

Designation: B743 - 23

Standard Specification for Seamless Copper Tube in Coils¹

This standard is issued under the fixed designation B743; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

- 1.1 This specification establishes the requirements for seamless copper tube in coils, suitable for use in refrigeration and air conditioning or other uses, such as oil lines and gasoline lines.
- 1.2 *Units*—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
 - 1.3 The tube shall be produced of the following coppers:

Copper Alloy UNS No.	Previously Used Designation	Type of Copper
C10200	OF	Oxygen-free without residual deoxidants ^A
C10300		Oxygen-free, extra low phosphorus ^A
C10800		Oxygen-free, low phosphorus ^A
C12000	DLP	Phosphorized, low residual phosphorus
C12200	DHP	Phosphorized, high residual phosphorus
4.0 01 '5	_	

^A See Classification B224.

- 1.4 The following safety hazards caveat pertains to the test method portion, Section 17, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

- B153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing
- B193 Test Method for Resistivity of Electrical Conductor Materials
- **B224** Classification of Coppers
- B251 Specification for General Requirements for WroughtSeamless Copper and Copper-Alloy Tube (Metric) B0251B0251M
- B577 Test Methods for Detection of Cuprous Oxide (Hydrogen Embrittlement Susceptibility) in Copper
- B601 Classification for Temper Designations for Copper and Copper Alloys—Wrought and Cast
- B846 Terminology for Copper and Copper Alloys
- B950 Guide for Editorial Procedures and Form of Product Specifications for Copper and Copper Alloys
- E3 Guide for Preparation of Metallographic Specimens
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E18 Test Methods for Rockwell Hardness of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E53 Test Method for Determination of Copper in Unalloyed Copper by Gravimetry (Withdrawn 2022)³
- E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)³
- E112 Test Methods for Determining Average Grain Size
- E243 Practice for Electromagnetic (Eddy Current) Examination of Copper and Copper-Alloy Tubes
- E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition (Withdrawn 2023)³
- E2575 Test Method for Determination of Oxygen in Copper and Copper Alloys by Inert Gas Fusion

3. General Requirements

- 3.1 The following sections of Specification B251 constitute a part of this specification:
 - 3.1.1 Sampling,
 - 3.1.2 Number of tests and retests,
 - 3.1.3 Dimensions and permissible variations,

¹ This specification is under the jurisdiction of ASTM Committee B05 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.04 on Pipe and Tube.

Current edition approved April 1, 2023. Published May 2023. Originally approved in 1985. Last previous edition approved in 2020 as B743 - 12 (2020). DOI: 10.1520/B0743-23.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ The last approved version of this historical standard is referenced on www.astm.org.

TABLE 1 Chemical Requirements

			Composition, of	%	
Element			Copper Alloy UNS	S No.	
	C10200 ^A	C10300	C10800	C12000	C12200
Copper, ^B min	99.95			99.90	99.9
Copper + phosphorus, min		99.95	99.95		···
Phosphorus		0.001-0.005	0.005-0.012	0.004-0.012	0.015-0.040

^A Oxygen in C10200 shall be 10 ppm max.

- 3.1.4 Test specimens, and
- 3.1.5 Significance of numerical limits.
- 3.2 In addition, when a section with a title identical to those referenced in 3.1 appears in this specification, it contains additional information that supplements those appearing in Specification B251. In case of conflict, this specification shall prevail.

4. Terminology

4.1 *Definitions*—For the definitions of terms related to copper and copper alloys, refer to Terminology B846.

