This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: D6750 – 19^{ε1} D6750 – 23

Standard Test Methods for Evaluation of Engine Oils in a High-Speed, Single-Cylinder Diesel Engine—1K Procedure (0.4 % Fuel Sulfur) and 1N Procedure (0.04 % Fuel Sulfur)¹

This standard is issued under the fixed designation D6750; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

<u>e¹ NOTE—Editorially updated TMC governance information in June 2022.</u>

INTRODUCTION

Portions of this test method are written for use by laboratories that make use of ASTM Test Monitoring Center $(TMC)^2$ services (see Annex A1 – Annex A4).

The TMC provides reference oils, and engineering and statistical services to laboratories that desire to produce test results that are statistically similar to those produced by laboratories previously calibrated by the TMC.

In general, the Test Purchaser decides if a calibrated test stand is to be used. Organizations such as the American Chemistry Council require that a laboratory utilize the TMC services as part of their test registration process. In addition, the American Petroleum Institute and the Gear Lubricant Review Committee of the Lubricant Review Institute (SAE International) require that a laboratory use the TMC services in seeking qualification of oils against their specifications.

The advantage of using the TMC services to calibrate test stands is that the test laboratory (and hence the Test Purchaser) has an assurance that the test stand was operating at the proper level of test severity. It should also be borne in mind that results obtained in a non-calibrated test stand may not be the same as those obtained in a test stand participating in the ASTM TMC services process.

Laboratories that choose not to use the TMC services may simply disregard these portions. ASTM International policy is to encourage the development of test procedures based on generic equipment. It is recognized that there are occasions where critical/sole-source equipment has been approved by the technical committee (surveillance panel/task force) and is required by the test procedure. The technical committee that oversees the test procedure is encouraged to clearly identify if the part is considered critical in the test procedure. If a part is deemed to be critical, ASTM encourages alternative suppliers to be given the opportunity for consideration of supplying the critical part/component providing they meet the approval process set forth by the technical committee.

An alternative supplier can start the process by initiating contact with the technical committee (current chairs shown on ASTM TMC website). The supplier should advise on the details of the part that is intended to be supplied. The technical committee will review the request and determine feasibility of an alternative supplier for the requested replacement critical part. In the event that a replacement critical part has been identified and proven equivalent the sole-source supplier footnote shall be removed from the test procedure.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

¹ These test methods are under the jurisdiction of ASTM Committee D02 on Petroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility of Subcommittee D02.B0.02 on Heavy Duty Engine Oils.

Current edition approved $\frac{\text{May 1, 2019July 1, 2023}}{\text{D6750 - 18} \text{D6750 - 19^{e1}}}$. DOI: $\frac{10.1520}{10.1520}$. Published $\frac{1}{\text{June 2019July 2023}}$. Originally approved in 2002. Last previous edition approved in $\frac{20182019}{10.1520}$ as $\frac{10.1520}{10.1520}$. DOI: $\frac{10.1520}{10.1520}$. DOI: \frac{10.1520}{10.1520}. DOI: \frac{10.1520}{10.1520}. DOI: \frac{10.

² Until the next revision of this test method, the ASTM Test Monitoring Center will update changes in the test method by means of information letters. Information letters may be obtained from the ASTM Test Monitoring Center, 203 Armstrong Drive, Freeport, PA 16229. Attention: Director. This edition incorporates revisions in all information Letters through No. 18-1.23-1.

1. Scope*

1.1 These test methods cover the performance of engine oils intended for use in certain diesel engines. They are performed in a standardized high-speed, single-cylinder diesel engine by either the 1K (0.4 % mass fuel sulfur) or 1N (0.04 % mass fuel sulfur) procedure.³ *The only difference in the two test methods is the fuel used.* Piston and ring groove deposit-forming tendency and oil consumption are measured. Also, the piston, the rings, and the liner are examined for distress and the rings for mobility. These test methods are required to evaluate oils intended to satisfy API service categories CF-4 and CH-4 for 1K, and CG-4 for 1N of Specification D4485.

1.2 These test methods, although based on the original Caterpillar 1K/1N procedures,³ also embody TMC information letters issued before these test methods were first published. These test methods are subject to frequent change. Until the next revision of these test methods, TMC will update changes in these test methods by the issuance of information letters which shall be obtained from TMC (see Annex A1 – Annex A4).

1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.3.1 *Exception*—Where there is no direct SI equivalent such as screw threads, national pipe threads/diameters, tubing size, or single source equipment specified. Also Brake Specific Fuel Consumption is measured in kilograms per kilowatthour.

1.4 The following is the Table of Contents:

	la kua ali antia a		Section
	Introduction Scope		1
	Referenced documents		2
	Summary of Test Methods		4
	Significance and Use		5
	Apparatus		6
		General Laboratory Requirements	6.1
		Test Engine	6.2
		Test Engine Accessories and Parts	6.3
	Reagents and Materials		7
	Test Oil Sample Requirements		8
	Preparation of Apparatus		9
		Engine Inspection/sist/9e0c1b14-abbb-4596-91d4-d4d2	46961d39/as 91 -d6750-23
		Engine Pre-Test Lubrication System Flush	9.2
		Engine Pre-Test Measurements and Inspections	9.3
		Engine Assembly	9.4
		Pressure Testing of Fuel System Assembly	9.5
	Calibration of Engine Test Stan		10
		General Requirements and Frequency of Calibration	10.1
		Runs	10.2
		Specified Test Parameters	10.3
		Calibration Test Acceptance Criteria	10.4
		Action on Rejection of Calibration Test	10.5
		Test Numbering	10.6
		Reference Oils	10.7
		Severity Adjustments	10.8
	Engine Operating Procedure	Engine Dup In	11 11.1
		Engine Run-In Cool-Down Procedure	11.1
		Warm-Up Procedure	11.2
		Operating Conditions and Oil Additions	11.3
		Measurement of Oil Consumption	11.4
		Sampling Used Oil	11.6
		Shutdowns, Lost Time and Off Tolerance Conditions	11.7
		Recording of Exhaust Temperature	11.8
		Air-Fuel Ratio Measurement	11.9
		Recording of Engine Conditions	11.10
		Humidity Requirements/Calibration/Measurement	11.10
	Inspections, Photographs and I		12
		Reference to Reporting Form	12.1
		Pre-Test Measurements of Engine Parts	12.2

³ These 1K/1N test procedures were developed by Caterpillar Inc., P.O. Box 610, Mossville, IL 61552-0610.

	ost-Test Information	12.3
	il Inspections	12.4
Report		13
	eneral Directions	13.1
	ectronic Transmission of Test Results (Optional)	13.12
	eporting Calibration Test Results	13.13
Precision and Bias		14
Keywords		15
	ANNEXES	
ASTM Test Monitoring Center Org	Annex A1	
ASTM Test Monitoring Center: Ca	Annex A2	
ASTM Test Monitoring Center: Ma	Annex A3	
ASTM Test Monitoring Center: Re	Annex A4	
Specifications for Test Engine and	Annex A5	
Intake Air System Details	Annex A6	
Exhaust System Details	Annex A7	
Cooling System Details	Annex A8	
Oil System Modifications and Instr	Annex A9	
Other Pressure and Temperature	Annex A10	
Oil Consumption Linear Regressio	Annex A11	
Test Fuel Specifications	Annex A12	
Lubrication System, Flush Apparat	Annex A13	
Engine Operating Conditions	Annex A14	
Procedure for Rating Piston and L	Annex A15	
Calculation of Percent Offset and	Annex A16	
1K/1N Test Reporting	Annex A17	
Parts List by Part Number (P/N) a	Annex A18	
Safety Precautions		Annex A19
-	APPENDIXES	
Humidity Data		Appendix X1
Statistical Equations for Mean and	Appendix X2	
Examples of Forms for Reporting	Appendix X3	
Optional Recording of Oil Pass Lin		Appendix X4

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements appear throughout the text. Being engine tests, these test methods do have definite hazards that shall be met by safe practices (see Annex A19 on Safety Precautions).

