

Designation: B399/B399M - 04 (Reapproved 2021) B399/B399M - 23

Standard Specification for Concentric-Lay-Stranded Aluminum-Alloy 6201-T81 and 6201-T83 Conductors¹

This standard is issued under the fixed designation B399/B399M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers concentric-lay-stranded conductors, made from round aluminum-alloy 6201-T81 (hard: solution heat-treated, cold worked, and then artificially aged) wires or 6201-T83 (hard: higher conductivity, solution heat-treated, cold worked, and then artificially aged) wires, for use for electrical purposes. These conductors shall be constructed with a central core surrounded by one or more layers of helically laid wires (Explanatory Notes 1 and 2).

Note 1—The aluminum alloy and temper designations conform to ANSI H35.1/H35.1[M]. Aluminum-alloy 6201 corresponds to Unified Numbering System alloy A96201 in accordance with Practice E527.

- 1.2 The values stated in inch-pound units or SI units are to be regarded separately as standard. The values in each system are not exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.
- 1.2.1 For density, resistivity and temperature, the values stated in SI units are to be regarded as standard.
- 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:
- 2.2 ASTM Standards:²
 - B193 Test Method for Resistivity of Electrical Conductor Materials
 - B263 Test Method for Determination of Cross-Sectional Area of Stranded Conductors
 - B354 Terminology Relating to Uninsulated Metallic Electrical Conductors
 - B398/B398M Specification for Aluminum-Alloy 6201-T81 and 6201-T83 Wire for Electrical Purposes
 - B682 Specification for Standard Metric Sizes of Electrical Conductors
 - E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

¹ This specification is under the jurisdiction of ASTM Committee B01 on Electrical Conductors and is the direct responsibility of Subcommittee B01.07 on Conductors of Light Metals.

Current edition approved Feb. 1, 2021 April 1, 2023. Published February 2021 April 2023. Originally approved in 1963. Last previous edition approved in 2015 as B399/B399M – 04 (2015), (2021). DOI: 10.1520/B0399_B0399M-04R21.10.1520/B0399_B0399M-23.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.3 ANSI Standards:³

ANSI H35.1 American National Standard for Alloy and Temper Designation Systems for Aluminum

ANSI H35.1[M] American National Standard Alloy and Temper Designation Systems for Aluminum [Metric]

2.4 NIST Standards:⁴

NBS Handbook 100 Copper Wire Tables of the National Bureau of Standards

2.5 Aluminum Association Publication:⁵

Publication 50 Code Words for Overhead Aluminum Electrical Conductors

3. Classification

- 3.1 For the purpose of this specification, conductors are classified as follows (Explanatory Notes 1 and 2):
- 3.1.1 Class AA—For bare conductors usually used in overhead lines.
- 3.1.2 Class A—For conductors to be covered with weather-resistant materials.

4. Ordering Information

- 4.1 Orders for material under this specification shall include the following information:
- 4.1.1 Quantity of each size, stranding, and class,
- 4.1.2 Conductor size, area, and aluminum 1350 equivalent size (if required) (Section 8 and Table 1, Table 2, or Table 3),
- 4.1.3 Number of wires (Table 1, Table 2 or Table 3),
- 4.1.4 Direction of lay of outer layer of aluminum wires if other than right-hand (see 7.4).
- 4.1.5 Compressed stranding, if required (see 8.2),
- 4.1.6 Special tension test, if required (see 9.2 and 14.2), page 14.20
- 4.1.7 Place of inspection (see 15.2), tandards/sist/882 fedda-4 fe9-407d-8397-75e1685a1c52/astm-b399-b399m-23
- 4.1.8 Special package marking, if required (Section 16),
- 4.1.9 Package size and type (see 16.1), and
- 4.1.10 Heavy wood lagging, if required (see 16.4).

