Standard Specification for Age-Hardening Stainless Steel Forgings ${ }^{1}$

This standard is issued under the fixed designation A705/A705M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This specification ${ }^{2}$ covers age-hardening stainless steel forgings for general use.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
1.3 Unless the order specifies an "M" designation, the material shall be furnished to inch-pound units.

Note 1—Bar products are covered by Specification A564/A564M.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards. ${ }^{3}$
A370 Test Methods and Definitions for Mechanical Testing of Steel Products
A484/A484M Specification for General Requirements for
Stainless Steel Bars, Billets, and Forgings
A564/A564M Specification for Hot-Rolled and Cold-

[^0]Finished Age-Hardening Stainless Steel Bars and Shapes
A751 Test Methods and Practices for Chemical Analysis of Steel Products
A788/A788M Specification for Steel Forgings, General Requirements
E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.2 Other Document: ${ }^{4}$

SAE J 1086 Recommended Practice for Numbering Metals and Alloys (UNS)

3. Ordering Information

3.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Such requirements may include but are not limited to the following:
3.1.1 Quantity (weight or number of pieces),
3.1.2 Name of material (age-hardening stainless steel forgings),
3.1.3 Dimensions, including prints or sketches,
3.1.4 Type or UNS designation (Table 1),
3.1.5 Heat-treated condition (Section 5),
3.1.6 Transverse properties when required (7.4),
3.1.7 ASTM designation and date of issue, and
3.1.8 Special requirements (5.3 and 5.4).
3.2 If possible, the intended end use of the item should be given on the purchase order, especially when the item is ordered for a specific end use or uses.

Note 2-A typical ordering description is as follows: five agehardening stainless steel forgings, Type 630, solution-annealed, Specification A705 dated \qquad End use: pump blocks for oil well equipment.

4. General Requirements

4.1 In addition to the requirements of this specification, all requirements of the current edition of Specification A484/ A484M shall apply. Forgings shall comply with the Terminology and Forging sections of Specification A788/A788M, which further clarify the forging definitions in the Terminology section of Specification A484/A484M. Failure to comply with

[^1]Composition, \%

Composition, \%													
UNS Designation ${ }^{B}$	Type	C	Mn	P	S	Si	Cr	Ni	AI	Mo	Ti	Cu	Other Elements l
S17400	630	0.07	1.00	0.040	0.030	1.00	15.00-17.50	3.00-5.00			...	3.00-5.00	D
S17700	631	0.09	1.00	0.040	0.030	1.00	16.00-18.00	6.50-7.75	0.75-1.50	\ldots	\ldots	...	\ldots
S15700	632	0.09	1.00	0.040	0.030	1.00	14.00-16.00	6.50-7.75	0.75-1.50	2.00-3.00	\ldots	\ldots	
S35500	634	0.10-0.15	0.50-1.25	0.040	0.030	0.50	15.00-16.00	4.00-5.00	...	2.50-3.25		\ldots	E
S17600	635	0.08	1.00	0.040	0.030	1.00	16.00-17.50	6.00-7.50	0.40	...	0.40-1.20	...	
S15500	XM-12	0.07	1.00	0.040	0.030	1.00	14.00-15.50	3.50-5.50	2.50-4.50	D
S13800	XM-13	0.05	0.20	0.010	0.008	0.10	12.25-13.25	7.50-8.50	0.90-1.35	2.00-2.50		..	F
S45500	XM-16	0.03	0.50	0.015	0.015	0.50	11.00-12.50	7.50-9.50	...	0.50	0.90-1.40	1.50-2.50	G
S45503	...	0.010	0.50	0.010	0.010	0.20	11.00-12.50	7.50-9.50	...	0.50	1.00-1.35	1.50-2.50	a
S45000	XM-25	0.05	1.00	0.030	0.030	1.00	14.00-16.00	5.00-7.00	...	0.50-1.00	...	1.25-1.75	H
S10120		0.02	0.25	0.015	0.010	0.25	11.00-12.50	9.00-10.50	0.80-1.10	1.75-2.25	0.20-0.50	...	F
S11100		0.02	0.25	0.015	0.010	0.25	11.00-12.50	10.25-11.25	1.35-1.75	1.75-2.25	0.20-0.50	...	F