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

<u>ASTM D6750-23</u>

https://standards.iteh.ai/catalog/standards/sist/9e0c1b14-abbb-4596-91d4-d4d246961d39/astm-d6750-23 2.1 ASTM Standards:⁴

D86 Test Method for Distillation of Petroleum Products and Liquid Fuels at Atmospheric Pressure

D93 Test Methods for Flash Point by Pensky-Martens Closed Cup Tester

D97 Test Method for Pour Point of Petroleum Products

D130 Test Method for Corrosiveness to Copper from Petroleum Products by Copper Strip Test

D235 Specification for Mineral Spirits (Petroleum Spirits) (Hydrocarbon Dry Cleaning Solvent)

D287 Test Method for API Gravity of Crude Petroleum and Petroleum Products (Hydrometer/Method)

D445 Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity)

D482 Test Method for Ash from Petroleum Products

D524 Test Method for Ramsbottom Carbon Residue of Petroleum Products

D613 Test Method for Cetane Number of Diesel Fuel Oil

D664 Test Method for Acid Number of Petroleum Products by Potentiometric Titration

D1298 Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method

- D1319 Test Method for Hydrocarbon Types in Liquid Petroleum Products by Fluorescent Indicator Adsorption
- D1796 Test Method for Water and Sediment in Fuel Oils by the Centrifuge Method (Laboratory Procedure)
- D2425 Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry
- D2500 Test Method for Cloud Point of Petroleum Products and Liquid Fuels

D2622 Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-ray Fluorescence Spectrometry

D2709 Test Method for Water and Sediment in Middle Distillate Fuels by Centrifuge

⁴ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

(I) D6750 – 23

D3117 Test Method for Wax Appearance Point of Distillate Fuels (Withdrawn 2010)⁵

D3524 Test Method for Diesel Fuel Diluent in Used Diesel Engine Oils by Gas Chromatography

D4485 Specification for Performance of Active API Service Category Engine Oils

D4737 Test Method for Calculated Cetane Index by Four Variable Equation

D4739 Test Method for Base Number Determination by Potentiometric Hydrochloric Acid Titration

- D5185 Test Method for Multielement Determination of Used and Unused Lubricating Oils and Base Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)
- D5186 Test Method for Determination of the Aromatic Content and Polynuclear Aromatic Content of Diesel Fuels By Supercritical Fluid Chromatography

D5844 Test Method for Evaluation of Automotive Engine Oils for Inhibition of Rusting (Sequence IID) (Withdrawn 2003)⁵

D5862 Test Method for Evaluation of Engine Oils in Two-Stroke Cycle Turbo-Supercharged 6V92TA Diesel Engine (Withdrawn 2009)⁵

D6202 Test Method for Automotive Engine Oils on the Fuel Economy of Passenger Cars and Light-Duty Trucks in the Sequence VIA Spark Ignition Engine (Withdrawn 2009)⁵

D6594 Test Method for Evaluation of Corrosiveness of Diesel Engine Oil at 135 °C

D7422 Test Method for Evaluation of Diesel Engine Oils in T-12 Exhaust Gas Recirculation Diesel Engine

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

IEEE/ASTM SI 10 Standard for Use of the International System of Units (SI): The Modern Metric System

2.2 SAE Standard:

SAE J183 Engine Oil Performance and Engine Service Classification⁶

2.3 API Standard:

API 1509 Engine Service Classification and Guide to Crankcase Oil Selection⁷

2.4 Other ASTM Document:

ASTM Deposit Rating Manual 20 (Formerly CRC Manual 20)⁸

3. Terminology

3.1 Definitions:

3.1.1 blind reference oil, n-a reference oil, the indentity of which is unknown by the test facility.

3.1.1.1 Discussion— Document Preview

This is a coded reference oil that is submitted by a source independent from the test facility.

3.1.2 *calibrated test stand*, *n*—a test stand on which the testing of reference material(s), conducted as specified in the standard, provided acceptable test results. talog/standards/sist/9e0c1b14-abbb-4596-91d4-d4d246961d39/astm-d6750-23

D5844

3.1.2.1 Discussion—

In several automotive lubricant standard test methods, the TMC provides testing guidance and determines acceptability. Sub. B <u>Glossary²</u>

3.1.3 *calibration test, n*—an engine test conducted on a reference oil under carefully prescribed conditions, the results of which are used to determine the suitability of the engine stand/laboratory for such tests on non-reference oils.

3.1.3.1 Discussion—

A calibration test also includes tests conducted on parts to ensure their suitability for use in reference and non-reference tests.

3.1.3 calibrated test stand, n—a test stand on which the testing of reference material(s), conducted as specified in the standard, provided acceptable test results.

3.1.3.1 Discussion

In several automotive lubricant standard test methods, the TMC provides testing guidance and determines acceptability. Sub. B Glossary²

3.1.4 *candidate oil, n*—an oil that is intended to have the performance characteristics necessary to satisfy a specification and is to be tested against that specification. **D5844**

⁵ The last approved version of this historical standard is referenced on www.astm.org.

⁶ Available from the Society of Automotive Engineers Inc., 400 Commonwealth Dr., Warrendale, PA 15096. Order SAE Handbook, Vol 3; the standard is not available separately.

⁷ Available from the American Petroleum Institute, 1220 L St., NW, Washington, DC 20005.

⁸ For Stock #TMCMNL20, visit the ASTM website, www.astm.org, or contact ASTM International Customer Service at service@astm.org.

3.1.5 *debris, n—in internal combustion engines*, solid contaminant materials unintentionally introduced into the engine or resulting from wear.

3.1.6 double-blind test, n-a standard test performed on a double-blind reference oil.

3.1.7 *double-blind reference oil,* n—a reference oil, the identity of which is unknown by either the submitting source or the test facility and is not known to be a reference oil by the test facility.

3.1.7.1 Discussion—

This is a coded reference oil that is supplied by an independent source to a second party, who applies their own coded designation to the oil (and if necessary, repackages it to preserve its anonymity), and submits it to a third party for testing. **Sub. B Glossary**

3.1.8 *engine oil, n*—a liquid that reduces friction or wear, or both, between the moving parts within an engine; removes heat, particularly from the underside of pistons; and serves as a combustion gas sealant for piston rings.