5. Requirements of Wires

5.1 The aluminum-alloy wire used shall conform to the requirements of Specification B398/B398M. before stranding.

6. Joints

6.1 In conductors composed of seven wires, only cold-pressure joints or electric-butt, cold-upset joints are permitted in the six outer finished wires; no joints are permitted in the center wire. In other conductors, cold-pressure welds, electric-butt, cold-upset welds, or electric-butt welds may be made in the finished wires composing conductors, but such joints shall be not closer than prescribed in Table 4. Following welding, electric-butt welds shall be annealed for a distance of at least 6-in. 6 in. [150 mm] on each side of the weld.

³ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

⁴ Available from National Institute of Standards and Technology (NIST), 100 Bureau Dr., Stop 1070, Gaithersburg, MD 20899-1070, http://www.nist.gov.

⁵ Available from Aluminum Association, Inc., 1525 Wilson Blvd., Suite 600, Arlington, VA 22209, http://www.aluminum.org.

TABLE 1 Construction Requirements of Concentric-Lay-Stranded Aluminum-Alloy 6201 Conductors Sized to Have Diameter Equal to ACSR, Class AA and Class A

Note 1-Metric values listed below represent a soft conversion and as such they may not be the same as those metric masses which are calculated from the basic metric density.

Cond Siz		Code Words ^A	Alun Si: E	proxima ninum 1 ze Havi quivale esistan	350 ng nt		of AC	I Strand SR with Diamete		Re	equired C	onstruc	tion	Ma	ass	Ra Stre		Resis	nal dc stance at 20 °C
cmil	mm ²			Size		cmil ^B	AWG	mm²	Strand-	Number	Diam of W		Class	lb per 1000 ft	kg per	kips	kN	ohm per	ohm per
			cmil ^B	AWG	mm ²				9	Wires	in.	mm							
1 439 200	729	— 1	272 000		644.51	272 000		644.5	54/7	61	0.1536	3.90	AA	1342	1999	46.8	207	0.01400	0.04597
1 348 800	685	— 1	192 500		604.21	192 500		604.2	54/7	61	0.1487	3.78	AA	1258	1878	43.9	194	0.01494	0.04893
1 259 600	638	— 1	113 000		564.01	113 000)	564.0	54/7	61	0.1437	3.65	AA	1175	1751	41.0	181	0.01600	0.05248
1 165 100	590	— 1	033 500		523.71	033 500)	523.7	54/7	61	0.1382	3.51	AA	1086	1620	37.9	167	0.01730	0.05675
1 077 400		_	954 000		483.4	954 000		483.4	54/7	61	0.1329	3.38	AA	1005	1502	35.0	156	0.01870	0.06120
927 200		Greeley	795 000		402.8	795 000		402.8	26/7	37	0.1583	4.02	AA	864.6	1289	30.5	135	0.02173	0.07133
740 800		Flint	636 000		322.3	636 000		322.3	26/7	37	0.1415	3.59	AA	690.8	1028	24.4	107	0.02720	0.08944
652 400	331	Elgin	556 500		282.0	556 500)	282.0	26/7	19	0.1853	4.71	AA	608.3	908.3	21.9	97.0	0.03089	0.1012
559 500	284	Darien	477 000		241.7	477 000		241.7	26/7	19	0.1716	4.36	AA	521.7	778.3	18.8	83.1	0.03602	0.1181
465 400	236	Cairo	397 500		201.4	397 500)	201.4	26/7	19	0.1565	3.98	AA	433.9	648.6	15.6	69.2	0.04330	0.1417
394 500	200	Canton	336 400		170.5	336 400		170.5	26/7	19	0.1441	3.66	AA, A	367.9	548.5	13.3	58.6	0.05107	0.1676
312 800	159	Butte	266 800		135.2	266 800)	135.2	26/7	19	0.1283	3.26	Α	291.6	435.1	10.5	46.5	0.06443	0.2112
246 900	125	Alliance	211 600	0000	107.2	211 600	0000	107.2	6/1	7	0.1878	4.77	AA	230.2	343.2	8.56	37.8	0.08162	0.2678
195 700	99.3	Am- herst	167 800	000	85.0	167 800	000	85.0	6/1	7	0.1672	4.25	AA, A	182.5	272.5	6.79	30.0	0.1030	0.3373
155 400	78.6	Ana- heim	133 100	00	67.4	133 100	00	67.4	6/1	7	0.1490	3.78	AA, A	144.9	215.6	5.39	23.8	0.1297	0.4264
123 300	62.4	Azusa	105 600	0	53.5	105 600	0	53.5	6/1	7	0.1327	3.37	AA, A	114.9	171.3	4.27	18.9	0.1635	0.5365
77 470		Ames	66 360		33.6	66 360		33.6	6/1	- 7	0.1052	2.67	AA, A	72.24	107.5	2.80	12.4	0.2601	0.8547
48 690		Alton	41 740		21.1	41 740		21.1	6/1	7	0.0834	2.12	A	45.40	67.80	1.76	7.83	0.4139	1.356
30 580	15.5	Akron	26 240	6	13.3	26 240	6	13.3	6/1	7	0.0661	1.68	Α	28.52	42.58	1.11	4.92	0.6588	2.159