${ }^{A}$ Limits are in percent maximum unless shown as a range or stated otherwise.
${ }^{B}$ Designation established in accordance with Practice E527 and SAEJ1086, Recommended Practice for Numbering Metals and Alloys (UNS).
${ }^{C}$ Columbium (Cb) and niobium (Nb) are considered interchangeable names for element 41 in the periodic table and both names are acceptable for use.
${ }^{D}$ Niobium 0.15-0.45.
${ }^{E}$ Nitrogen 0.07-0.13.
${ }^{F}$ Nitrogen 0.01.
${ }^{G}$ Niobium 0.10-0.50.
${ }^{H}$ Niobium $8 \times$ carbon minimum.
' Initially it was very time consuming to analyze $\mathrm{Nb}(\mathrm{Cb})$ separately from Ta so the two elements were included together in the stainless steel standards. $\mathrm{Nb}(\mathrm{Cb})$ was always the key element associated with obtaining properties. With more advanced chemical analysis methods, this distinction was no longer an issue. As Ta falls under a Conflict Mineral element, ASTM has been removing Ta from its standards where it has been included in combination with Nb (Cb). It was removed from this standard in 2022.
the general requirements of Specification A484/A484M, constitutes nonconformance with this specification.

5. Materials and Manufacture

5.1 Material for forgings shall consist of billets or bars, either forged, rolled, or cast, or a section cut from an ingot. The cuts shall be made to the required length by a suitable process. This material may be specified to Specification A564/A564M.
5.2 The material shall be forged by hammering, pressing, rolling, extruding, or upsetting to produce a wrought structure throughout and shall be brought as nearly as possible to the finished shape and size by hot working.
5.3 When specified on the order, sample forging may be sectioned and etched to show flow lines and the condition in regard to internal imperfections. When so specified, the question of acceptable and unacceptable metal flow shall be subject to agreement between the manufacturer and the purchaser prior to order entry.
5.4 When specified on the order, the manufacturer shall submit for approval of the purchaser a sketch showing the shape of the rough forging before machining, or before heat treating for mechanical properties.
5.5 The grain size shall be as fine as practicable and precautions shall be taken to minimize grain growth.
5.6 Material of types other than XM-9 shall be furnished in the solution-annealed condition, or in the equalized and overtempered condition, as noted in Table 2, unless otherwise specified by the purchaser.
5.6.1 Types 630, XM-16, and XM-25 may be furnished in the solution-annealed or age-hardened condition.

6. Chemical Composition

6.1 The steel shall conform to the chemical composition limits specified in Table 1.
6.2 Methods and practices relating to chemical analysis required by this specification shall be in accordance with Test Methods, Practices, and Terminology A751.

7. Mechanical Properties

7.1 The material, as represented by mechanical test specimens, shall conform to the mechanical property requirements specified in Table 2 and shall be capable of developing the properties in Table 3 when heat treated as specified in Table 3.
7.2 The yield strength shall be determined by the offset method as described in the current edition of Test Methods and Definitions A370. The limiting permanent offset shall be 0.2% of the gage length of the specimen.
7.3 The impact strength shall be determined at 70 to $80^{\circ} \mathrm{F}$ [20 to $25^{\circ} \mathrm{C}$], by Charpy V-notch specimen Type A as described in Test Methods and Definitions A370.
7.4 Material tensile tested and, when specified, impact tested in the transverse direction (perpendicular to the forging flow lines) and meeting the requirements shown in Table 3 need not be tested in the longitudinal direction.
7.5 Samples cut from forging shall conform to the mechanical properties of Table 3 when heat treated as specified in Tables 2 and 3 and tested in accordance with Test Methods and Definitions A370.

