NOTICE: This standard has either been superseded and replaced by a new version or withdrawn. Contact ASTM International (www.astm.org) for the latest information

Designation: D6299 - 23

Standard Practice for Applying Statistical Quality Assurance and Control Charting Techniques to Evaluate Analytical Measurement System Performance¹

This standard is issued under the fixed designation D6299; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This practice covers information for the design and operation of a program to monitor and control ongoing stability and precision and bias performance of selected analytical measurement systems using a collection of generally accepted statistical quality control (SQC) procedures and tools.

NOTE 1—A complete list of criteria for selecting measurement systems to which this practice should be applied and for determining the frequency at which it should be applied is beyond the scope of this practice. However, some factors to be considered include (1) frequency of use of the analytical measurement system, (2) criticality of the parameter being measured, (3) system stability and precision performance based on historical data, (4) business economics, and (5) regulatory, contractual, or test method requirements.

1.2 This practice is applicable to stable analytical measurement systems that produce results on a continuous numerical scale.

1.3 This practice is applicable to laboratory test methods.

1.4 This practice is applicable to validated process stream analyzers.

https://standards.iten.ai/catalog/standards/sist/ai050

1.5 This practice is applicable to monitoring the differences between two analytical measurement systems that purport to measure the same property provided that both systems have been assessed in accordance with the statistical methodology in Practice D6708 and the appropriate bias applied.

Note 2—For validation of univariate process stream analyzers, see also Practice D3764.

Note 3—One or both of the analytical systems in 1.5 may be laboratory test methods or validated process stream analyzers.

1.6 This practice assumes that the normal (Gaussian) model is adequate for the description and prediction of measurement system behavior when it is in a state of statistical control.

¹ This practice is under the jurisdiction of ASTM Committee D02 on Petroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility of Subcommittee D02.94 on Coordinating Subcommittee on Quality Assurance and Statistics.

Note 4—For non-Gaussian processes, transformations of test results may permit proper application of these tools. Consult a statistician for further guidance and information.

1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:²
- D3764 Practice for Validation of the Performance of Process Stream Analyzer Systems
- D4175 Terminology Relating to Petroleum Products, Liquid Fuels, and Lubricants
- D5191 Test Method for Vapor Pressure of Petroleum Products and Liquid Fuels (Mini Method)
- D6300 Practice for Determination of Precision and Bias Data for Use in Test Methods for Petroleum Products,

Liquid Fuels, and Lubricants

- D6617 Practice for Laboratory Bias Detection Using Single Test Result from Standard Material
- D6708 Practice for Statistical Assessment and Improvement of Expected Agreement Between Two Test Methods that Purport to Measure the Same Property of a Material
- D6792 Practice for Quality Management Systems in Petroleum Products, Liquid Fuels, and Lubricants Testing Laboratories
- D7372 Guide for Analysis and Interpretation of Proficiency Test Program Results
- D7915 Practice for Application of Generalized Extreme Studentized Deviate (GESD) Technique to Simultaneously Identify Multiple Outliers in a Data Set
- E177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods
- E178 Practice for Dealing With Outlying Observations

Current edition approved July 1, 2023. Published September 2023. Originally approved in 1998. Last previous edition approved in 2022 as $D6299 - 22^{e1}$. DOI: 10.1520/D6299-23.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

E456 Terminology Relating to Quality and StatisticsE691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

3. Terminology

3.1 Definitions:

3.1.1 More extensive lists of terms related to quality and statistics are found in Terminology D4175, Practice D6300, and Terminology E456.

3.1.2 *repeatability conditions, n*—conditions where independent test results are obtained with the same method on identical test items in the same laboratory by the same operator using the same equipment within short intervals of time. D6300

3.1.3 *reproducibility (R), n*—a quantitative expression for the random error associated with the difference between two independent results obtained under reproducibility conditions that would be exceeded with an approximate probability of 5 % (one case in 20 in the long run) in the normal and correct operation of the test method. **D6300**

3.1.4 *reproducibility conditions*, *n*—conditions where independent test results are obtained with the same method on identical test items in different laboratories with different operators using different equipment.

3.1.4.1 *Discussion*—Different laboratory by necessity means a different operator, different equipment, and different location and under different supervisory control. **D6300**

3.2 Definitions of Terms Specific to This Standard:

3.2.1 More extensive lists of terms related to quality and statistics are found in Terminology D4175, Practice D6300, and Terminology E456.