3.1.8.1 Discussion—

It may contain additives to enhance certain properties. Inhibition of engine rusting, deposit formation, valve train wear, oil oxidation, and foaming are examples.

3.1.9 erosion, n-wearing away gradually, especially by rubbing or corroding.

3.1.10 *heavy duty engine, n—in internal combustion engine types*, one that is designed to allow operation continuously at or close to its peak output.

3.1.11 *lubricating oil, n*—a liquid lubricant, usually comprising several ingredients, including a major portion of base oil and minor portions of various additives. **Sub. B Glossary**

3.1.12 *non-reference oil, n*—any oil other than a reference oil; such as a research formulation, commercial oil, or candidate oil. **D5844**

3.1.13 *purchaser, n—of an ASTM test*, a person or organization that pays for the conduct of an ASTM test method on a specified product. <u>ASTM D6750-23</u>

3.1.13.1/*Discussion*—ch.a/catalog/standards/sist/9e0c1b14-abbb-4596-91d4-d4d246961d39/astm-d6750-23 The preferred term is *purchaser*. Deprecated terms that have been used are *client*, *requestor*, *sponsor*, and *customer*. **D6202**

3.1.14 reference oil, n-an oil of known performance characteristics, used as a basis for comparison.

3.1.14.1 Discussion—

Reference oils are used to calibrate testing facilities, to compare the performance of other oils, or to evaluate other materials (such as seals) that interact with oils. D5844

3.1.15 *soot, n—in internal combustion engines*, submicron size particles, primarily carbon, created in the combustion chamber as products of incomplete combustion. **D5862**

3.1.16 sponsor, *n*—of an ASTM test method, an organization that is responsible for ensuring supply of the apparatus used in the test procedure portion of the test method.

3.1.16.1 Discussion—

In some instances, such as a test method for chemical analysis, an ASTM working group can be the *sponsor* of a test method. In other instances, a company with a self-interest may or may not be the *developer* of the test procedure used within the test method, but is the *sponsor*, of the test method **D6594**

3.1.17 *standard test, n*—a test on a calibrated test stand using the prescribed equipment that is assembled according to the requirements in the test method, and conducted according to the specified operating conditions.

3.1.18 *wear*, *n*—the loss of material from a surface, generally occurring between two surfaces in relative motion, and resulting from mechanical or chemical action, or a combination of both. D7422

- 🕼 D6750 23
- 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *heavy land carbon, n*—see ASTM Deposit Rating Manual 20.
- 3.2.2 Keystone ring, n-a compression ring with both sides tapered.
- 3.2.3 liner bore polishing, n-see ASTM Deposit Rating Manual 20.

3.2.4 *new laboratory*, n—a laboratory that has not had two acceptable reference oil test results on approved reference oils (see special circumstances in 3.2.4.1).

A laboratory not running either a 1K or 1N test for 24 months from the start of the last test is considered a new laboratory. Under special circumstances (such as extended downtime due to industry-wide parts shortage or fuel outages), the TMC may extend the lapsed time requirement. Non-reference oil tests conducted during an extended time allowance shall be annotated on the comment form.

- 3.2.5 new test stand, n-a test engine and support hardware that has never been calibrated under this test procedure.
- 3.2.6 scratching, n-see ASTM Deposit Rating Manual 20.
- 3.2.7 scuffing, n-in lubrication, see ASTM Deposit Rating Manual 20.
- 3.2.8 test time, n-in this test method, all engine test time accumulated when carrying out this test procedure.
- 3.2.9 varnish, n-in internal combustion engines, see ASTM Deposit Rating Manual 20.
- 3.3 Abbreviations:
- 3.3.1 BDC-bottom dead center.
- 3.3.2 BSOC-break specific oil comsumption.
- ASTM D6750-23
- 3.3.3 EOT end of test.eh.ai/catalog/standards/sist/9e0c1b14-abbb-4596-91d4-d4d246961d39/astm-d6750-23
- 3.3.4 EOTOC-end of test oil consumption.
- 3.3.5 EWMA—exponentially weighted moving average.
- 3.3.6 LTMS—TMC Lubrication Test Monitoring System.
- 3.3.7 SA-severity adjustment.
- 3.3.8 TDC-top dead center.
- 3.3.9 TGF—top groove fill.
- 3.3.10 TLHC-top land heavy carbon.
- 3.3.11 WDK-weighted demerits (1K).
- 3.3.12 WDN-weighted demerits (1N).

4. Summary of Test Method

4.1 A Caterpillar 1Y540 diesel engine, or a 1Y73 diesel engine with a 1Y541 conversion arrangement (see 6.2), is built up prior to test (either 1K or 1N test procedure) in accordance with the accompanied directions using a special parts kit. These include

^{3.2.4.1} Discussion—

disassembly, solvent cleaning, measurement, and rebuild of the power section in strict accordance with specifications. The parts comprise a new piston, ring assembly, and cylinder liner which are measured and installed prior to test. The engine crankcase is solvent cleaned and worn or defective parts replaced. The test stand is equipped with appropriate accessories for controlling speed, torque, and various other engine operating conditions. Suitable systems are provided for treating the inlet air and controlling the exhaust gases. Using the test oil as the engine lubricating oil, the single cylinder, calibrated diesel engine is run under the prescribed test conditions for a total of 252 h. A specified break-in procedure precedes each test and whenever the engine needs to be restarted. During the test, engine oil consumption is periodically measured. At the end of the test (either 1K or 1N), the engine is disassembled and the piston, liner, and rings photographed, inspected, and measured. Average oil consumption and used oil condition data are also recorded.

5. Significance and Use

5.1 These are accelerated engine oil tests (known as the 1K and 1N test procedures), performed in a standardized, calibrated, stationary single-cylinder diesel engine using either mass fraction 0.4 % sulfur fuel (1K test) or mass fraction 0.04 % sulfur fuel (1N test), that give a measure of (1) piston and ring groove deposit forming tendency, (2) piston, ring and liner scuffing and (3) oil consumption.

5.2 The 1K test was correlated with vehicles equipped with certain multi-cylinder direct injection engines used in heavy duty and high speed service prior to 1989, particularly with respect to aluminum piston deposits, and oil consumption, when fuel sulfur was nominally mass fraction 0.4 %. These data are given in Research Report RR:D02-1273.⁹

5.3 The 1N test has been used to predict piston deposit formation in four-stroke cycle, direct injection, diesel engines that have been calibrated to meet 1994 U.S. federal exhaust emission requirements for heavy-duty engines operated on fuel containing less than mass fraction 0.05 % sulfur. See Research Report RR:D02-1321.9

5.4 These test methods are used in the establishment of diesel engine oil specification requirements as cited in Specification D4485 for appropriate API Performance Category oils (API 1509).

5.5 These test methods are also used in diesel engine oil development.

6. Apparatus

ASTM D6750-23

6.1 General Laboratory Requirements:

6.1.1 *Engine Operation and Buildup Area*—Keep the ambient air free from gross dirt, dust, and other contamination, especially in the build-up area, following accepted engine test laboratory practice.