TABLE 2 Solution Heat Treatment

Type	Condition	Solution Treatment	Mechanical Test Requirements in Solution Treated Condition ${ }^{\text {A }}$					
			Tensile	Yield	Elongation in		Hard	
			Strength, min ksi [MPa]	Strength, min ksi [MPa]	2 in. [50 mm] or 4D, min. \%	Area, minute \%	Rockwell C, max	Brinell, max
630	A	$1900 \pm 25^{\circ} \mathrm{F}\left[1040 \pm 15^{\circ} \mathrm{C}\right]$ (cool as required to below $90^{\circ} \mathrm{F}\left[32^{\circ} \mathrm{C}\right]$)			. . .		38	363
631	A	$1900 \pm 25^{\circ} \mathrm{F}$ [1040 $\left.\pm 15^{\circ} \mathrm{C}\right]$ (water quench)		Rb89	229
632	A	$1900 \pm 25^{\circ} \mathrm{F}\left[1040 \pm 15^{\circ} \mathrm{C}\right]$ (water quench)	\ldots		Rb100	$269{ }^{\text {c }}$
$634{ }^{\text {D }}$	A	$1900 \pm 25^{\circ} \mathrm{F}$ [$1040 \pm 15^{\circ} \mathrm{C}$] quench, hold not less than 3 h at $-100^{\circ} \mathrm{F}$ or lower	. .	\cdots	\ldots	\ldots	. .	$363{ }^{\text {D }}$
635	A	$1900 \pm 25^{\circ} \mathrm{F}$ [$\left.1040 \pm 15^{\circ} \mathrm{C}\right]$ (air cool)	120 [825]	75 [515]	10	45	32	302
XM-12	A	$\begin{aligned} & 1900 \pm 25^{\circ} \mathrm{F}\left[1040 \pm 15^{\circ} \mathrm{C}\right] \\ & \text { (cool as required to below } 90^{\circ} \mathrm{F}\left[32^{\circ} \mathrm{C}\right] \text {) } \end{aligned}$	38	363
XM-13	A	$\begin{gathered} 1700 \pm 25^{\circ} \mathrm{F}\left[925 \pm 15^{\circ} \mathrm{C}\right] \\ \text { (cool as required to below } 60^{\circ} \mathrm{F}\left[16^{\circ} \mathrm{C}\right] \text {) } \end{gathered}$	\ldots	38	363
XM-16	A	$1525 \pm 25^{\circ} \mathrm{F}\left[830 \pm 15^{\circ} \mathrm{C}\right]$ (cool rapidly)	\ldots	. .	36	331
S45503	A	$1525 \pm 25^{\circ} \mathrm{F}\left[830 \pm 15^{\circ} \mathrm{C}\right]$ (cool rapidly)		…	\cdots		36	331
XM-25	A	$1900 \pm 25^{\circ} \mathrm{F}$ [1040 $\left.\pm 15^{\circ} \mathrm{C}\right]$ (cool rapidly)	125 [860] ${ }^{\text {E }}$	95 [655]	10	40	33	311
S10120	A	$\begin{gathered} 1545 \pm 25^{\circ} \mathrm{F}\left[840 \pm 14^{\circ} \mathrm{C}\right] \\ \left(\text { cool rapidly below } 90^{\circ} \mathrm{F}\left[32^{\circ} \mathrm{C}\right]\right) \end{gathered}$	36	331
S11100	A	$1545 \pm 25^{\circ} \mathrm{F}\left[840 \pm 14^{\circ} \mathrm{C}\right]$ (oil or water quench), hold for min. 8 h at minus $100^{\circ} \mathrm{F}\left[-73^{\circ} \mathrm{C}\right],{ }^{F}$ air warm	. .	\ldots	\ldots	\ldots	36	331