5. Ordering Information

- 5.1 Include the following specified choices when placing orders for product under this specification, as applicable:
 - 5.1.1 ASTM designation and year of issue;
 - 5.1.2 Copper UNS No. (for example, C12200);
 - 5.1.3 Temper (see Section 8);
- 5.1.4 Dimensions, diameter, and wall thickness. Dimensional tolerances, if other than those included in this specification, are required;
 - 5.1.5 How furnished: Straight lengths or coils;
- 5.1.6 Quantity: Total weight or total length or number of pieces of each size (see 14.1 and Table 2);
 - 5.1.7 Type of coil;
- 5.1.8 Product purchased for agencies of the U.S. Government, it shall conform to the Supplementary Requirements as defined herein.
- 5.2 The following options are available and, when required, shall be specified at the time of placing the order:
 - 5.2.1 Embrittlement test (see 13.3),
 - 5.2.2 Cleanness Test (see 13.4),
 - 5.2.3 If coil ends are to be sealed (see 13.4.1.1),
 - 5.2.4 Eddy-current test (see 13.1.1),
 - 5.2.5 Expansion test (see 12.1.1),
 - 5.2.6 Electrical resistivity requirement (see 10.1),
 - 5.2.7 Certification (see Section 21),
 - 5.2.8 Test report (see Section 22),
- 5.2.9 Product certified for ASME Boiler and Pressure Code Applications (see Section 21), and
 - 5.2.10 Heat identification or traceability.

6. Materials and Manufacture

6.1 Material:

- 6.1.1 The material of manufacture shall be a form (cast billet, bar, tube, etc.) of Copper Alloys Nos. C10200, C10300, C10800, C12000, or C12200 and of such purity and soundness as to be suitable for processing into the product prescribed herein
- 6.1.2 When specified in the contract or purchase order that heat identification or traceability is required, the purchaser shall specify the details desired.

Note 1—Due to the discontinuous nature of the processing of castings into wrought products, it is not always practical to identify a specific casting analysis with a specific quantity of finished material.

6.2 Manufacture:

- 6.2.1 The product shall be manufactured by such hot working, cold working, and annealing processes as to produce a homogenous, uniform wrought structure in the finished product.
- 6.2.1.1 The product shall be cold drawn to the finish size and wall thickness.
- 6.2.1.2 When the cold drawn temper is required, the final drawing operation shall be such as to meet the temper properties specified.
- 6.2.1.3 When the annealed temper is required, the tube shall be annealed to meet the temper properties specified.

7. Chemical Composition

- 7.1 The material shall conform to the compositional requirements listed in Table 1 for the copper UNS No. designation specified in the ordering information.
- 7.1.1 Results of analysis on a product (check) sample shall conform to the composition requirements within the permitted analytical variance specified in Table 1.
- 7.2 These compositional limits do not preclude the presence of other elements. By agreement between the manufacturer and purchaser, limits may be established and analysis required for unnamed elements.

8. Temper

8.1 The standard tempers for products described in this specification are given in Table 3.

TABLE 2 Coil Length Tolerances (Specific Lengths)

Tube Outside Diameter, in. (mm)	Nominal Length, ft (m)	Shortest Permissible Length, % of Nominal Length	Maximum Permissible Weight of Ends, % of Lot Weight	Tolerance All Plus ft (m)
All sizes	Up to 100 (30.5), incl	100	0	1 (0.3)
All sizes	Over 100 (30.5)	40	20	

^B Silver counting as copper.

TABLE 3 Mechanical Property Requirements of Drawn-Temper and Annealed-Temper Tube

	Rockwell Hardness					
Temper Designation	Wall Thickness, in. (mm)	Scale	Value	Tensile Strength Min, ksi ^A (MPa)	Yield Strength ^B Min, ksi ^A (MPa)	Elongation in 2 in., min %
H58	Less than 0.020	N/A	N/A	36 (250)	30 (205)	N/A
	0.020 and over	30T ^C	30 min	36 (250)	30 (205)	N/A
O50	Less than 0.015	N/A	N/A	30 (205)	9 (62)	40
	0.015 to 0.035	15T ^C	65 max	30 (205)	9 (62)	40
	(0.381 to 0.889)			, ,	, ,	
	Over .035	F^{C}	55 max	30 (205)	9 (62)	40
	(0.889)			, ,	, ,	
O60	Less than 0.015	N/A	N/A	30 (205)	6 (40)	40
	0.015 to 0.035	15T ^C	60 max	30 (205)	6 (40)	40
	(0.381 to 0.889)			, ,	. ,	
	Over 0.35	$F^{\mathcal{C}}$	50 max	30 (205)	6 (40)	40
	(0.889)			(/	(-)	

^A ksi = 1000 psi.