3.2.2 accepted reference value, n—a value that serves as an agreed-upon reference for comparison and that is derived as (1) a theoretical or established value, based on scientific principles, (2) an assigned value, based on experimental work of some national or international organization, such as the U.S. National Institute of Standards and Technology (NIST), or (3) a consensus value, based on collaborative experimental work under the auspices of a scientific or engineering group.

3.2.3 *accuracy*, *n*—the closeness of agreement between an observed value and an accepted reference value.

3.2.4 analytical measurement system, n—a collection of one or more components or subsystems, such as samplers, test equipment, instrumentation, display devices, data handlers, printouts or output transmitters, that is used to determine a quantitative value of a specific property for an unknown sample in accordance with a test method.

3.2.4.1 *Discussion*—A standard test method (for example, ASTM, ISO) executed at a single site using a specific instrument may be an example of an *analytical measurement system*.

3.2.4.2 *Discussion*—The control chart methodology and work processes described in this practice are intended to be applied independently to the final results produced from each individual measurement system, or, differences between results from two individual measurement systems for the same test sample. They are not intended to be applied to combined final

results from multiple individual analytical systems or different instruments executing the same test method.

3.2.5 *assignable cause, n*—a factor that contributes to variation and that is feasible to detect and identify.

3.2.6 *bias*, n—a systematic error that contributes to the difference between a population mean of the measurements or test results and an accepted reference or true value.

3.2.7 *blind submission*, *n*—submission of a check standard or quality control (QC) sample for analysis without revealing the expected value to the person performing the analysis.

3.2.8 *check standard*, *n*—*in QC testing*, a material having an accepted reference value used to determine the accuracy of a measurement system.

3.2.8.1 *Discussion*—A check standard is preferably a material that is either a certified reference material with traceability to a nationally recognized body or a material that has an accepted reference value established through interlaboratory testing. For some measurement systems, a pure, single component material having known value or a simple gravimetric or volumetric mixture of pure components having calculable value may serve as a check standard. Users should be aware that for measurement systems that show matrix dependencies, accuracy determined from pure compounds or simple mixtures may not be representative of that achieved on actual samples.

3.2.9 *common (chance, random) cause, n*—for quality assurance programs, one of generally numerous factors, individually of relatively small importance, that contributes to variation, and that is not feasible to detect and identify.

3.2.10 *control limits*, n—limits on a control chart that are used as criteria for signaling the need for action or for judging whether a set of data does or does not indicate a state of statistical control.

3.2.11 *double blind submission*, n—submission of a check standard or QC sample for analysis without revealing the check standard or QC sample status and expected value to the person performing the analysis.

3.2.12 *in-statistical-control, adj*—a process, analytical measurement system, or function that exhibits variations that can only be attributable to common cause.

3.2.13 *lot*, *n*—a definite quantity of a product or material accumulated under conditions that are considered uniform for sampling purposes.

3.2.14 *out-of-statistical-control, adj*—a process, analytical measurement system, or function that exhibits variations in addition to those that can be attributable to common cause and the magnitude of these additional variations exceed specified limits.

3.2.14.1 *Discussion*—For clarification, a transition from an in-statistical-control system to an out-of-statistical-control system does not automatically imply that there is a change in the fit for use status of the system in terms of meeting the requirements for the intended application.

3.2.15 *precision*, n—the closeness of agreement between test results obtained under prescribed conditions.

3.2.16 *proficiency testing*, *n*—determination of a laboratory's testing capability by participation in an interlaboratory crosscheck program.

3.2.16.1 *Discussion*—ASTM Committee D02 conducts proficiency testing among hundreds of laboratories, using a wide variety of petroleum products and lubricants.

3.2.17 quality control (QC) sample, *n*—for use in quality assurance programs to determine and monitor the precision and stability of a measurement system, a stable and homogeneous material having physical or chemical properties, or both, similar to those of typical samples tested by the analytical measurement system; the material is properly stored to ensure sample integrity, and is available in sufficient quantity for repeated, long term testing.

3.2.18 system expected value (SEV), n—for a QC sample this is an estimate of the theoretical limiting value towards which the average of results collected from a single instatistical-control measurement system under site precision conditions tends as the number of results approaches infinity.

3.2.18.1 *Discussion*—The SEV is associated with a single measurement system; for control charts that are plotted in actual measured units, the SEV is required, since it is used as a reference value from which upper and lower control limits for the control chart specific to a batch of QC material are constructed.

