
This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Standard Test Method for Analysis of High Purity Benzene for Cyclohexane Feedstock by Capillary Gas Chromatography¹

This standard is issued under the fixed designation D5713; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

 ε^1 NOTE—Editorial corrections made in Footnote 1 and 8.1 in June 2018.

1. Scope-Scope*

1.1 This test method covers the determination of specific impurities in, and the purity of benzene for cyclohexane feedstock by gas chromatography.

1.2 This test method has been found applicable to benzene in the range from 9999% to 100% purity and to impurities at concentrations of 22 mg/kg to 10 000 $\frac{\text{mg/kg.mg/kg}}{\text{mg/kg}}$. The limit of detection (LOD) is 2 mg/kg for an impurity and the limit of quantitation (LOQ) is 6 mg/kg for an impurity.

1.3 In determining the conformance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.

1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see 7.2 and Section 8.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

D3437 Practice for Sampling and Handling Liquid Cyclic Products
D4790 Terminology of Aromatic Hydrocarbons and Related Chemicals
D6809 Guide for Quality Control and Quality Assurance Procedures for Aromatic Hydrocarbons and Related Materials
E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
E260 Practice for Packed Column Gas Chromatography
E355 Practice for Gas Chromatography Terms and Relationships

*A Summary of Changes section appears at the end of this standard

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

¹This test method is under the jurisdiction of ASTM Committee D16 on Aromatic, Industrial, Specialty and Related Chemicals and is the direct responsibility of Subcommittee D16.01 on Benzene, Toluene, Xylenes, Cyclohexane and Their Derivatives.

Current edition approved June 1, 2018 May 1, 2023. Published June 2018 May 2023. Originally approved in 1995. Last previous edition approved in $\frac{20142018}{10.1520/D5713-14}$ as $\frac{D5713-14}{10.1520/D5713-14}$. DOI: $\frac{10.1520}{10.1520}$

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

∰ D5713 – 23

E1510 Practice for Installing Fused Silica Open Tubular Capillary Columns in Gas Chromatographs 2.2 *Other Document:* OSHA Regulations, 29 CFR paragraphs 1910.1000 and 1910.1200³

3. Terminology

3.1 Definitions:

3.1.1 See Terminology D4790 for definition of terms used in this test method.

4. Summary of Test Method

4.1 In this test method, the chromatogram peak area for each impurity is compared to the peak area of the internal standard (n-octane or other suitable known) added to the sample. From the response factor of toluene relative to that of the internal standard, and using a response factor of 1.00 for nonaromatic impurities and the amount of internal standard added, the concentrations of the impurities are calculated. The benzene content is obtained by subtracting the total amount of all impurities from 100.00.

5. Significance and Use

5.1 This test method is useful for benzene purity on the basis of impurities normally present in benzene and may be used for final product inspections and process control.

5.2 This test method will detect the following impurities: toluene, methylcyclopentane, *n*-hexane, 2-methylhexane, cyclohexane, cyclohexane, 3-methylhexane, *n*-heptane, methylcyclohexane, ethylcyclopentane, 2,4-dimethylhexane, trimethylpentane, and others where specific impurity standards are available. Absolute purity cannot be accurately determined if unknown impurities are present.

6. Apparatus

6.1 *Gas Chromatograph*—Any gas chromatograph having a temperature programmable oven, flame ionization detector and a splitter injector suitable for use with a fused silica capillary column may be used, provided the system has sufficient sensitivity that will give a minimum peak height of 3 times the background noise for 2 mg/kg of an impurity.

6.2 *Column*—Fused silica capillary columns have been found to be satisfactory. An example is 50 m of 0.20-mm<u>0.20 mm</u> inside diameter fused silica capillary internally coated to a film thickness of 0.50 μm with polydimethylsiloxane (see Table 1 for suggested instrument parameters). Other columns may be used after it has been established that such a column is capable of separating all major impurities (for example, compounds listed in 5.2) and the internal standard from the benzene under operating conditions

Carrier gas	hydrogen		
Linear velocity at 40°C, cm/s	40		
Linear velocity at 40 °C, cm/s	40		
Detector	flame ionization		
Detector temperature, °C	250°C		
Detector temperature, °C	250 °C		
Injection port temperature, °C	250°C		
Injection port temperature, °C	250 °C		
Split ratio	40:1		
Split flow, mL/min	60		
Column	50 m by 0.20 mm ID by 0.5 µ		
	bonded polydimethylsiloxane		
	capillary column		
Initial column temperature, °C	40		
Initial time, min	17		
Programming rate	10°C/min		
Programming rate	10 °C /min		
Final temperature, °C	250°C		
Final temperature, °C	250 °C		
Final time, min	10		
Sample size, µL	1.2		

³ Available from U.S. Government Printing Office Superintendent of Documents, 732 N. Capitol St., NW, Mail Stop: SDE, Washington, DC 20401, http:// www.access.gpo.gov.