- 8.2 *H (Drawn) Temper*—The temper of drawn tube shall be designated as H58 (drawn, general purpose).
- 8.3 *O (Annealed) Temper*—The temper of annealed tube shall be designated as 050 (light anneal) and 060 (soft anneal). Tempers are defined in Classification B601.

9. Grain Size for Annealed Tempers

- 9.1 Grain size shall be the standard requirement for all product in the annealed tempers.
- 9.2 Acceptance or rejection based upon grain size shall depend only on the average grain size of a test specimen taken from each of two sample portions, and each specimen shall be within the limits prescribed in Table 4 when determined in accordance with Test Methods E112.
- 9.3 Upon agreement between the manufacturer and the purchaser, special grain size ranges (other than standard O50 and O60) may be designated to facilitate fabrication etc. If the desired range spans both O50 and O60 designations, the O60 yield strength and the O50 hardness limits will apply.

TABLE 4 Grain Size of Annealed Tempers

Temper	Average Grain Size, mm
O60	0.040 min
O50	0.040 max

10. Physical Property Requirements

10.1 Electrical Resistivity Requirement—Product ordered for electrical conductor application produced from Copper UNS No. C10200, C10300, or C12000 shall conform to the electrical mass resistivity prescribed in Table 5 for the specified copper and temper when tested in accordance with Test Method B193.

11. Mechanical Property Requirements

- 11.1 *Tensile and Yield Strength*—The product shall conform to the requirements in Table 3 for the specified temper.
 - 11.2 Rockwell Hardness:
- 11.2.1 For product of the H58 temper, the Rockwell hardness values are given for reference purposes only.
- 11.2.2 For product of the O (annealed) temper, the product shall conform to the Rockwell hardness values contained in Table 3.

TABLE 5 Resistivity ($\Omega \cdot g/m^2$) of Copper UNS No.

Note 1—Refer to Appendix X1 for the International Annealed Copper Standard (IACS) electrical conductivity equivalents.

Temper	C10200	C10300	C12000
O50, O60	0.153 28	0.156 14	0.170 31
H58	0.15737	0.159 40	0.174 18

^B Yield strength to be determined at 0.5 % extension under load.

^C Rockwell hardness values apply to tubes having an inside diameter of 5/16 in. (7.92 mm) or over, and Rockwell hardness test shall be made on the inside surface of the tube. When suitable equipment is not available for determining the specific Rockwell hardness, other Rockwell scales and values may be specified subject to agreement between the purchaser and supplier.

12. Performance Requirements

- 12.1 Expansion Requirement:
- 12.1.1 Tube furnished in the annealed temper shall be capable of being expanded in accordance with Test Method B153 with an expansion of the outside diameter in the following percentage:

Outside Diameter, in. (mm)	Expansion of Outs Diameter, %
0.750 (19.1) and under	40
Over 0.750 (19.1)	30

