040					0000	0.40.005	0::150.050
S32950 0.03 2.00 0.035 0.010 0.60 26.0-29.0 3.5-5.2 1.00-2.50 0.15-0.35												
S32950 0.03 2.00 0.035 0.010 0.60 26.0-29.0 3.5-5.2 1.00-2.50 0.15-0.35 Ferritic Grades S40500 405 0.08 1.00 0.040 0.030 1.00 11.5-14.5 0.60 A1 0.10-0.30 \$42900 429 0.12 1.00 0.040 0.030 1.00 14.0-16.0 0.75 \$43000 430 0.12 1.00 0.040 0.030 1.00 16.0-18.0 0.75	S32760 ⁻		0.030	1.00	0.030	0.010	1.00	24.0–26.0	6.0–8.0	3.0–4.0	0.20-0.30	
Ferritic Grades \$40500 405 0.08 1.00 0.040 0.030 1.00 11.5-14.5 0.60 A1 0.10-0.30 \$42900 429 0.12 1.00 0.040 0.030 1.00 14.0-16.0 0.75 \$43000 430 0.12 1.00 0.040 0.030 1.00 16.0-18.0 0.75 \$43020 430F 0.12 1.25 0.06 0.06 1.00 16.0-18.0 0.75 \$6.015 min \$6.015 0.75 \$6.015 \$6.015 0.06 0.06 1.00 16.0-18.0 0.75 \$6.015 \$6.015 \$6.015 \$6.015 \$6.015 \$6.015 \$6.015 \$6.015 \$6.015 \$6.015 \$6.015 \$6.015	\$32950		0.03	2.00	0.035	0.010	0.60	26.0-29.0	3 5-5 2	1 00-2 50	0 15_0 35	W 0.50-1.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	002000		0.00	2.00	0.000				0.0 0.2	1.00 2.00	0.10 0.00	
S43000 430 0.12 1.00 0.040 0.030 1.00 16.0-18.0 0.75 S43020 430F 0.12 1.25 0.06 0.15 min 1.00 716.0-18.0 0.75 0.60° 0.60° 0.15 min 1.00 716.0-18.0 0.75 0.60° 0.15 min 1.00 16.0-18.0 0.75 0.60° 0.15 min 1.00 16.0-18.0 0.75 0.60° 0.15 min 1.00 11.00 0.040 0.030 1.00 11.00 0.75 0.25 0.15 min 1.00 1.00 1.00 11.5-13.0 0.25	S40500	405	0.08	1.00	0.040	0.030	1.00	11.5-14.5	0.60			A1 0.10-0.30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S42900	429	0.12	1.00	0.040	0.030	1.00	14.0-16.0	0.75			
S43023 430F Se 0.12 1.25 0.06 0.06 1.00 16.0−18.0 0.75 1 Se 0.15 min S44600 446 0.20 1.50 0.040 0.030 1.00 23.0−27.0 0.75 0.25 Martensitic Grades S40300 403 0.15 1.00 0.040 0.030 0.50 11.5−13.5 0.75 S41000 410 0.15 1.00 0.040 0.030 1.00 11.5−13.5 0.75	S43000	430	0.12	1.00	0.040	0.030	1.00	16.0–18.0	0.75			
\$43023	S43020	430F	0.12	21/25/100	0.06	0.15 min	2351.007_3	7 16.0–18.0	_0,0.75_04	ah (0.60° 73	98/actm_a	
Martensitic Grades \$40300 403 0.15 1.00 0.040 0.030 0.50 11.5-13.0	S43023	430F Se				0.06	1.00	16.0-18.0		40713073		Se 0.15 min
\$40300 \$403 \$0.15 \$1.00 \$0.040 \$0.030 \$0.50 \$11.5-13.0 \$ </td <td>S44600</td> <td>446</td> <td>0.20</td> <td>1.50</td> <td>0.040</td> <td></td> <td></td> <td></td> <td>0.75</td> <td></td> <td>0.25</td> <td></td>	S44600	446	0.20	1.50	0.040				0.75		0.25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40000	400	0.45	1.00	0.040							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
\$41600 416 0.15 1.25 0.06 0.15 min 1.00 12.0-14.0 0.60° \$41623 416 Se 0.15 1.25 0.06 0.06 1.00 12.0-14.0 Se 0.15 min \$42000 420 Over 0.15 1.00 0.040 0.030 1.00 12.0-14.0 \$43100 431 0.20 1.00 0.040 0.030 1.00 15.0-17.0 1.25-2.50 \$44002 440A 0.60-0.75 1.00 0.040 0.030 1.00 16.0-18.0 0.75 \$44003 440B 0.75-0.95 1.00 0.040 0.030 1.00 16.0-18.0 0.75		F.										Ou 0.30
\$41623 416 Se 0.15 1.25 0.06 0.06 1.00 12.0-14.0 Se 0.15 min \$42000 420 Over 0.15 1.00 0.040 0.030 1.00 12.0-14.0 \$43100 431 0.20 1.00 0.040 0.030 1.00 15.0-17.0 1.25-2.50 \$44002 440A 0.60-0.75 1.00 0.040 0.030 1.00 16.0-18.0 0.75 \$44003 440B 0.75-0.95 1.00 0.040 0.030 1.00 16.0-18.0 0.75												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												So 0 15 min
S43100 431 0.20 1.00 0.040 0.030 1.00 15.0-17.0 1.25-2.50 S44002 440A 0.60-0.75 1.00 0.040 0.030 1.00 16.0-18.0 0.75 S44003 440B 0.75-0.95 1.00 0.040 0.030 1.00 16.0-18.0 0.75												
\$44002 440A 0.60-0.75 1.00 0.040 0.030 1.00 16.0-18.0 0.75 \$44003 440B 0.75-0.95 1.00 0.040 0.030 1.00 16.0-18.0 0.75												
\$44003 440B 0.75-0.95 1.00 0.040 0.030 1.00 16.0-18.0 0.75												
77707 7700 0.3071.20 1.00 0.040 0.000 1.00 10.0-10.0 0.75												
A Maximum, unless range or minimum is indicated.	-				0.040	0.030	1.00	10.0-10.0	• • • •	0.75	• • •	