6.1.2 *Measurement Area*—As good practice, maintain this area at about 10 °C to 25 °C. The actual air temperature is not critical within this range, but maintain it within ± 3 °C to achieve acceptable repeatability in the measurement of dimensions of parts. Filter the air supply to the area to remove particles larger than about 10 µm and maintain at 45 % to 65 % relative humidity. If unable to do this, keep the air free from gross particulate contamination as indicated in 6.1.1.

6.1.3 Parts Rating Area-Maintain as specified in ASTM Deposit Rating Manual 20.

6.1.4 *Parts Cleaning Area*—(Warning—Provide adequate ventilation and fire protection in areas where solvents are used (see Annex A19).

6.2 *Test Engine*—The test engine for these 1K and 1N test procedures is either (1) a Caterpillar 1Y540 engine¹⁰ or (2) a Caterpillar 1Y73 engine with a 1Y541 conversion arrangement.¹⁰ Details are given in the Caterpillar Service Manual.¹⁰ Each test engine (1) is a direct injection, single-cylinder diesel engine with a four-valve arrangement, (2) has a cylinder bore of 137.2 mm bore and a piston stroke of 165.1 mm resulting in a displacement of 2.4 L and (3) is equipped with a number of modified and unmodified accessories that are described in 6.3. See Annex A5 for specifications for engine build.

⁹ Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Reports RR:D02:1273 and RR:D02-1321. <u>Contact ASTM</u> Customer Service at service@astm.org.

¹⁰ Available from Caterpillar Inc., Engine System Technology Development, P.O. Box 610, Mossville, Il 61552-0610. Service and parts manuals available are (*1*) Caterpillar Service Manual for Single Cylinder Oil Test Engine for Diesel Lubricants, Form No. SENR2856 and (2) Caterpillar Parts Book, Form No. SEBP1408.

6.3 *Test Engine Accessories and Parts*—Many of the accessories of the assembled Caterpillar engines (see 6.2) require modifications for these test methods. These modifications are described herewith.

6.3.1 *Intake Air System*—The system comprises an air heater chamber, isolation hose and appropriate piping. Construction details are given in Annex A6. To ensure good precision, the system shall be uniform within a laboratory and among laboratories. The system shall be capable of filtering, heating, compressing, and humidifying the inlet air in accordance with the specified engine operating conditions in Annex A14.

6.3.1.1 Filtering—Use an air filter capable of 10 µm (or smaller) filtration.

6.3.1.2 *Heating*—Provide heating to heat the intake air to the specified temperature. Locate the air temperature measurement tap at the P/N 1Y632 adapter (see Annex A6). For air barrels mounted horizontally, the location of the pressure tap and air outlet pipe can be interchanged (see Annex A6).

6.3.1.3 *Compressing*—Provide air compression capability. Locate the intake air pressure measurement tap at the air barrel (see Annex A6). When air barrels are mounted horizontally, the locations of the pressure tap and air outlet pipe can be interchanged (see 6.3.1.2).

6.3.1.4 *Humidifying*—The equipment shall be capable of humidifying compressed air to a water content in dry air of 17.8 g/kg and maintaining the humidified inlet air at a specified temperature. See Annex A6 for location of humidity measurement tap.

6.3.1.5 *Inspection of Air Intake Barrel*—Prior to each stand calibration test, inspect the intake air barrel for rust and debris. Perform the inspection through either of the pipe flanges using a borescope or other optical means.

6.3.2 *Exhaust System*—The exhaust system comprises an exhaust elbow, a welded 45° pipe nipple, a bellows assembly, an exhaust barrel, and exhaust piping downstream of the barrel that contains a restriction valve to maintain the exhaust gases at back pressures up to 216 kPa \pm 1 kPa. Drawings of the component parts, dimensions, and instrument locations are given in Annex A7. The exhaust system shall also provide for exhaust gas temperature measurement and exhaust gas sampling, the exhaust gas temperature range being 550 °C \pm 30 °C.

6.3.2.1 *Exhaust Barrel*—The exhaust barrel may be insulated or water-cooled. Place the new exhaust elbow P/N 1Y631-2 (see Annex A7) at the rear side or front of the engine. The volume of the exhaust barrel and the dimensions and distance of the exhaust piping from the exhaust elbow to the barrel are specified in Figs. A7.1-A7.4. The downstream distance of the restriction valve from the exhaust barrel is not specified.

6.3.2.2 *Exhaust Probe*—Use an exhaust probe to sample exhaust gases for air/fuel ratio determinations. Install the probe using a suitable reducer and compression fitting downstream of the exhaust restriction valve and within 1.2 m. Locate the probe in mid-stream and parallel to the exhaust flow as shown in Fig. A7.5.

6.3.2.3 *Exhaust Temperature*—Measure the exhaust temperature with thermocouple P/N 1Y467 or equivalent located as shown in Fig. A7.4.

6.3.2.4 *Exhaust Pressure*—Measure the exhaust pressure in the exhaust barrel as shown in Fig. A7.2. Set the pressure at the conditions specified in Table A14.1 by adjusting the restriction valve.

6.3.3 *Cooling System*—Provide a closed circulating cooling system with an engine-driven centrifugal water pump or equivalent electric motor-driven water pump.^{11,12} System details given in Fig. A8.1 show cooling system modifications; Fig. A8.2 shows coolant temperature, flow, and pressure measurement locations; and Fig. A8.3 shows a water pump bypass arrangement. See 6.3.3.5 regarding system cleaning.

6.3.3.1 Cooling System Modification—Modify the cooling system as shown in Fig. A8.4.

¹¹ A suitable electric motor-driven water pump from MP Pumps is recommended by Caterpillar. MP part number 30885, CF1PMP SS 3-3 56C 6.0 T-2100, stainless steel pump, 3 hp e phase, 230/460 Vac motor. The sole source of supply of the apparatus known to the committee at this time is MP Pumps, 34800 Bennett Dr., Fraser MI 48026.

¹² If you are aware of alternative suppliers, please provide this information to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee,¹ which you may attend.

6.3.3.2 *Coolant Flow, Control and Measurement*—Modify the engine coolant lines from the cylinder head to the standpipe in accordance with Fig. A8.1. As shown, the coolant line contains (*I*) a calibrated Barco flowmeter, P/N BR 12705-16-31^{13,12}, 25.4 mm in diameter to measure the coolant flow and (2) a P/N 1Y496 orifice, 15.797 mm in diameter before the flowmeter to develop cooling system pressure and thereby to eliminate coolant cavitation. Control coolant flow at 65 L/min \pm 2.0 L/min at Step 5 (see Table A14.1) by a bypass valve downstream of the water pump, 19 mm in diameter. Replace the production hose and the restrictive 90° elbows that connect the bypass valve to the cylinder block by a Gates 20777 hose^{14,12} or equivalent (see Fig. A8.3). Measure the coolant pressure at the block to ensure that proper cooling system operation has been attained (see Fig. A8.2).