3.2.19 site precision (R'), n—for a single analytical measurement system (see 3.2.4), the value which the absolute difference between two individual test results obtained under site precision conditions is expected to exceed about 5 % of the time (one case in 20 in the long run) in the normal and correct operation of the test method.

3.2.19.1 *Discussion*—It is defined as 2.77 times $\sigma_{R'}$, the standard deviation of results obtained under site precision conditions.

3.2.20 site precision conditions, n—for a single analytical measurement system (see 3.2.4), conditions under which test results are obtained by one or more operators in a single site location practicing the same test method on a single measurement system using test specimens taken at random from the same sample of material, over an extended period of time spanning at least a 20 day interval.

3.2.20.1 *Discussion*—Site precision conditions should include all sources of variation that are typically encountered during normal, long term operation of the measurement system. Thus, all operators who are involved in the routine use of the measurement system should contribute results to the site precision determination. In situations of high usage of a test method where multiple QC results are obtained within a 24 h period, then only results separated by at least 4 h to 8 h, depending on the absence of auto-correlation in the data, the nature of the test method/instrument, site requirements, or regulations, should be used in site precision calculations to reflect the longer term variation in the system.

3.2.21 site precision standard deviation, n—the standard deviation of results obtained under site precision conditions for an individual measurement system and materials that are

similar in composition and property level to the QC samples used to establish the standard deviation.

3.2.22 upper (UAL) and lower agreement limit (LAL), *n*—the numerical limits that the signed difference (Δ) between two single test results, each obtained under site precision conditions from a different analytical system located in the same laboratory executing the same test method on the same sample, is expected to fall outside about 5 % of the time, when both systems are in a state of statistical control per this practice.

3.2.22.1 *Discussion*—The limits are calculated using the most current control chart statistics from each system for the same QC material.

3.2.22.2 *Discussion*—The calculation methodology assumes that the standard deviation ($\sigma_{R'}$) for the control chart QC material can be extrapolated to the test sample.

3.2.22.3 *Discussion*—Since the uncertainty for the SEV estimate of each system is based on many measurements, it is expected to be small relative to Δ , hence, it is not included in the calculation of the limits.

3.2.23 validation audit sample, n—a QC sample or check standard used to verify precision and bias estimated from routine quality assurance testing.

3.3 Symbols:

3.3.1 ARV—accepted reference value.

- 3.3.2 Δ —signed difference between two single test results.
- 3.3.3 *EWMA*—exponentially weighted moving average.
- 3.3.4 *I*—individual observation (as in *I*-chart).
- 3.3.5 MR-moving range.
- 3.3.6 \overline{MR} —average of moving range.
- 3.3.7 LAL—lower agreement limit.

3.3.8 QC-quality control. b8dff1/astm-d6299-23

- 3.3.9 *R'*—site precision.
- 3.3.10 SEV-system expected value.
- 3.3.11 σ_R —site precision standard deviation.
- 3.3.12 UAL—upper agreement limit.
- 3.3.13 VA-validation audit.
- 3.3.14 χ^2 —chi squared.
- 3.3.15 λ —lambda.

4. Summary of Practice

4.1 QC samples and check standards are regularly analyzed by the measurement system. Control charts and other statistical techniques are presented to screen, plot, and interpret test results in accordance with industry-accepted practices to ascertain the in-statistical-control status of the measurement system.

4.2 Statistical estimates of the measurement system precision and bias are calculated and periodically updated using accrued data.

4.3 In addition, as part of a separate validation audit procedure, QC samples and check standards may be submitted blind or double-blind and randomly to the measurement system for routine testing to verify that the calculated precision and bias are representative of routine measurement system performance when there is no prior knowledge of the expected value or sample status.

5. Significance and Use

5.1 This practice may be used to continuously demonstrate the proficiency of analytical measurement systems that are used for establishing and ensuring the quality of petroleum and petroleum products.

5.2 Data accrued, using the techniques included in this practice, provide the ability to monitor analytical measurement system precision and bias.

5.3 These data are useful for updating test methods as well as for indicating areas of potential measurement system improvement.

5.4 Control chart statistics can be used to compute limits that the signed difference (Δ) between two single results for the same sample obtained under site precision conditions is expected to fall outside of about 5 % of the time, when each result is obtained using a different measurement system in the same laboratory executing the same test method, and both systems are in a state of statistical control.