A Code words shown in this column are obtained from, "Publication 50, Code Words for Overhead Aluminum Electrical Conductors," by the Aluminum Association. They are provided here for information only. $^{\it B}$ Conversion factors: 1 mil = 2.54 E-02 mm

https://standard.1 lb = 4.536 E-01 kgz/standards/sist/882 fedda-4 fe9-407d-8397-75e1685a1e52/astm-b399-b399m-23

1 lbf = 4.448 E-03 kN

7. Lay

- 7.1 For Class AA conductors, the preferred length of lay of a layer of wires is 13.5-shall not be less than 10 nor more than 16 times the outside diameter of that layer, but the lay shall be not less than 10 nor more than 16 times this diameter layer. The length of lay of any aluminum-alloy layer shall not be less than the length of lay of the aluminum-alloy layer immediately beneath it.
- 7.2 For Class A conductors, the length of lay of a layer of wires shall be not be less than 8 nor more than 16 times the outside diameter of that layer, except that for conductors composed of 37 wires or more, this requirement shall apply only to the two outer layers. The length of lay of the layers other than the two outer layers shall be at the option of the manufacturer, unless otherwise agreed upon.
- 7.3 Other lays for special purposes shall be furnished by agreement between the manufacturer and the purchaser.
- 7.4 The direction of lay of the outer layer shall be right-hand unless specified otherwise by the purchaser.
- 7.5 The direction of lay shall be reversed in successive layers, unless otherwise specified by the purchaser.

 $^{1 \}text{ cmil} = 5.067 \text{ E-}04 \text{ mm}^2$

¹ in. = 25.4 mm

¹ lb/1000 ft = 1.488 E + 00 kg/km

¹ ft = 3.048 E-01 m

TABLE 2 Construction Requirements of Concentric-Lay-Stranded Aluminum-Alloy 6201 Conductors Sized by Standard Areas, Class AA and Class A

Note 1—Metric values listed below represent a soft conversion and as such they may not be the same as those metric masses which are calculated from the basic metric density.