6.3.3.3 Engine Temperature Differential—As an indicator of coolant system performance, maintain the engine temperature differential (Δ T) (coolant temperature out of the cylinder head minus coolant temperature into the block) at 5.0 °C ± 1.0 °C. Also control the coolant temperature out at 93 °C ± 2.5 °C. If original Caterpillar coolant heat exchanger (from 1Y0581 – Lines and Heat Exchanger Group) is replaced, an equivalent replacement heat exchanger must be used to meet all temperature and pressure specifications (coolant outlet temperature: 93 °C ± 2.5 °C; coolant delta temperature: 5 °C ± 1 °C; coolant inlet temperature: 88 °C; coolant flow: 65 L/min ± 2 L/min; pressure drop across heat exchanger: 1.5 kPa maximum; coolant at jug pressure: 50 kPa).

6.3.3.4 Engine Coolant—The engine coolant is a mixture of 50/50 volume ratio of coolant (Caterpillar brand P/N 8C3684 in a 3.8 L container or P/N 8C3686 in a 200 L drum)^{15,12} to mineral-free water, the mineral content being \leq 34.2 mg/kg of total solids in water. This coolant mixture may be used for up to six tests or three months, whichever comes first. Maintain the mixture at a 50/50 ratio of coolant to water and verify periodically with either a Caterpillar tester P/N 5P3514 or P/N 590957 or equivalent commercial tester. Keep the coolant mixture substantially free from solids contamination (total solids <5000 mg/kg) and at the correct additive level by checking with test kit P/N 8T5296.

6.3.3.5 *Cooling System Cleaning Procedure, General*—Clean the system when visual inspection shows the presence of (1) oil or grease (see 6.3.3.6), (2) mineral deposits or rust, or both (see 6.3.3.7). *When the cooling system is contaminated by both oil and scale, first remove the oil, then remove the scale.* Cylinder head coolant passages also may be cleaned after the head is removed.

6.3.3.6 Removal of Oil and Grease from Cooling System—Follow these steps:

(1) Operate the engine until the engine oil and coolant water reach operating temperatures and then shut down the engine and drain the coolant from the cooling system.

(2) Fill the cooling system with oil/grease cleaning solution comprising 454 g of trisodium phosphate (Na₃PO₄) dissolved in 38 L of water. Run the engine for 5 min to ensure complete solution with any engine coolant left in the cooling system from (1).

(3) Shut down the engine, drain the oil/grease cleaning solution and flush the cooling system with fresh water. Drain the water from the system.

6.3.3.7 Removal of Scale from Cooling System—Follow these steps:

(1) Operate the engine until the engine oil and coolant water reach operating temperatures and then shut down the engine and drain the coolant from the cooling system.

(2) Fill the cooling system with scale cleaning solution comprising 454 g of commercial sodium bisulfate (NaHSO₄) dissolved in 38 L of water. Run the engine at operating temperatures for 30 min.

(3) Shut down the engine, drain the scale cleaning solution, and flush the cooling system with fresh water. Drain the water from the system.

(4) Fill the system with oil/grease cleaning solution comprising 454 g of trisodium phosphate (Na_3PO_4) dissolved in 38 L of water. Run the engine for 5 min to ensure complete solution with any water left in the cooling system from (3).

(5) Shut down the engine, drain the oil/grease cleaning solution and flush the cooling system with clear water. Drain the water from the system.

(6) Disassemble the engine and prepare for the next test.

6.3.4 Dynamometer—Use a dynamometer or other suitable loading device to maintain and control engine torque and speed.

¹³ The sole source of supply of the Barco flowmeter (Venturi Meter) known to the committee at this time is P/N No. BR12705-16-31 from Aeroquip Co., Maddock Mechanical Industries, 833 N. Orleans, Chicago, IL 60610.

¹⁴ The sole source of supply of the Gates hose known to the committee at this time is P/N 20777, available from The Gates Rubber Co., 900 S. Broadway, Denver, CO 80217-5887.

¹⁵ The sole source of supply of the antifreeze known to the committee at this time is Caterpillar Brand, P/N 8C3684 (1-gal) or P/N 8C3686 (55 gal drum), from Caterpillar Inc., P.O. Box 610, Mossville, II 61552-0610.

6.3.5 *Engine Starting System*—Use an engine starting system capable of delivering to the engine breakaway torque of 136 N·m and a sustained torque of 102 N·m at 200 r/min.

6.3.6 *Engine Instrumentation*—Locations of the various measurement sensors and taps, and installation details and calibration requirements are given as follows: (1) for intake air system (see 6.3.1 and Annex A6); (2) for exhaust system (see 6.3.2 and Annex A7); (3) for cooling system (see 6.3.3 and Annex A8); (4) for oil system modifications, see Annex A9; and (5) for other locations, see Annex A10.

6.3.6.1 *Thermocouples*—Install the thermocouples or equivalents to a depth such that the sensor tip rests in the middle of the fluid stream at the following specified temperature measurement locations:

air-to-engine – P/N 1Y468 (see Annex A6) engine exhaust – P/N 1Y467 (see Annex A7) fluids, water, oil, fuel – P/N 1Y466 (see Annex A9 and Annex A10)

6.3.6.2 Locate the instruments for measuring fuel pressure and fuel temperature as shown in Fig. A10.1.

6.3.6.3 Locate the instrument for measuring crankcase pressure to the crankcase as shown in Fig. A10.2.

6.3.6.4 *Calibration of Instruments*—Calibrate all facility read-out instrumentation used for the test immediately prior to commencing a test stand calibration sequence. The test laboratory may, at its own discretion, carry out instrumentation calibrations prior to subsequent stand calibration tests, that is, those that follow a failed or invalid first attempt. Refer to Annex A16 for calibration tolerances and allowable time constants.

6.3.6.5 *Calibration of Instrument Measurement Standards*—Calibrate, annually, all temperature, pressure, and speed measurement standards themselves against *recognized national standards*. Maintain a record of these calibrations for at least two years.

6.3.7 *Standardized Fuel System and Fuels*—To ensure that fuel line pressure transients are held to acceptable conditions, install the fuel system components as specified in the service manual accompanying the diesel engine, taking especial care to use the high pressure fuel lines and fuel pump components described therein. In addition, the system shall have a fuel consumption measuring device (see 6.3.7.1), a fuel return line with a check valve (see 6.3.7.2) or shut-of solenoid (see 6.3.7.3). Install instruments for measuring fuel pressure and temperature in the locations shown in Fig. A10.1. Control fuel pressure and temperature in accordance with the requirements for engine operating conditions in Table A14.1. Change the fuel filter when the pressure deviates from specification requirements.

https://standards.iteh.ai/catalog/standards/sist/9e0c1b14-abbb-4596-91d4-d4d246961d39/astm-d6750-23

6.3.7.1 *Fuel Consumption Measuring Device*—Install a suitable fuel consumption measuring device to keep fuel consumption rates within required tolerances. Maintain the fuel flow transducer filter time constant at 73 s max. There shall be no variation in fuel transfer pump pressure or exhaust temperature when switching from the engine operating fuel system to the fuel rate measuring system.