^A Maximum, unless range or minimum is indicated.

^B New designation established in accordance with Practice E527 and SAE J1086.

^C At manufacturer's option; reported only when intentionally added.

^D Columbium (Cb) and Niobium (Nb) are alternate names for element 41 in the Periodic Table of the Elements.

^E % Cr + 3.3 × % Mo + 16 × % N ≥ 40.

^F Wrought version of CA6NM.

TABLE 2 Mechanical Property Requirements

Туре	Condition	Yield Strength, min, ksi (MPa) ^A	Tensile Strength, min, ksi (MPa)	Elongation in 2 in. (50 mm) or 4D, min %	Reduction of Area, min, %	Brinell Hardness Number, max
		Austenitic Grades				
201, 302, 302B, 303, 303SE, 305, 308, 30 309S, 310, 310S, 314, 317, 321, 347, 348	*	30 (205)	75 (515)	40	50	
202	Α	45 (310)	90 (620)	40	50	
205	Α	50 (345)	90 (620)	40	50	
304 and 316, Sections 5 in. (127 mm) and Under	d A	30 (205)	75 (515)	40	50	
304 and 316, Sections Over 5 in. (127 mr	n) A	30 (205)	70 (485)	40	50	
304L and 316L	Α	25 (170)	65 (450)	40	50	
XM-10 and XM-11	Α	50 (345)	90 (620)	45	60	
S28200	Α	60 (415)	110 (760)	40	55	
S30815	Α	45 (310)	87 (600)	40	50	
S31254	A	44 (300)	95 (650)	35	50	
		ustenitic-Ferritic Grades				
S32550	Α	80 (550)	109 (750)	25.0		290
S32950	Α	70 (480)	100 (690)	15		293
S32760	A	80 (550)	109 (750)	25		290
430F, 430FSE, 446	A	Ferritic Grades 40 (275)	70 (485)	20	45	223
405	Ä	30 (205)	60 (415)	20	45	207
429	Ä	35 (240)	65 450)	23	45	207
430	A	35 (240)	70 (485)	20	45	217
100		Martensitic Grades	70 (100)			2.7
403, 410, 416, 416SE	Α	40 (275)	70 (485)	20	45	223
403, 410	1	40 (275)	70 (485)	20	45	223
,	2	85 (585)	110 (760)	15	45	269
	3	100 (690)	130 (895)	12	35	331
410S	Α	35 (240)	65 (450)	22	45	217
414	A C		LT (0.8)			298
	Т	90 (620)	115 (795)	15	45	321
	(H / /	100 (690)	125 (860)	15	45	321
S41425	LNITHSI//SI	95 (655)	120 (825)	15	45	321
S41500	normalized and tempered	90 (620)	115 (795)	15	45	295
420	A	nent Pr	AVIAW			223
431	A	maiir i m				277 ^B
	Т	90 (620)	115 (795)	15		321
	Н	135 (930)	175 (1210)	13		440
440A, 440B, 440C	Α	\ST\/ A / 73 23				269

A Yield strength shall be determined by the 0.2 % offset method in accordance with Test Methods and Definitions A370. An alternative method of determining yield strength may be used based on a total extension under load of 0.5 %.