6. Reference Materials

6.1 QC samples are used to establish and monitor the precision of the analytical measurement system.

6.1.1 Select a stable and homogeneous material having physical or chemical properties, or both, similar to those of typical samples tested by the analytical measurement system.

NOTE 5—When the QC sample is to be utilized for monitoring a process stream analyzer performance, it is often helpful to supplement the process analyzer system with a subsystem to automate the extraction, mixing, storage, and delivery functions associated with the QC sample.

6.1.2 Estimate the quantity of the material needed for each specific lot of QC sample to (1) accommodate the number of analytical measurement systems for which it is to be used (laboratory test apparatuses as well as process stream analyzer systems) and (2) provide determination of QC statistics for a useful and desirable period of time.

6.1.3 Collect the material into a single container and isolate it.

6.1.4 Thoroughly mix the material to ensure homogeneity.

6.1.5 Conduct any testing necessary to ensure that the QC sample meets the characteristics for its intended use.

6.1.6 Package or store QC samples, or both, as appropriate for the specific analytical measurement system to ensure that all analyses of samples from a given lot are performed on essentially identical material. If necessary, split the bulk material collected in 6.1.3 into separate and smaller containers to help ensure integrity over time. (Warning—Treat the material appropriately to ensure its stability, integrity, and homogeneity over the time period for which it is to stored and used. For samples that are volatile, such as gasoline, storage in one large container that is repeatedly opened and closed may result in loss of light ends. This problem can be avoided by chilling and splitting the bulk sample into smaller containers, each with a quantity sufficient to conduct the analysis. Similarly, samples prone to oxidation may benefit from splitting the bulk sample into smaller containers that can be blanketed with an inert gas prior to being sealed and leaving them sealed until the sample is needed.)

6.2 Check standards are used to estimate the accuracy of the analytical measurement system.

6.2.1 A check standard may be a commercial standard reference material when such material is available in appropriate quantity, quality and composition.

Note 6—Commercial reference material of appropriate composition may not be available for all measurement systems.

6.2.2 Alternatively, a check standard may be prepared from a material that is analyzed under reproducibility conditions by multiple measurement systems. The accepted reference value (ARV) for this check standard shall be the average after statistical examination and outlier treatment has been applied.³

6.2.2.1 Exchange samples circulated as part of an interlaboratory exchange program, or round robin, may be used as check standards. For the average computed from an exchange sample to be usable as the Accepted Reference Value (ARV) of a check standard, the standard deviation computed from at least 16 non-rejected normally distributed results (single submission per participant) shall not be statistically greater than the reproducibility standard deviation for the test method. An *F*-test should be applied to test acceptability.

Note 7—The uncertainty in the ARV is inversely proportional to the square root of the number of values in the average. For example, use of 16 non-outlier results in calculating the ARV reduces the uncertainty of the ARV by a factor of 4 relative to the single result precision. The bias tests described in this practice assume that the uncertainty in the ARV is negligible relative to the precision of the measurement system being evaluated. If less than 16 values are used in calculating the average, this assumption may not be valid. It is also assumed that the property of interest of the check standard is stable over the period of its intended use, and stored in a manner meeting the requirement of 3.2.17 *quality control (QC) sample*.

NOTE 8—Examples of exchanges that may be acceptable are ASTM D02.92 Proficiency Test Program; ASTM D02.01 N.E.G.; ASTM D02.01.A Regional Exchanges; International Quality Assurance Exchange Program, administered by Innotech ALBERTA.

6.2.3 For some measurement systems, single, pure component materials with known value, or simple gravimetric or volumetric mixtures of pure components having calculable value may serve as a check standard. For example, pure solvents, such as 2,2-dimethylbutane, are used as check standards for the measurement of Reid vapor pressure by Test Method D5191. Users should be aware that for measurement systems that show matrix dependencies, accuracy determined from pure compounds or simple mixtures may not be representative of that achieved on actual samples.

6.3 Validation audit (VA) samples are QC samples and check standards, which may, at the option of the users, be submitted to the measurement system in a blind, or double blind, and random fashion to verify precision and bias estimated from routine quality assurance testing.

³ For guidance in statistical and outlier treatment of data, refer to Practices D6300, D7915, E178, and E691.