6.3.7.2 *Fuel Return Line*—The fuel return line runs from the 1.19 mm D orificed tap, through the P/N 307946 elbow at the fuel pump, to the fuel scale. This line provides fuel temperature stabilization at the pump and also allows entrained air to be expelled from the system. Place a check valve or shut-off solenoid in the return line to prevent fuel from backing into the pump during engine shutdown.

6.3.7.3 *Shut-off Solenoid*—A P/N 9L8791 solenoid or equivalent should be placed at the pump housing fuel inlet to control the fuel flow. Location of the solenoid near the fuel pump decreases the fuel volume available to the pump and can reduce shut-down time if the solenoid is activated by the engine oil/water pressure safety circuit.

6.3.7.4 *Fuels*—The required test fuels are obtainable from Haltermann Solutions^{16,12} as LLC diesel test fuel containing mass fraction 0.4 % sulfur (see 7.2.1) for the 1K test, and from Chevron Phillips,^{17,12} as PC-9-HS fuel containing mass fraction 0.04 % sulfur (see 7.2.2) for the 1N test. Except for the marked differences in sulfur contents, the fuels are essentially the same in properties (although specification limits show minor variations (compare Table A12.1 and Table A12.2).

(1) Use the high heating value to calculate the fuel rate as specified in Annex A14 and Table A16.2.

¹⁶ The sole source of supply for 1K fuel known to the committee at this time is Haltermann Solutions, Ten Lamar, Ste. 1800, Houston, TX 77002.

¹⁷ The sole source for 1N fuel known to the committee at this time is Chevron Phillips Chemical Co., Chevron Tower, 1301 McKinney Street, Houston, TX 77010-3030.

(2) A fuel analysis form is provided for each batch of fuel by the supplier. Include this analysis as the Fuel Batch Analysis form of the test report.

(3) If more than one batch is used, note that on the Unscheduled Downtime & Maintenance Summary form of the test report. List appropriate percentage of run time for each batch.

(4) For stands calibrated for both 1K and 1N tests simultaneously, take a sample of the fuel at the stand prior to each test and have it analyzed for sulfur. Report the results of this analysis in the Unscheduled Downtime & Maintenance Summary form of the test report.

6.3.8 *Engine Lubrication System*—Use the lubrication system of the engine (see 6.2), but make modifications as shown in Annex A9 to the (1) remote mount oil pump relief valve (see Fig. A9.1), (2) oil pump relief valve plug (see Fig. A9.2), (3) oil pump accessory drive drain (see Fig. A9.3) and (4) oil filter housing assembly (see Fig. A9.4). The engine lubrication system itself is shown in Fig. A13.1.

6.3.8.1 *Engine Oil Temperature and Pressure Measurement Locations, and Operating Conditions*—Locations of the measurement points are shown in Figs. A9.5-A9.7. The oil cooling jet pressure and the oil to manifold temperature limits are given in Table A14.1. Record other oil pressure and temperature readings, as necessary, to monitor the operational conditions of the engine and its lubrication system.

6.3.8.2 *Engine Oil Scale System*—Install an engine oil scale system to measure accurately engine oil consumption (see Fig. A9.8). The system shall have a capacity to measure about 5 kg of engine oil to within 4.5 g. The hoses^{18,12} to and from the oil scale reservoir shall be of sufficient flexibility to eliminate measurement errors. Hose length to and from the oil scale cart shall be 2.7 m max.

6.3.8.3 *Oil Filter Replacement*—Replace the P/N 1Y636 factory oil/filter group by the new P/N 1Y0699 filter group. Fit the original oil lines directly into the mounting bracket as on the P/N 1Y7277 bracket. Attach the oil line from the oil cooler, to the lower oil hole, and the line to the oil manifold to the upper hole. The base assembly includes a pressure sensitive bypass around the filter. Install the last chance screen P/N 1Y3549. Disassemble and clean the oil filter bypass valve before each test.

6.3.8.4 *Oil Pump Modifications*—Modify the oil pump (see Fig. A9.1) by (1) adding an external oil pump bypass to safely and conveniently adjust oil pressure on engine break-in and warm-up; (2) routing directly the oil pump drive housing drain line to the oil pan to ensure proper drainage of the housing; and (3) tapping deeper the oil bypass port and installing a bolt to fill the dead oil space (see Fig. A9.2).

6.3.9 *Gas Meter for Measuring Engine Blowby*—Measure the engine blowby with a displacement type gas meter or equivalent fitted with an oil separator and surge chamber. Attach the meter to the engine in two steps. First, attach the fitting on the P/N 1Y479 valve (see Table A18.1) to the crankcase breather; then attach the meter by way of this fitting to the engine by using appropriate length of hose and pipe. When switching from a normal operating system to the blowby measuring system, allow no more than a minimal increase in crankcase pressure for a period not exceeding 4 min.

6.3.10 *Procurement of Parts and Warranty*—Obtain information concerning the test engine, new engine parts, replacement parts and permissible substitution of replacement parts from Caterpillar, Inc. (see Annex A18). Table A18.1 shows a listing of parts by part numbers (P/N) referenced in these 1K/1N standard methods, while A18.2 provides information on parts warranty.

7. Reagents and Materials

7.1 *Engine Coolant*—A mixture of equal volumes of mineral-free [total dissolved solids, \leq (34.2 mg/kg) (0.03 g/L) max.] water and Caterpillar brand antifreeze, P/N 8C3684 (see Table A18.1) in a 3.8 L container, or P/N 8C3686 (see Table A18.1) in a 200 L drum. (Warning—Combustible. Health hazard.)

7.2 Test Fuels:

7.2.1 *Test Fuel for 1K Test*—Diesel test fuel containing mass fraction 0.4 % natural sulfur known as 0.4 % sulfur diesel test fuel (SDTF).^{16,12} The specification for this fuel is given in Table A12.1. (Warning—Combustible. Health hazard.)

7.2.2 *Test Fuel for 1N Test*—Diesel test fuel containing mass fraction 0.04 % natural sulfur known as PC-9-HS.^{16,12} The specification for this fuel is given in Table A12.2. (Warning—Combustible. Health hazard.)

¹⁸ The sole source of supply of the hoses known to the committee at this time is Gould/Imperial Eastman flexible hoses, P/N C405-100, or equivalent are suitable.

🖽 D6750 – 23

7.3 *Solvent*—Use only mineral spirits meeting the requirements of Specification D235, Type II, Class C for Aromatic Content (0 to 2 vol) %, Flash Point (61 °C, min) and Color (not darker than +25 on Saybolt Scale or 25 on Pt-Co Scale). (Warning—Combustible. Health hazard.) Obtain a Certificate of Analysis for each batch of solvent from the supplier.

7.4 Dispersant Engine Cleaner—^{19,12} (Warning—Use with adequate safety precautions.)

7.5 Aqueous Detergent Solution, prepared from a commercial laundry detergent.

7.6 Sodium Bisulfate (NaHSO₄), commercial grade.

7.7 Trisodium Phosphate (Na₃PO₄), commercial grade.

7.8 *Pentane*—Any mixture of branched and normal aliphatic hydrocarbons containing, by volume, at least 95 % of pentanes and not more than a total, by volume, of 0.5 % hydrocarbons $< C_4$ and $> C_6$. (Warning—Flammable. Health hazard.)