${ }^{A}$ See 6.1.
${ }^{B}$ Either Rockwell C hardness or Brinell is permissible. On sizes of $1 / 2 \mathrm{in}$. [12.70 mm] and smaller, Rockwell C is preferred.
${ }^{c} 321 \mathrm{BHN}$ for rounds cold drawn after solution treating.
${ }^{D}$ Equalization and over-tempering treatment $1425 \pm 50^{\circ} \mathrm{F}\left[775 \pm 30^{\circ} \mathrm{C}\right]$ for not less than 3 h , cool to room temperature, heat to $1075 \pm 25^{\circ} \mathrm{F}$ [580 $\left.\pm 15^{\circ} \mathrm{C}\right]$ for not less than 3 h .
${ }^{E} 125$ to 165 ksi [860 to 1140 MPa] for sizes up to $1 / 2 \mathrm{in}$. [13 mm].
${ }^{F}$ Required hold time at minus $100^{\circ} \mathrm{F}\left[-73^{\circ} \mathrm{C}\right]$ is not mandatory if product is under 2 in . [51 mm] thickness.

8. Prolongations for Tests

8.1 Subject to Section 7, the forgings shall be produced with prolongations for testing, unless otherwise specified. The
producer may elect to submit an extra forging to represent each test lot instead of prolongations, or the test specimens can be taken from the forgings themselves.
TABLE 3 Mechanical Test Requirements After Age Hardening Heat Treatment ${ }^{A}$