Cond	ductor Size			Required C	onstruction		Ma	ass	Rated Strength		Nominal dc Resistance <u>@ 20°Cat</u> <u>20 °C</u>	
	414/0	2	Number of	Diameter	of Wires	01	lb per	kg per	Librara.	LAN	ohm per	ohm per
cmil	AWG	mm ²	Wires	in.	mm	Class	1000 ft	1000 m	kips	kN	1000 ft	1000 m
1 750 000		886	61	0.1694	4.30	AA	1632	2431	56.9	251	0.01151	0.03781
1 500 000		759	61	0.1568	3.98	AA	1399	2082	48.8	215	0.01344	0.04414
1 250 000		631	61	0.1431	3.63	AA	1165	1732	40.6	179	0.01613	0.05306
1 000 000		508	37	0.1644	4.18	AA	932.5	1393	32.9	146	0.02015	0.06597
900 000		456	37	0.1560	3.96	AA	839.7	1250	29.6	131	0.02238	0.07351
800 000		404	37	0.1470	3.73	AA	745.6	1109	26.3	116	0.02520	0.08285
750 000		381	37	0.1424	3.62	AA	699.6	1045	24.7	109	0.02686	0.08796
700 000		354	37	0.1375	3.49	AA	652.3	971.2	23.0	101	0.02881	0.09464
650 000		330	37	0.1325	3.37	AA	605.7	905.5	21.4	94.9	0.03102	0.10150
600 000		303	37	0.1273	3.23	AA, A	559.1	831.9	20.6	91.0	0.03361	0.11049
550 000		279	37	0.1219	3.10	AA, A	512.7	766.2	18.9	83.9	0.03665	0.11995
500 000		253	19	0.1622	4.12	AA	466.1	695.0	16.8	74.2	0.04031	0.13224
450 000		228	19	0.1539	3.91	AA	419.6	626.0	15.1	66.8	0.04478	0.14683
400 000		203	19	0.1451	3.69	AA, A	373.0	557.5	13.4	59.5	0.05037	0.16486
350 000		178	19	0.1357	3.45	Α	326.3	487.3	11.8	52.0	0.05759	0.18860
300 000		152	19	0.1257	3.19	Α	280.0	416.7	10.5	46.6	0.06712	0.22059
250 000		126	19	0.1147	2.91	Α	233.1	346.7	8.76	38.8	0.08061	0.26509
211 600	0000	107	7	0.1739	4.42	AA, A	197.4	294.7	7.34	32.5	0.09519	0.31188
167 800	000	84.9	7	0.1548	3.93	AA, A	156.4	233.0	5.82	25.7	0.12013	0.39450
133 100	00	67.3	7	0.1379	3.50	AA, A	124.1	184.8	4.62	20.4	0.15137	0.49738
105 600	0	53.5	7	0.1228	3.12	AA, A	98 <mark>.</mark> 43	146.8	3.82	17.0	0.19089	0.62592
66 360	2	33.5		0.0974	2.47	II AA, A	61.92	92.00	2.40	10.6	0.30343	0.99870
41 740	4	21.1	7	0.0974	1.96	AA, A A	38.90	57.90	1.51	6.69	0.30343	1.5860
26 240	6	13.2	7	0.0772	1.55	A	24.49	36.20	0.949	4.18	0.46300	2.5361
20 240	Ö	13.2	1	0.0012	1.55	А	24.49	30.20	0.949	4.10	0.76836	2.530 I

ASTM B399/B399M-23

8. Construction

- 8.1 The cross-sectional areas and the numbers and diameters of wires in the concentric-lay-stranded conductors shall conform to the requirements prescribed in Table 1, Table 2, or Table 3 as applicable (Explanatory Notes 2 and 6).
- 8.2 Where compressed stranding is required in order that the conductor may be properly insulated, one or more layers of any stranded conductor consisting of 7 wires or more may be slightly compressed, thereby reducing the outside diameter of the conductor by not more than 3 %, provided that the area of cross section after compressing is in accordance with Section 12.

Note 2—The user's attention is called to the claim that certain compressed strand constructions may be subject to patent rights, for example: Patents 3,383,704 and 3,444,684.

8.3 The nominal wire diameter shall be as specified in Table 1 and Table 2 and this diameter shall be referred to as the "mean diameter". The nominal outside diameter of the conductor shall be calculated by summing the mean diameter of the core wire and twice the mean diameter of each layer. The minimum and maximum outside diameter shall be based on calculations made using the method described above and the mean diameter tolerances as specified by Specification B398/B398M for the corresponding mean diameter of each layer.