7.9 Reference Oil, as supplied by TMC for calibration of the test stand.

7.10 Test Oil-See test oil sample requirements (see Section 8).

7.11 Engine Oil, for shakedown run, use TMC 809.

7.11.1 Engine Oil, Substitute, for oiling cylinder liner and when test oil unavailable at assembly, use Exxon-Mobil EF-411 oil.^{20,12}

7.12 Lead Shot, ^{21,12} approximately 5 mm in diameter.

7.13 Light Grease. 22,12

7.14 Diesel Piston Rating Equipment.

ASTM D6750-23

7.14.1 Diesel Piston Rating Lamp-See A15.5. s/sist/9e0c1b14-abbb-4596-91d4-d4d246961d39/astm-d6750-23

7.14.2 Diesel Piston Rating Booth, of plywood, 1200 mm by 775 mm by 648 mm (see A15.6).

7.15 Valve Guide Honing Equipment—see A5.2.

7.15.1 Sunnen P-300 Dial Bore Gage.^{23,12}

7.15.2 Sunnen P-375 Probe.

7.15.3 Ralmike's Ringmaster Set, to set P-300 gage.^{24,12}

7.15.4 Stanley Model D-30LR-4 Air Drill, 400 r/min.^{25,12}

7.15.5 Sunnen Honall P-180 Hone Head and Driver Group.

¹⁹ The sole source of supply of the dispersant engine cleaner known to the committee at this time is The Lubrizol Corp., 29400 Lakeland Blvd., Cleveland, OH 44092. ²⁰ The sole source of supply of a suitable engine oil known to the committee at this time is Exxon-Mobil EF411. It is available from Exxon-Mobil Oil Corp., Att: Illinois Order Board, P.O. Box 66940, AMF-O'Hare, IL 60666. Request P/N 47503-8.

²¹ The sole source of supply of the lead shot known to the committee at this time is 375 DIABOLO, 22 cal (5.5 mm) 14.3 gr. pellets from Benjamin Sheridan, Racine WI 53403.

²² The sole source of supply of the light grease known to the committee at this time is AMOCO, RYKON Premium Grease from Eddins-Walcher Co., 9421 Andrews Highway, Odessa, TX 79765.

²³ The sole source of supply of the apparatus known to the committee at this time is Sunnen Products Co., 7910 Manchester Road, St. Louis, MO 63143.

²⁴ The sole source of supply of the apparatus known to the committee at this time is Ralmike Tool-A-Rama, 4505 S. Clinton Ave., South Plainfield, NJ 07080.

²⁵ The sole source of supply of the apparatus known to the committee at this time is Stanley Tool Div., 700 Beta Dr., Cleveland, OH 44143.

- 7.15.6 JK-12-370AS Mandrell. ^{23,12}
- 7.15.7 PK-12A Adapter. 23,12
- 7.15.8 LN-3702A Stone Retainer. ^{23,12}
- 7.15.9 K-12-J68 Stones. 23,12
- 7.15.10 S-370 Truing Sleeve. 23,12
- 7.15.11 MAN-845-5 Sunnen Hone Oil, 19 L.
- 7.15.12 LBN-700 Stone Dresser. 23,12
- 7.15.13 VST-2012 Perfect Circle Seal Groove Tool. ¹⁰
- 7.15.14 Sunnen P-180 Head and Driver.
- 7.15.15 Sunnen B-L-12-370AS Mandrell.
- 7.15.16 L-12-J68 Stones. ^{23,12}

7.15.17 LN-3167A Stone Retainer. 23,12

7.16 Gages—One Ring, Four Feelers and One Taper (optional, see 9.3.3).^{25,12}

8. Test Oil Sample Requirements ttps://standards.iteh.ai

8.1 *Selection*—The sample of test oil shall be representative of the lubricant formulation being evaluated and shall be uncontaminated.

8.2 Inspection-New oil baseline inspection requirements are described in Form 6 (Annex A17).

https://standards.iteh.ai/catalog/standards/sist/9e0c1b14-abbb-4596-91d4-d4d246961d39/astm-d6750-23

8.3 Quantity—A total of approximately 38 L of test oil are required to run the test.

9. Preparation of Apparatus

9.1 Engine Inspection:

9.1.1 *General*—Completely inspect the engine at an interval of every second test stand calibration run or 18 months, whichever comes first, the aim being to ensure that wearing surfaces, such as, main bearings and journals, rod bearings and journals, camshaft bearings, valve train components, fuel system components, and so forth, are within manufacturer's specifications. Refer to the 1Y540 Service Manual for engine disassembly, assembly, inspections, and specifications requirements.¹⁰ This inspection shall terminate the stand's current calibration (see Section 10), if any. Re-calibrate whenever the crankshaft is removed for any purpose other than bearing replacement.

9.1.2 *Engine Instrumentation*—Inspect and recalibrate periodically instruments (with their accompanying probes or sensors) of the engine, including those of the fuel and cooling systems (see 6.3.3, 6.3.6 and 6.3.7).

9.1.3 *New and Converted Engine Crankcases*—Inspect new and converted engine crankcases to ensure the presence of a proper paint coating. Coat crankcases, as needed, with either of the two approved paints.^{26,12}

9.1.4 Cooling Jets—Measure the internal diameters of cooling jet tubes. Reject tubes that do not meet specification requirements.

²⁶ Either of the following two paints is acceptable: (1) In one gallon cans, Yellow Primer Paint Cat Part No. IE2083A, Primer No. A123590, Serial No. BIMO115877, B.A.S.F. Part No. U27YD005, obtainable from B.A.S.F. Coating and Colorant Div., P.O. Box 1297, Morganton, NC 28655 and (2) Glyptal 1201 Red Enamel, obtainable from Brownell Outlet, 84 Executive Avenue, Edison, NJ 08817.

9.1.5 *Shakedown Run After Rebuild*—Perform a shakedown run after rebuild using TMC 809 engine oil (see 7.11). Continue with the run until two consecutive 12 h periods show a stable copper level in the engine oil. Ensure that the valve opening and closing tolerance on the camshaft is ± 4 crankshaft degrees.

9.2 Engine Pre-Test Lubrication System Flush:

9.2.1 *Preparation*—To ensure proper flushing and draining, drill a hole in the oil pump accessory drive housing and install a plug (see Fig. A9.3).

9.2.2 *Flushing/Cleaning Summary*—Flush and clean the lubrication system before each test so as to remove deposits from surfaces of all engine cavities. To achieve this, flush the crankcase of used oil by a series of liquid flushes in eleven steps as follows (see Fig. A13.2).

9.2.2.1 Flush with mineral spirits.

9.2.2.2 Flush with a mixture of mineral spirits and a dispersant engine cleaner.

9.2.2.3 Flush with additional repeated flushes with mineral spirits until the solvent remains clean.

9.2.2.4 Flush the lubrication system and crankcase with the test oil to remove the solvent before it is drained (see 9.2.3 on cooling jet alignment). This test oil flush is also used to check alignment of the piston cooling jet (see 9.2.3).

