

Designation: E937/E937M - 93 (Reapproved 2023)

# Standard Test Method for Corrosion of Steel by Sprayed Fire-Resistive Material (SFRM) Applied to Structural Members<sup>1</sup>

This standard is issued under the fixed designation E937/E937M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon ( $\epsilon$ ) indicates an editorial change since the last revision or reapproval.

# 1. Scope

- 1.1 This test method covers a procedure for measuring the corrosion to steel induced by sprayed fire-resistive material.
- 1.2 These SFRMs include sprayed fibrous and cementitious materials applied directly in contact with the structural members.
- 1.3 This test method is applicable only to laboratory procedures.
- 1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.
- 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

#### 2. Referenced Documents

2.1 ASTM Standards:<sup>2</sup>

E119 Test Methods for Fire Tests of Building Construction and Materials

E605/E605M Test Methods for Thickness and Density of

<sup>1</sup> This test method is under the jurisdiction of ASTM Committee E06 on Performance of Buildings and is the direct responsibility of Subcommittee E06.21 on Serviceability.

Sprayed Fire-Resistive Material (SFRM) Applied to Structural Members

E631 Terminology of Building Constructions

#### 3. Terminology

- 3.1 *Definitions*—Definitions in this test method are in accordance with Terminology E631.
  - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *corrosion*—chemical reaction between a metal and its environment that produces a deterioration of the metal and its properties.
- 3.2.2 sprayed fire-resistive materials—materials that are sprayed onto substrates to provide fire-resistive protection of the substrates.

# 4. Summary of Test Method

4.1 In this test method replicate panels of bare, shop-coated, and galvanized steel are sprayed with SFRM and subjected to room temperature and humidity conditions and to 240 h of conditioning in a temperature- and humidity-controlled chamber. Corrosion induced under these conditions is determined by weight loss<sup>3</sup> of the sheets as related to sheets not so conditioned.

# 5. Significance and Use

- 5.1 It is the intent of this test method to determine relative corrosive properties of direct applied SFRM that provides an indication of serviceability. Satisfactory performance of SFRM applied to structural members and assemblies depends upon its ability to withstand the various influences that occur during the life of the structure, as well as upon its satisfactory performance under fire conditions.
- 5.2 This test method evaluates the relative corrosion of steel induced by SFRM and determines whether the presence of SFRM increases, decreases, or has no effect on the corrosion characteristics of steel.

#### 6. Apparatus

6.1 Standard Temperature Humidity Cabinet, equipped to maintain the temperature at 35 °C  $\pm$  1.7 °C [95 °F  $\pm$  3 °F] and

Current edition approved May 15, 2023. Published May 2023. Originally approved in 1983. Last previous edition approved in 2020 as E937/E937M – 93 (2020). DOI: 10.1520/E0937\_E0937M-93R23.

<sup>&</sup>lt;sup>2</sup> For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

<sup>&</sup>lt;sup>3</sup> Although "mass" is being determined, the term weight is used in this test method as an accepted substitute.

a relative humidity of 95 %  $\pm$  3 %. The cabinet and all accessories shall be of a material that does not affect the corrosiveness of the atmosphere in the cabinet. Additionally, all parts that come into contact with the test specimens shall be made of material that will not cause electrolytic corrosion. Adequate circulation of the atmosphere over the specimens shall be provided.

- 6.2 *Scale*, having a capacity of 5 kg and a sensitivity of  $\pm 0.1$  g.
- 6.3 *Wire Brush*, described as "cement mold brush" with brass wire bristles 25 mm [1 in.] long mounted in a handle. The bristle section shall be 127 mm [5 in.] long by 19 mm [ $\frac{3}{4}$  in.] wide.

#### 7. Materials

- 7.1 This test method requires the application of SFRM in accordance with manufacturer's published instructions. The apparatus, materials, and procedures used to apply the SFRM shall be representative of application in the field.
- 7.2 The density of the prepared sample shall be the same as the density tested and reported during the Test Methods E119 fire exposures or as required by the sponsor of the test.
- 7.3 Determine the density and thickness of each laboratory-prepared specimen. Report in accordance with Test Methods E605/E605M.
- 7.4 Steel sheets shall be 200 mm by 200 mm [8 in. by 8 in.] by minimum 12 gage and shall be: bare steel—A36 grade, galvanized steel—G60 grade, and shop-coated—A36 grade steel coated with iron oxide alkyd shop coat primer.