7. Quality Assurance (QA) Program for Individual Measurement Systems

7.1 Overview—A QA program $(1)^4$ may consist of five primary activities: (1) monitoring stability and precision through QC sample testing, (2) monitoring accuracy, (3) periodic evaluation of system performance in terms of precision or bias, or both, (4) proficiency testing through participation in interlaboratory exchange programs where such programs are available, and (5) a periodic and independent system validation using VA samples may be conducted to provide additional assurance of the system precision and bias metrics established from the primary testing activities. At minimum, the QA program must include at least item one and item two, subject to check standard availability (see 7.1.1).

7.1.1 For some measurement systems, suitable check standard materials may not exist, and there may be no reasonably available exchange programs to generate them. For such systems, there is no means of verifying the accuracy of the system, and the QA program will only involve monitoring stability and precision through QC sample testing.

NOTE 9—For guidance on the establishment and maintenance of the essentials of a quality system, see Practice D6792.

Note 10—For guidance on the analysis and interpretation of proficiency test (PT) program results, see Guide D7372.

7.2 Monitoring System Stability and Precision Through QC Sample Testing—QC test specimen samples from a specific lot are introduced and tested in the analytical measurement system on a regular basis to establish system performance history in terms of both stability and precision.

7.3 Monitoring Accuracy:

7.3.1 Check standards may be tested in the analytical measurement system on a regular basis to establish system performance history in terms of accuracy.

7.4 Test Program Conditions/Frequency: dards/sist/af0304

7.4.1 Conduct both QC sample and check standard testing under site precision conditions.

Note 11—It is inappropriate to use test data collected under repeatability conditions to estimate the long term precision achievable by the site because the majority of the long term measurement system variance is due to common cause variations associated with the combination of time, operator, reagents, instrumentation calibration factors, and so forth, which would not be observable in data obtained under repeatability conditions.

7.4.2 Test the QC and check standard samples on a regular schedule, as appropriate. Principal factors to be considered for determining the frequency of testing are (1) frequency of use of the analytical measurement system, (2) criticality of the parameter being measured, (3) established system stability and precision performance based on historical data, (4) business economics, and (5) regulatory, contractual, or test method requirements.

NOTE 12—At the discretion of the laboratory, check standards may be used as QC samples. In this case, the results for the check standards may be used to monitor both stability (see 7.2) and accuracy (see 7.3) simultaneously. If check standards are expensive, or not available in

sufficient quantity, then separate QC samples are employed. In this case, the accuracy (see 7.3) is monitored less frequently, and the QC sample testing (see 7.2) is used to demonstrate the stability of the measurement system between accuracy tests.

7.4.3 It is recommended that a QC sample be analyzed at the beginning of any set of measurements and immediately after a change is made to the measurement system.

7.4.4 Establish a protocol for testing so that all persons who routinely operate the system participate in generating QC test data.

7.4.5 Handle and test the QC and check standard samples in the same manner and under the same conditions as samples or materials routinely analyzed by the analytical measurement system.

7.4.6 When practical, randomize the time of check standard and additional QC sample testing over the normal hours of measurement system operation, unless otherwise prescribed in the specific test method.

Note 13—Avoid special treatment of QC samples designed to get a better result. Special treatment seriously undermines the integrity of precision estimates.

7.5 Evaluation of System Performance in Terms of Precision and Bias:

7.5.1 Pretreat and screen results accumulated from QC and check standard testing. Apply statistical techniques to the pretreated data to identify erroneous data. Plot appropriately pretreated data on control charts.

7.5.2 Periodically analyze results from control charts, excluding those data points with assignable causes, to quantify the bias and precision estimates for the measurement system.

7.6 Proficiency Testing:

7.6.1 Participation in regularly conducted interlaboratory exchanges where typical production samples are tested by multiple measurement systems, using a specified (ASTM) test protocol, provide a cost-effective means of assessing measurement system accuracy relative to average industry performance. Such proficiency testing may be used instead of check standard testing for systems where the timeliness of the accuracy check is not critical. Proficiency testing may be used as a supplement to accuracy monitoring by way of check standard testing.

7.6.2 Participants plot their signed deviations or statistics from the consensus values (exchange averages) on control charts in the same fashion described below for check standards, to ascertain if their measurement processes are non-biased relative to industry average.

7.7 *Independent System Validation*—Periodically, at the discretion of users, VA samples may be submitted blind or double blind for analysis. Precision and bias estimates calculated using VA samples test data may be used as an independent validation of the routine QA program performance statistics.