9.2.2.5 Finally, double flush the engine crankcase with test oil before starting the test (see Fig. A13.2, Steps 9 to 11). If the test oil is not available at engine assembly use Exxon-Mobil EF411 engine oil.

9.2.3 *Cooling Jet Alignment*—Use the final test oil flush (see Fig. A13.2) that removes the remaining solvent to check alignment of the piston cooling jet by using a poly(methyl methacrylate) top piston. Alignment may be done with either the jug assembly or the alignment fixture (see Figs. A13.10-A13.12).

9.2.4 *Cleaning of Some Other Components*—Before each test clean the oil weigh system. Also disassemble and clean the engine oil bypass valve. On occasion extra cleaning might be required.

<u>STM D6750-23</u>

9.2.5 *Additional Oil Filter*—Install a full-flow paper element filter in the flushing unit to remove engine wear particles during the engine flush. TEI CLR engine oil filter housing No. 2418 and filter element No. 3105^{27,12} have been found satisfactory for this purpose. These particles have been known to cause piston scuffing during subsequent tests.

9.2.6 *Flushing Procedure Components*—Use the components shown in Figs. A13.3-A13.12 to conduct the engine flushing procedure. (See Fig. A13.8 (Views A and B) of flushing component location). A dummy engine oil filter may be used during the flush sequence.

9.2.7 Flushing Procedures—(See also Fig. A13.2):

9.2.7.1 With the crankcase breather secured to the side of the crankcase and the connecting rod assembled on the crankshaft, rotate the crankshaft until the top end of the connecting rod is below the cylinder block bore in the top of the crankcase.

9.2.7.2 Install the poly(methyl methacrylate) or clear plastic cover (see Fig. A13.3) on the top surface of the crankcase as shown in Fig. A13.8 (View A).

9.2.7.3 Install a new P/N 8N9586 (see Annex A18) engine oil filter and a clean P/N 1Y5700 (see Annex A18) element in the flushing pump oil filter housings. Change both oil flush cart filters after each engine flush.

9.2.7.4 Connect the flushing pump outlet hose to the engine oil cooler drain location.

²⁷ The sole source of supply of the oil filter, P/N 2418 and filter element, P/N 3105 known to the committee at this time is Test Engineering, Inc., 12718 Cimarron Path, San Antonio, TX 78249.

🕼 D6750 – 23

9.2.7.5 Remove breather assembly P/N 1Y2592 (see Annex A18) (top portion of the side assembly) and clean separately by soaking in mineral spirits. Allow to air dry.

9.2.7.6 Insert the P/N 1Y653 (Annex A18) rocker shaft oil line in the center opening of the clear plastic cover (see Fig. A13.3).

9.2.7.7 Place the flushing pump inlet in a clean supply tank containing 7.6 L of mineral spirits. Open the crankcase drain, start the flushing pump and oil scale pumps and run this material once through the engine into a drain pan. Do not recirculate. Drain oil scale reservoir.

9.2.7.8 Close the crankcase drain and connect the flushing pump inlet line to the crankcase drain. Add to the crankcase 7.6 L of a flushing mixture comprising 1.9 L of dispersant engine cleaner and 5.7 L of mineral spirits.

9.2.7.9 Connect the flushing pump outlet line to the engine oil cooler drain location. Open the crankcase drain valve, start the flushing pump and oil scale pumps and circulate the flushing mixture through the engine for approximately 15 min. Turn off the pumps, but do not drain the flushing mixture from the crankcase. Open completely the oil pressure regulator during flushing.

9.2.7.10 Close the oil cooler drain valve, disconnect the flushing pump outlet hose from the oil cooler drain location and connect to the crankcase sprayer (see Fig. A13.5).

9.2.7.11 Remove the P/N 1Y653 (see Annex A18) oil line from the poly(methyl methacrylate) coverhole and insert the crankcase sprayer through the opening in the poly(methyl methacrylate) cover. Start the flushing pump and oil scale pumps and spray the interior of the crankcase by slowly moving the sprayer around and into all accessible areas of the crankcase (see Fig. A13.8, View A) for approximately 10 min. Turn off the pumps, but do not drain the flushing mixture from the crankcase. Insert the crankcase sprayer into the oil scale reservoir and start the flush pump and oil scale pumps. Spray the reservoir for 10 min. Turn off the pumps, but do not drain the flushing solution from the crankcase.

9.2.7.12 Remove the one-half in. pipe plug from the modified 1Y1990 governor housing cover (see Fig. A13.6). Insert the crankcase sprayer (see Fig. A13.5) through the opening in the governor housing cover. Start the pumps and spray the interior governor housing for about 10 min. Turn off the pumps, but do not drain the flushing solution from the crankcase.

9.2.7.13 Remove the oil spout assembly from the front of the crankcase and install the front cover sprayer (see Fig. A13.7) as shown in Fig. A13.8. <u>ASTM D6750-23</u>

https://standards.iteh.ai/catalog/standards/sist/9e0c1b14-abbb-4596-91d4-d4d246961d39/astm-d6750-23 9.2.7.14 Connect the flushing pump outlet to the 8.5 mm by 127 mm fitting. Start the flushing pump and oil scale pumps and spray the interior of the front cover for about 10 min. Drain the crankcase, governor housing, engine and flushing pump unit filters, oil cooler and oil pump accessory drive housing, and oil scale reservoir. Discard the drained flushing mixture.

9.2.7.15 Using mineral spirits, repeat steps 9.2.7.9 - 9.2.7.14 until the discharge is clean. Three-to-four flushes with mineral spirits are usually sufficient to remove all traces of the flushing mixture from the engine.

9.2.7.16 Drain the mineral spirits from the crankcase, governor housing, engine and flushing pump unit filters, oil cooler, oil pump accessory drive housing, and oil scale reservoir.

9.2.7.17 Prepare the flush with test oil by blocking off the 1Y653 oil line to the rocker arm shaft and installing the 6.35 mm fitting (see Fig. A13.9) on the open end of the line. Close all drain openings.

9.2.7.18 Using the flushing pump, add 4.7 L of test oil to the engine crankcase through the engine oil cooler.

9.2.7.19 Connect the flushing pump outlet to the engine oil cooler drain location. Start the flushing pump and oil scale pumps and force any mineral spirits left in the system out through the crankcase drain. After the mineral spirits have been forced out of the system, connect the inlet line of the flushing pump to the crankcase drain. Install the dummy piston and the assembled cylinder block and liner. The dummy piston with a poly(methyl methacrylate) top is shown in Figs. A13.10 and A13.11. Re-install the oil filler spout and 12.7 mm pipe plug in the modified governor housing cover (see Fig. A13.6).

9.2.7.20 Open the crankcase drain and start the flushing pump and oil scale pumps. Set and maintain the oil pressure at 359 kPa. With the starter or dynamometer, turn the engine over at a speed of 200 r/min for 1 min. Turn off the pumps and drain all of the