5.2 The material shall be forged by hammering, pressing, rolling, extruding, or upsetting. It shall be brought as nearly as possible to the finished shape and size by hot-working; and shall be processed, if practicable, so as to cause metal-flow during the hot-working operation in the direction most favorable for resisting the stresses encountered in service as may be indicated to the manufacturer by the purchaser.

^B Type 431 forgings of designation *A*, when specified, shall be capable of meeting the above mechanical property requirements of designation *T* after oil quenching from 1800 °F to 1900 °F (980 °C to 1038 °C) and tempering at not less than 1100 °F (595 °C), or designation *H* when oil quenched from 1850 °F to 1950 °F (1010 °C to 1065 °C) and tempered at not more than 700 °F (370 °C).

- 5.3 When specified on the order, a sample forging may be sectioned and etched to show flow lines and the condition as regards internal imperfections. When so specified, the question of acceptable and unacceptable metal-flow shall be subject to agreement between the manufacturer and the purchaser prior to order entry.
- 5.4 When specified on the order, the manufacturer shall submit for approval of the purchaser a sketch showing the shape of the rough forging before machining, or before heat treating for mechanical properties.
- 5.5 The grain size shall be as fine as practicable and precautions shall be taken to minimize grain growth.

6. Heat Treatment

- 6.1 Except for S31254, the austenitic steels shall receive a solution heat treatment, consisting of heating the material to a minimum temperature of 1900 °F (1040 °C), followed by water quenching or rapid cooling by other means sufficient to prevent the formation of grain boundary carbides.
- 6.2~S31254 shall receive a solution heat treatment, consisting of heating the material to a minimum temperature of $2100~^{\circ}F$ ($1150~^{\circ}C$) followed by water quenching or rapid cooling by other means sufficient to prevent the formation of grain boundary carbides.
- 6.3 When specified, Types 347, 348, and 321 shall receive a stabilization heat treatment in addition to the solution heat treatment specified in 6.1, which shall consist of holding the forgings at 1550 °F to 1750 °F (845 °C to 955 °C) for at least 1 h for each inch of section thickness with a minimum holding time of 2 h, followed by air-cooling or water quenching. The stabilization heat treatment is not usually specified, unless these steels are intended for severely corrosive environments in the temperature range from 800 °F to 1600 °F (425 °C to 870 °C). When specified, the stabilization heat treatment shall be the final heat treatment and may be performed before machining.
- 6.4 S32950 shall receive an annealing treatment, consisting of heating the material to a temperature of 1825 °F (995 °C) to 1875 °F (1025 °C) for an appropriate time followed by water quenching or rapid cooling by other means.
- 6.5 S32760 shall receive an annealing treatment consisting of heating the material to a minimum temperature of 2010 °F (1100 °C), followed by water quenching or rapid cooling by other means.
- 6.6 The ferritic grades shall be properly annealed:
- 6.7 Except for S41425 and S41500, the martensitic grades shall be annealed, or hardened and tempered as specified. Liquid quenching shall be permitted only by agreement with the purchaser.
- 6.8 For S41425, heat to 1700 °F (925 °C) minimum and hold for 1 h at temperature minimum. Air cool to below 90 °F (32 °C) and temper at 1100 °F (595 °C) minimum for 1 h/in. of cross-sectional thickness minimum.
- 6.9 For S41500 heat to 1750 °F (955 °C) minimum, air cool to 200 °F (95 °C) or lower prior to any optional intermediate temper and prior to the final temper. The final temper shall be between 1050 °F (565 °C) and 1150 °F (620 °C).
- 6.10 Types 420, 440A, 440B, and 440C should be used by the purchaser in the hardened and tempered condition. In response to heat treatment, these materials shall be capable of meeting the minimum hardness requirements as specified in Table 3.
- 6.11 Types 403 and 410 tempered material shall be normalized, or shall be liquid quenched from 1700 °F (925 °C), minimum, followed by being held at the tempering temperature for at least 1 h/in. (25.4 mm) of cross section in accordance with 6.11.1, 6.11.2 or 6.11.3.
- 6.11.1 Condition 1—1250 °F (675 °C) minimum, 1400 °F (760 °C) maximum.
- 6.11.2 Condition 2—1100 °F (595 °C) minimum, 1400 °F (760 °C) maximum.