Note 14—For measurement systems susceptible to human influence, the precision and bias estimates calculated from data where the analyst is aware of the sample status (QC or check standard) or expected values, or both, may underestimate the precision and bias achievable under routine operation. At the discretion of the users, and depending on the criticality of these measurement systems, the QA program may include periodic blind or double-blind testing of VA samples.

⁴ The boldface numbers in parentheses refer to the list of references at the end of this standard.

7.7.1 The specific design and approach to the VA testing program will depend on features specific to the measurement system and organizational requirements, and is beyond the intended scope of this practice. Some possible approaches are noted as follows.

7.7.1.1 If all QC samples or check standards, or both, are submitted blind or double blind and the results are promptly evaluated, then additional VA sample testing may not be necessary.

7.7.1.2 QC samples or check standards, or both, may be submitted as unknown samples at a specific frequency. Such submissions should not be so regular as to compromise their blind status.

7.7.1.3 Retains of previously analyzed samples may be resubmitted as unknown samples under site precision conditions. Generally, data from this approach may only yield precision estimates as retain samples do not have ARVs. Typically, the differences between the replicate analyses are plotted on control charts to estimate the precision of the measurement system. If precision is level dependent, the differences are scaled by the standard deviation of the measurement system precision at the level of the average of the two results.

8. Procedure for Pretreatment, Assessment, and Interpretation of Test Results

8.1 *Overview*—Results accumulated from QC, check standard, and VA sample testing are pretreated and screened. Statistical techniques are applied to the pretreated data to achieve the following objectives:

8.1.1 Identify erroneous data (outliers).

8.1.2 Assess initial results to validate system stability and assumptions associated with use of control chart technique (for example, dataset normality, adequacy of variations in the dataset relative to measurement resolution).

8.1.3 Deploy, interpret, and maintain control charts.

8.1.4 Quantify long term measurement precision and bias.

Note 15—Refer to the annex for examples of the application of the techniques that are discussed below and described in Section 9.

8.2 *Pretreatment of Test Results*—The purpose of pretreatment is to standardize the control chart scales so as to allow for data from multiple check standards or different batches of QC materials with different property levels to be plotted on the same chart.

8.2.1 For QC sample test results, no data pretreatment is necessary if results for different QC samples are plotted in actual measurement units on different control charts.

8.2.2 For check standard sample test results that are to be plotted on the same control chart, two cases apply, depending on the measurement system precision:

8.2.2.1 *Case 1*—If either (*1*) all of the check standard test results are from one or more lots of check standard material having the same ARV(s), or (*2*) the precision of the measurement system is constant across levels, then pretreatment consists of calculating the difference between the test result and the ARV:

Pretreated result = test result - ARV(for the sample)(1)

8.2.2.2 *Case* 2—Test results are for multiple lots of check standards with different ARVs, and the precision of the measurement system is known to vary with level,

 $[\text{test result} - \text{check standard ARV}]/\text{sqrt}[(\text{standard error of ARV})^2 +$

(std dev of site test method at the ARV level)²]

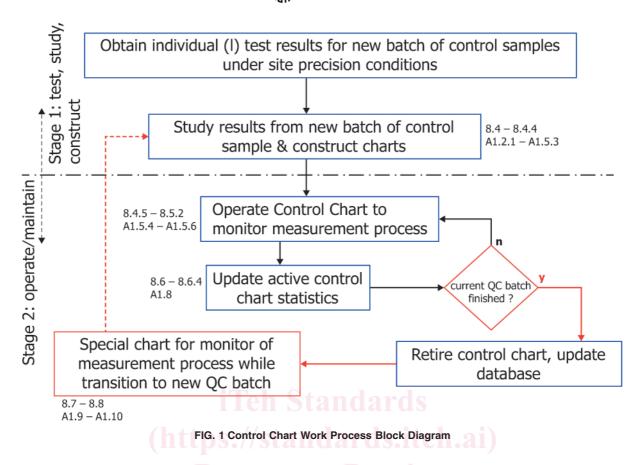
where the standard error of the ARV is the uncertainty associated with the ARV as supplied by the check standard supplier; the standard deviation of site test method at the ARV level is the established standard deviation of the site's test method under site precision conditions at nominally the ARV level. In the event the ARV was established through round robin testing, standard deviations determined from outlierfree and normally distributed round robin test results may be used to calculate the standard error of the ARV in accordance with statistical theory. (See Note 16.)

8.2.2.3 If the ARV was not arrived at by round robin testing, a standard error of the ARV should be determined by users in a technically acceptable manner.