Type	Condition	Suggested Hardening or Aging Treatment, or Both ${ }^{B, C, D}$			Applicable Thickness, in., and Test Direction ${ }^{E}$	Tensile Strength, min		Yield Strength, $\min ^{F}$		Elongation in 2 in . Reduction - [50 mm] of area, or 4D, min, \% $\min . \%$		Hardness ${ }^{\text {a }}$		Impact Charpy-V, min	
		Temperature, ${ }^{\circ} \mathrm{F}\left[{ }^{\circ} \mathrm{C}\right]$	Time, h	Quench		ksi	[MPa]	ksi	[MPa]			Rockwell C, min	Brinell, min	ft -lbf	J
630	H900	900 [480]	1.0	air cool	Up to 3 in. [75 mm], incl (L) Over 3 to 8 in. $[75$ to 200 mm$]$, incl (L)	190	[1310]	170	[1170]	10	40 35	40	388
	H925	925 [495]	4.0	air cool	Up to 3 in. [75 mm], incl (L) Over 3 to 8 in. [75 to 200 mm], incl (L)	170	[1170]	155	[1070]	10	$\begin{aligned} & \hline 44 \\ & \hline 38 \end{aligned}$	38	375	5	6.8
	H1025	1025 [550]	4.0	air cool	Up to 8 in. $[200 \mathrm{~mm}], \mathrm{incl}(\mathrm{L})$	155	[1070]	145	[1000]	12	45	35	331	15	20
	H1075	1075 [580]	4.0	air cool		145	[1000]	125	[860]	13	45	32	311	20	27
	H1100	1100 [595]	4.0	air cool		140	[965]	115	[795]	14	45	31	302	25	34
	H1150	1150 [620]	4.0	air cool	5	135	[930]	105	[725]	16	50	28	277	30	41
	H1150D	$\begin{array}{r} 1150[620] \\ 1150[62 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{h}, \text { air coo } \\ & 4 \mathrm{~h}, \text { air } \\ & \hline \end{aligned}$			125	[860]	105	[725]	16	50	$\begin{gathered} 24 \\ 33 \text { max } \\ \hline \end{gathered}$	$\begin{gathered} 255 \\ 311 \text { max } \\ \hline \end{gathered}$	30	41
	H1150M	$\begin{array}{r} 1400[760] \\ 1150[62 \\ \hline \end{array}$	h, air cool 4 h , air c			115	[795]	75	[520]	18	55	24	255	55	75
631	RH950	$1750^{\circ} \mathrm{F}\left[955^{\circ} \mathrm{C}\right]$ fo not more than 1 h , temperature. Cool $10^{\circ} \mathrm{F}$ [$75^{\circ} \mathrm{C}$], hold air to room tempera [$510^{\circ} \mathrm{C}$], hold 1 h ,	ess than apidly to 24 h to m s than 8 Heat to 9	min, but $100 \pm$ Narm in	Up to 4 in. [100 mm], incl (L)	185	[1280]	150	[1030]	6	10	41	388		\ldots
	TH1050	Alternative treatmen min, cool to 55 ± 5 Hold not less than [$565{ }^{\circ} \mathrm{C}$] hold for 90	$\begin{aligned} & 0^{\circ}{ }^{\circ} \mathrm{F}[760 \\ & \left. \pm 3^{\circ} \mathrm{C}\right] \\ & , \text { heat to } \\ & \text { air cool. } \end{aligned}$	\qquad	$\begin{gathered} \text { Up to } 6 \mathrm{in} . \\ \text { [150 mm], incl (L) } \end{gathered}$	170	[1170]	140	[965]	6	25	38	352	\ldots	. \cdot
632	RH950	Sam	ype 631		Up to 4 in . [100 mm], incl (L)	200	[1380]	175	[1210]	7	25	. .	415	. .	\cdots
	TH1050				Up to 6 in. [150 mm], incl (L)	180	[1240]	160	[1100]	8	25	\ldots	375	. .	\ldots
$634{ }^{\text {H }}$	$\mathrm{H} 1000$	1750 [955] for not more than 1 h . Wat higher than minus less than 3 h . Temp holding for not less	$\begin{aligned} & \text { an } 10 \mathrm{~min} \\ & \text { nch. Coo } \\ & \text { [75 } \left.{ }^{\circ} \mathrm{C}\right] . \\ & 1000^{\circ} \mathrm{F} \\ & 3 \mathrm{~h} . \end{aligned}$	not not for not ${ }^{\circ} \mathrm{C}$],		170	[1170]	155	[1070]	12	25	37	341	\cdots	\cdots
635	H950	950 [510]	0.5	air cool	,	190	[1310]	170	[1170]	8	25	39	363	.	\ldots
	H1000	1000 [540]	0.5	air cool		180	[1240]	160	[1100]	8	30	37	352	...	\ldots
	H1050	1050 [565]	0.5	air cool		170	[1170]	150	[1035]	10	40	35	331	...	\ldots
XM-12	H900	900 [480]	1.0	air cool	Up to 12 in. $[300 \mathrm{~mm}]$, incl (L) Up to $12 \mathrm{in}^{\prime}$ $[300 \mathrm{~mm}]$, incl $^{\prime}(\mathrm{T})$	190	[1310]	170	[1170]	10 6	35 15	40	388	\ldots	\cdots
	H925	925 [495]	4.0	air cool	Up to 12 in . [300 mm], $\mathrm{incl}^{\prime}(\mathrm{L})$	170	[1170]	155	[1070]	10	38	38	375	5	6.8
	H1025	1025 [550]	4.0	air cool	Up to 12 in. [300 mm], incl (T) Up to 12 in. $[300 \mathrm{~mm}]$, incl (L)	155	[1070]	145	[1000]	7 12	20 45	35	331	\cdots 15	\cdots 20
XM-12 (continued)					Up to 12 in. [300 mm], incl ${ }^{\prime}(\mathrm{T})$					8	27			10	14

TABLE 3 Continued

[^0]: ${ }^{1}$ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.17 on Flat-Rolled and Wrought Stainless Steel.

 Current edition approved May 1, 2023. Published May 2023. Originally approved in 1974. Last previous edition approved in 2020 as A705/A705M - 22. DOI: 10.1520/A0705_A0705M-23.
 ${ }^{2}$ For ASME Boiler and Pressure Vessel Code applications see related Specification SA-705/SA-705M in Section II of that Code.
 ${ }^{3}$ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

[^1]: ${ }^{4}$ Available from SAE International (SAE), 400 Commonwealth Dr., Warrendale, PA 15096, http://www.sae.org.