12.1.2 The expanded tube shall show no cracking or rupture visible to the unaided eye.

13. Other Requirements

- 13.1 Nondestructive Examination for Defects:
- 13.1.1 Upon agreement between the manufacturer and the purchaser, each tube shall be subjected to an eddy-current test.
- 13.1.2 Tubes shall be tested normally in the drawn temper; however, they may be tested in the annealed temper at the option of the manufacturer.
- 13.1.3 Testing shall follow the procedures of Practice E243 except for the determination of "end effect."
- Note 2—End effect is that length of the tube, which travels through the coil until the testing unit, has stabilized and is able to detect flaws. The magnitude of the spike, generated when an end passes through the test coils is such that it disrupts testing momentarily.
- 13.1.4 Unless otherwise agreed upon between the manufacturer, or supplier, and the purchaser, the manufacturer shall have the option of calibrating the test equipment using either notches or drilled holes. If agreement cannot be reached, drilled holes shall be used.
- 13.1.4.1 Unless otherwise agreed upon between the manufacturer, or supplier, and the purchaser, notch-depth standards rounded to the nearest 0.001 in. (0.025 mm) shall be 22 % (max) of the nominal bottom-wall thickness.
- 13.1.4.2 Drilled-hole standards shall be 0.025 in. (0.635 mm) diameter (max.) for tubes up to and including 3 4 in. (19.05 mm) specified diameter and 0.031 in. (0.785 mm) max. diameter for tubes over 3 4 in. (19.05 mm) specified diameter. Hole diameter tolerance is +0.001 in.
- 13.1.5 Tubes that do not actuate the signaling device on the eddy-current tester shall be considered in conformance with the requirements of this test.
- 13.1.6 Tubes rejected for irrelevant signals because of moisture, soil, and like effects, may be reconditioned and retested.
- 13.1.7 Tubes that are reconditioned and retested (see 13.1.6) shall be considered in conformance with the requirements of this specification, if they do not cause output signals beyond the acceptable limits.
- 13.1.8 Eddy-current discontinuities will be identified on coils in excess of 200 ft (61 m) in length for subsequent removal by the purchaser.
- 13.1.9 As agreed upon between the manufacturer, or supplier, and the purchaser, the permissible number of identified eddy-current discontinuities may be specified.

- 13.2 Cuprous Oxide Requirement—Samples of Copper UNS Nos. C10200, C10300, and C12000 shall be significantly free of cuprous oxide as determined by Procedure A of Test Methods B577. In case of dispute, a referee method in accordance with Procedure C shall be used.
- 13.3 Embrittlement—Samples of Copper UNS Nos. C10200, C10300, C10800, C12000, and C12200 shall be capable of passing the embrittlement test of Procedure B of Test Methods B577. The actual performance of this test is not mandatory under the terms of this specification unless specified in the ordering information. In case of a dispute, a referee method in accordance with Procedure C shall be used.
 - 13.4 Cleanness Requirement:
- 13.4.1 When refrigeration or air conditioning grade is specified, the tube shall be capable of meeting the following cleanness requirement described in 13.4.1.1.
- 13.4.1.1 The inside of the tube, with closed ends, shall be sufficiently clean such that when the interior of the tube is washed with a suitable solvent, such as redistilled chloroform or redistilled trichloroethylene, the residue remaining upon evaporation of the solvent shall not exceed 0.0035 g/ft² (0.038 g/m^2) of interior surface. See 17.4 for the test method.

14. Dimensions, Mass, and Permissible Variations

- 14.1 For specific coil lengths, see Table 2 of this specification.
- 14.2 If coils are produced to a specified nominal weight, no coil shall weigh less than 40 % of the nominal weight, and no more than 20 % of the coils in a lot shall weigh less than 70 % of the nominal weight unless otherwise agreed between supplier and purchaser.

15. Workmanship, Finish, and Appearance

- 15.1 The product shall be free of defects, but blemishes of a nature that do not interfere with the intended applications are acceptable.
 - 15.2 The product shall be well cleaned and free of dirt.
- 15.3 Product of refrigeration and air conditioning grade shall meet the cleanness requirement of 13.4.

16. Specimen Preparation

- 16.1 Chemical Analysis:
- 16.1.1 Sample preparation shall be in accordance with Practice E255.
- 16.1.2 Analytical specimen preparation shall be the responsibility of the reporting laboratory.
 - 16.2 Electrical Resistivity:
- 16.2.1 The test specimen shall be full size and shall be the full cross section of the material it represents, when possible.
- 16.2.2 When the test specimen is taken from material in bulk, care must be taken that the properties are not appreciably altered in the preparation.

Note 3—Plastic deformation tends to work-harden a material and raise its resistivity, while heating tends to anneal the material with a subsequent reduction in resistivity.