9. Rated Strength of Conductor

9.1 The rated strength of a conductor shall be taken as that percentage, indicated in Table 5 of the sum of the strengths of the 6201 wires, calculated on the basis of the nominal wire diameter and the specified minimum average tensile strength given in Specification B398/B398M.

TABLE 3 Construction Requirements and Rated Strengths of Concentric-Lay-Stranded Aluminum-Alloy 6201-T81 Conductors Sized by Standard Areas, Class AA and Class A

Note 1—Sizes were selected from Specification B682.

Conductor	Requi	red Consti	ruction	Mass,	Rated	Nominal dc Resistance		
Size, mm ²	Number of Wires	Diameter of Wires, mm		kg per 1000 m	Strength 6201-T81, kN	@ 20°C, ohm per 1000 m		
630	37	4.66	AA	1731	181	0.05308		
560	37	4.39	AA	1537	161	0.05981		
500	37	4.15	AA	1373	143	0.06693		
450	37	3.94	AA	1238	129	0.07426		
400	37	3.71	AA	1097	115	0.08375		
355	37	3.50	AA	976.7	102	0.09410		
315	37	3.29	AA	863.0	90.2	0.10650		
280	37	3.10	AA	766.2	83.9	0.11995		
250	19	4.09	AA	684.9	73.1	0.13419		
224	19	3.87	AA	613.2	65.5	0.14988		
200	19	3.66	AA, A	548.5	58.6	0.16758		
180	19	3.47	AA, A	493.0	52.6	0.18643		
160	19	3.27	AA, A	437.8	46.7	0.20993		
140	19	3.06	AA, A	383.4	42.9	0.23973		
125	19	2.89	AA, A	342.0	38.3	0.26877		
112	7	4.51	AA	306.8	33.8	0.29955		
100	7	4.26	AA, A	273.8	30.2	0.33574		
80.0	7	3.81	AA, A	219.0	24.1	0.41974		
63.0	7	3.39	AA, A	173.4	19.1	0.53019		
50.0	7	3.02	AA, A	137.6	15.9	0.66806		
40.0	7	2.70	AA, A	110.0	12.7	0.83580		
31.5	7	2.39	Α	86.2	9.95	1.0667		
25.0	7	2.13	A	68.4	7.90	1.3430		
20.0	7	1.91	A	55.0	6.35	1.6702		
16.0	7	1.71	Α	44.1	5.09	2.0837		

TABLE 4 Minimum Distance Between Joints in the Completed Conductor

Number of Wires in	Distance Between Joints,
Conductor	min. ft (m)
7 A STM D200	9/B399M-2 ⁵⁰ (15) ^A 50 (15)
19 AS I WI D393	7/D399W- 250 (15)
log/standards/37st/882fedda-4	4fe9-407d-25 (7.5) 75e1685a1c52/
61	25 (7.5)

^A Only cold-pressure welds and electric-butt, cold-upset welds are permitted in the six outer wires of conductors composed of seven wires; no welds are permitted in the center or core wire.

TABLE 5 Rating Factors

Strai				
Number of Wires in Conductor	Number of Layers	Rating Factor, %		
7	1	96		
19	2	93		
37	3	91		
61	4	90		

- 9.2 Tests for determining the breaking strength of a conductor are not required by this specification but may be made if agreed upon between the manufacturer and the purchaser at the time of placing an order. When tested, the breaking strength of a conductor shall be not less than the rated strength if failure occurs in the free length at least 1 in. [25 mm] beyond the end of either gripping device, or shall be not less than 95 % of the rated strength if failure occurs inside, or within 1 in. [25 mm] of the end of, either gripping device (Explanatory Note 3).
- 9.3 Rated strength and breaking strength values shall be rounded to three significant figures, in the final value only, in accordance with the rounding method in Practice E29.