Component	Average Concentration mg/kg	Intermediate Precision	Reproducibility
Benzene (weight %)	99.96	0.006	0.022
	99.97	0.007	0.020
	99.96	0.008	0.025
Methylcyclopentane	104	8.3	27.9
	43	12.2	19.4
	54	2.5	15.1
Toluene	64	5.1	22.0
	63	3.0	16.6
	28	1.8	9.1
Methylcyclohexane	132	7.4	34.8
	43	1.4	5.4
	79	3.2	17.0
Methylcyclohexane +	196	7.9	54.9
Toluene	106	12.9	33.6
	106	4.4	20.4
<i>n</i> -Hexane	4	2.2	3.7
	3	1.5	2.2
	2	1.8	2.5
<i>n</i> -Heptane	6	2.7	11.1
	16	1.5	5.6
	15	4.0	23.4
Ethylcyclopentane	$h^7 O_{4a}$	1.8	3.7
		1.9	11.0
	11	1.5	6.1
Total Other Impurities	S 99 0 0 2	22.5	163.0
	107	44.6	190.6
	185	55.5	233.0

TABLE 2 Summary of Precision Data

appropriate for the column. The column must give satisfactory resolution (distance from the valley between the peaks is not greater than 50 % of the peak heights of the impurity) of cyclohexane from benzene as well as other impurity peaks. A poorly resolved peak, such as cyclohexane, will often require a tangent skim from the neighboring peak.

6.3 Electronic Integration, with tangent skim capabilities is recommended.

6.4 Vial.

6.5 Microsyringes, assorted volumes.

6.6 *Injector*, the specimen must be precisely and repeatedly injected into the gas chromatograph. An automatic sample injection device is highly recommended. Manual injection can be employed if the precision stated in Table 2 can be reliably and consistently satisfied.

7. Reagents and Materials

7.1 *Purity of Reagents*—Reagent grade chemicals shall be used in all tests. Unless otherwise indicated it is intended that all reagents shall conform to the specifications of the Committee on Analytical reagents of the American Chemical Society, where such specifications are available.⁴ Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

⁴ Reagent Chemicals, American Chemical Society Specifications, ACS Reagent Chemicals, Specifications and Procedures for Reagents and Standard-Grade Reference <u>Materials</u>, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Analar Standards for Laboratory Chemicals, BHD; BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia and National Formulary, U.S. Pharmaceutical Pharmacopeial Convention, Inc. (USPC), Rockville, MD.

7.2 *Carrier Gas*—a carrier gas (99.999 % minimum purity) appropriate to the type of detector used should be employed. (**Warning**—If hydrogen is used as the carrier gas, take special safety precautions to ensure that the system is free of leaks and that the effluent is properly vented or burned.)

7.3 Hydrogen, for the flame ionization detector (FID) minimum purity of 99.999 % and <0.5 ppm total hydrocarbons is preferred.

7.4 Air, for the flame ionization detector, <0.1 ppm total hydrocarbons is preferred.

7.5 *n-octane*, 99.0 % minimum purity, or other internal standard (99.0 % minimum purity), such as *iso*-octane, previously analyzed to be free of compounds coeluting with impurities in the sample.

NOTE 1—It is highly recommended the carrier, make-up and detector gases be purified to remove oxygen (to less than 1 ppm, less than 0.5 ppm is preferred), water and hydrocarbons. It is also recommended the air be purified to remove hydrocarbons and water.

8. Hazards

8.1 Consult current OSHA regulations, suppliers' Safety Data Sheets, and local regulations for all materials used in this test method.

9. Sampling

9.1 Sample in accordance with Practice D3437.

10. Preparation of Apparatus

10.1 Follow the manufacturer's instructions for mounting and conditioning the column into the chromatograph and adjusting the instrument to the desired conditions. Allow sufficient time for the equipment to reach equilibrium. See Practices E260, E355 and E1510 for additional information on gas chromatography procedures, terminology, and column installation. The column and conditions in Table 1 were used to develop this analysis. If there is a dispute, the column and conditions should be agreed upon between the parties or use Table 1 as a referee.

<u>ASTM D5713-23</u>

https://standards.iteh.ai/catalog/standards/sist/6eebad2b-bff5-49b8-866a-cfeb97203535/astm-d5713-23

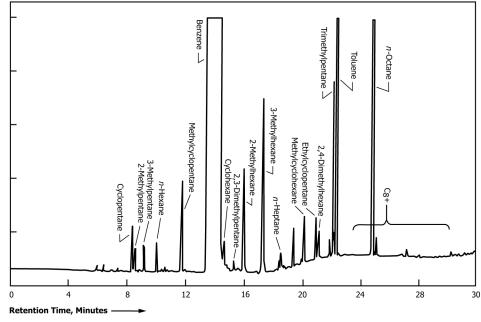


FIG. 1 High Purity Benzene—Typical Chromatogram (See Table 1 for Operating Conditions)