Note 16—It is recommended that the method used to determine the standard error of the ARV be developed under the guidance of a statistician.

8.2.3 Pretreatment of results for VA samples is done in the same manner as described in 8.2.1 and 8.2.2.

8.3 Control Charts (1, 2)—Individual (I), moving range of two (MR) control charts, and either Strategy 1 (additional run rules) (3) or Strategy 2 (EWMA) (4, 5, 6) are prescribed techniques for (a) routine recording of QC sample and check standard test results, and (b) immediate assessment of the "in statistical control" (7) status of the system that generated the data. The *I* chart is intended to detect occurrence of a sudden, unique event that causes a large deviation from the expected value for the QC material. Strategy 1 (additional Run Rules) or Strategy 2 (EWMA) is intended to detect small levels of sustained shifts or drifts of the complete analytical system. MR chart is intended to detect changes in the analytical system overall variability.


Note 17—The control charts and statistical techniques described in this practice are chosen for their simplicity and ease of use. It is not the intent of this practice to preclude use of other statistically equivalent or more advanced techniques, or both.

8.3.1 Control charting may be viewed as a two-staged work process where:

Stage 1 comprises assessment of initial test results (for a new batch of QC material) and construction of the control chart with graphically represented assessed results and statistical values that describes the location of where future test results for this QC material from the measurement systems are expected to fall within, on the assumption that the measurement system and QC material remains unchanged.

Stage 2 comprises regular assessment of future test results (for the QC material) as they arrive in chronological order against the established expectations in Stage 1; as well as a periodic reevaluation of the expectation statistics of all accrued results to update the expectations statistics established from Stage 1, if necessary. See Fig. 1.

🕼 D6299 – 23

STAGE 1—Assessment and Chart Construction

8.4 Assessment of Initial Results—Assessment techniques are applied to test results collected during the initial startup phase of or after significant modifications to a measurement system (see Note 19). Perform the following assessment after at least 20 results (pretreated if appropriate) have become available. The purpose of this assessment is to ensure that these results are suitable for deployment of control charts (described in A1.4).

Note 18—These techniques may also be applied as diagnostic tools to investigate out-of-control situations.

Note 19—During the data collection phase in Stage 1, users may deploy the procedures described in 8.7.2.3 or 8.7.3 (Q-procedure) or 8.7.4 to monitor measurement process performance.

8.4.1 *Screen for Suspicious Results*—Results (pretreated if appropriate) should first be visually screened for values that are inconsistent with the remainder of the data set, such as those that could have been caused by transcription errors, followed by an outlier assessment using GESD (see Practice D7915) or other equivalent statistical technique. Those flagged as suspicious should be investigated. Discarding data at this stage must be supported by evidence gathered from the investigation. If, after discarding suspicious pretreated results there are less than 15 values remaining, collect additional data and start over.

8.4.2 Screen for Unusual Patterns—The next step is to examine the results (pretreated if appropriate) for non-random patterns such as continuous trending in either direction, unusual clustering, and cycles. One way to do this is to plot the results on a run chart (see A1.3) and examine the plot. If any

non-random pattern is detected, investigate for and eliminate the root cause(s). Discard the data set and start the procedure again.

8.4.3 Test "Normality" Assumption, Independence of Test Results, and Adequacy of Measurement Resolution—For measurement systems with no prior performance history, or as a diagnostic tool for initial data collected on a new batch of QC material, it is useful to test that the results from the measurement system are reasonably independent, with adequate measurement resolution, and may be adequately modelled by a normal distribution. One way to do this is to use a normal probability plot and the Anderson-Darling Statistic (see A1.4). If the results show obvious deviation from normality or obvious measurement resolution inadequacy (see A1.4), follow the guidance in A1.4.2.6, Case 2.

Note 20—Transformations may lead to normally distributed data, but these techniques are outside the scope of this practice.

8.4.4 Construction of Control Charts—If no obvious unusual patterns are detected from the run charts, and no obvious deviation from normality is detected, proceed with construction of the control charts as follows (see A1.5.1 – A1.5.3):

8.4.4.1 *I Chart*—Calculate the center line, control limits and overlay them on the "run chart" to produce the *I* chart.

8.4.4.2 Construct an MR plot and examine it for unusual patterns. If no unusual patterns are found in the MR plot, calculate and overlay the center line and control limits on the MR plot to complete the MR chart.