# 8. Laboratory Test Specimens

- 8.1 The three sets of specimens shall consist of four sheets each, in the following categories: bare, shop-coated, and galvanized steel.
- 8.2 The steel sheets shall be free of all surface rust. Wash the metal specimens with analytical grade trichlorethylene to remove any oil or grease. Dry at room temperature. For test purposes of this test method, the duplicate sets of steel sheets are referred to as follows:

| Bare        | I, II, III, IV |
|-------------|----------------|
| Shop-coated | I, II, III, IV |
| Galvanized  | I. II. III. IV |

### 9. Procedure

- 9.1 Weigh each sheet to the nearest 0.1 g and record the weighed samples as Ia, IIa, IIIa, and IVa for the bare, shop-coated, and galvanized sets, respectively. See Table 1.
- 9.2 Protect the opposite sides and edges of the sheets with a suitable coating. This coating shall be stable under the conditions of this test method and shall not promote corrosion; ceresin wax is suggested.
- 9.3 Apply the SFRM at a minimum thickness of  $19 \text{ mm} \pm 3 \text{ mm} \left[ \frac{3}{4} \text{ in.} \pm \frac{1}{8} \text{ in.} \right]$  to all sheets.
  - 9.4 Specimens I and III of Respective Sets:

**TABLE 1 Sample Weights** 

|                                                                                                         | -                        | -                        |                          |
|---------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|
|                                                                                                         | Bare                     | Shot-Coated              | Galvanized               |
| I=                                                                                                      | la = g ∕mm²              | la = g/mm²               | la = g/mm²               |
| Specimens having SFRM, conditioned at room temperature (9.4).                                           | lb = g ∕mm²              | $lb = g/mm^2$            | lb = g ∕mm²              |
| II =                                                                                                    | lla = g ∕mm²             | IIa = g/mm <sup>2</sup>  | IIa = g ∕mm²             |
| Specimens having SFRM, conditioned for 240 h at $35 ^{\circ}\text{C} \pm 1.7 ^{\circ}\text{C} (9.5)$ .  | IIb = g ∕mm²             | IIb = g ∕mm²             | $IIb = g/mm^2$           |
| III =                                                                                                   | IIIa = g/mm <sup>2</sup> | IIIa = g/mm <sup>2</sup> | IIIa = g/mm <sup>2</sup> |
| Specimens having SFRM, conditioned at room temperature (9.4).                                           | IIIb = g/mm <sup>2</sup> | IIIb = $g/mm^2$          | IIIb = g/mm <sup>2</sup> |
| IV =                                                                                                    | IVa = g/mm <sup>2</sup>  | IVa = g ∕mm²             | IVa = g/mm <sup>2</sup>  |
| Specimens having SFRM, conditioned for 240 h at $35 ^{\circ}\text{C} \pm 1.7 ^{\circ}\text{C}  (9.5)$ . | $IVb = g /mm^2$          | IVb = g/mm <sup>2</sup>  | $IVb = g/mm^2$           |

- 9.4.1 Condition the specimens for 240 h at room temperature (20 °C  $\pm$  5 °C [68 °F  $\pm$  9 °F]) and relative humidity not greater than 60 %. Record if a constant weight<sup>3</sup> was reached.
- 9.4.2 Remove the SFRM, as well as the protective wax coating, from the steel sheet identified as I and III, from each of the respective sets.
- 9.4.3 Remove all surface rust from I and III of the respective sets with the wire brush described in Section 6 and clean with solvent as described in 8.2.
- 9.4.4 Weigh sheets I and III of the respective sets to the nearest 0.1 g, and record as Ib and IIIb.
  - 9.5 Specimens II and IV of Respective Sets:
- 9.5.1 Place the remaining sprayed sheets, specimens II and IV of the respective sets, into the temperature humidity cabinet and keep at 35 °C  $\pm$  1.7 °C [95 °F  $\pm$  3 °F] and a 95 %  $\pm$  3 % relative humidity for a duration of 240 h.
- 9.5.2 At the completion of the 240 h period, remove the specimens from the cabinet.
- 9.5.3 Remove the SFRM and the protective wax coating, along with all rust, from the sheets as described in 9.4.3.
- 9.5.4 Weigh the cleaned sheets to the nearest 0.1 g, and record as IIb and IVb.

# 10. Calculation

10.1 Calculate the average weight<sup>3</sup> loss at the end of the initial aging period (see 9.3) and the weight loss at the end of the 240 h humidity test (see 9.4) as follows:

$$L_{II} = \frac{\text{II} - \text{II} b}{A_{II}}$$

$$L_{II} = \frac{\text{III} a - \text{III} b}{A_{III}}$$

$$L_{IV} = \frac{\text{IV} a - \text{IV} b}{A_{IV}}$$
(1)

where:

 $A_{\rm I}$  = area of steel sheet I, mm<sup>2</sup>,  $A_{\rm II}$  = area of steel sheet II, mm<sup>2</sup>,  $A_{\rm III}$  = area of steel sheet III, mm<sup>2</sup>, and  $A_{\rm IV}$  = area of steel sheet IV, mm<sup>2</sup>.

I, III Sheet to be sprayed with SFRM and to be conditioned, during initial aging period, at room temperature (see 9.4). II, IV Sheet to be sprayed with SFRM and to be placed in temperature humidity cabinet for 240 h (see 9.5).