8.4.4.3 *EWMA Overlay*—For strategy 2, calculate the *EWMA* values and plot them on the *I* chart. Calculate the *EWMA* control limits and overlay them on the *I* chart.

STAGE 2—Deployment for Monitoring and Periodic Re-assessment

8.4.5 *Control Chart Deployment*—Put these control charts into operation by regularly plotting the test results (pretreated if appropriate) on the charts and immediately interpreting the charts.

8.5 Control Chart Interpretation:

8.5.1 Apply control chart rules (see A1.5) to determine if the data supports the hypothesis that the measurement system is under the influence of common causes variation only (in statistical control).

8.5.2 Investigate Out-of-Control Points in Detail—Exclude from further data analysis those associated with assignable causes, provided the assignable causes are deemed not to be part of the normal process.

Note 21-All data, regardless of in-control or out-of-control status, needs to be recorded.

8.6 Scenario 1 for Periodic Updating of Control Charts Parameters:

8.6.1 Scenario 1 covers (1) control charts for a QC material where there had been no change in the system, but more data of the same level has been accrued; or (2) control charts for check standard pretreated results.

8.6.2 When a minimum of 20 new in-control data points becomes available, perform an *F*-test (see A1.8) of sample variances for the new data set versus the sample variance used to calculate the current control chart limits. If the outcome of the *F*-test is not significant, and, if the sample variance used to calculate the current control limits is based on less than 100 data points, statistically pool both sample variances and then update the current control limits based on this new pooled variance and I-chart center line (\overline{I} in equations Eq A1.10-A1.13) if updated (see 8.6.2.2).

8.6.2.1 If the outcome of the *F*-test is not significant, and if the sample variance used to calculate the current control limits is based on more than 100 data points, the statistical pooling of both sample variances to be used for update of the current control limits is recommended, but may be at the discretion of the user.

8.6.2.2 If the outcome of the *F*-test is not significant, compute the t value in Eq 3 using the average of the new in-control data, the current center line of the *I*-chart, and the current chart standard deviation ($\sigma_{\rm R}$.) used to compute the *I*-chart control limits. Re-compute and update the *I*-chart center line to reduce its statistical uncertainty is permissible if all of the following conditions are met:

(1) |t| ≤ 1.7

(2) $\text{ewma}_{\text{newdata}}$ on one side of center line < 75 %

Note 22—The value 1.7 is based on a one-sided t-test of a "difference = 0" null hypothesis versus an alternate hypothesis of either greater than or less than zero as chosen by the user at 5 % significance level, 40 to 250 degrees of freedom rounded up to 1st decimal for simplicity.

$$t = \frac{\left(\bar{I}_{current} - \bar{x}_{newdata}\right)}{\sigma_{R'}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
(3)

where:

 $\bar{I}_{current}$ = the current *I*-chart center line, which is the arithmetic average calculated using all in control results without the new data in 8.6.2; n₁ is the number of results used to calculate $\bar{I}_{current}$, and

 $\bar{x}_{newdata}$ = the arithmetic average of new results in 8.6.2; n₂ is the number of results used to calculate $\bar{x}_{newdata}$.

As a safeguard against slow drift in one direction that is below the detection power of the control chart rules, four consecutive adjustment of the *I*-chart center line in the same direction shall trigger an accuracy verification by Check Standard (CS). Follow Practice D6617 to determine the acceptable tolerance zone for the difference between the result obtained versus the Accepted Reference Value (ARV) of the CS.

Note 23—Sigma can be either pooled or un-pooled, depending on whether it was performed in 8.6.2.1.

8.6.3 If the outcome of the *F*-test is significant, investigate for assignable causes. Update the current control limits based on sample variance and average calculated using the new data if it is determined that this new variance and average is representative of current system performance under common cause variation.

8.7 Scenario 2 for Periodic Updating of Control Charts Parameters:

8.7.1 Scenario 2 covers control chart for QC materials where an assignable cause change in the system had occurred due to a change of QC material as the current QC material supply is exhausted. Minor or major differences in measured property level may exist between QC material batches. Since control limit calculations for the I chart require a center value established by the measurement system, a special transition procedure is required to ensure that the center value for a new batch of QC material is established using results produced by a measurement system that is in statistical control. This practice presents two procedures to be selected at the users' discretion.

8.7.1.1 Use of Precision Statistics from Previous Control Charts—Control chart statistics achieved ($\bar{I}_{achieved}$, $\sigma_{achieved}$, $\overline{MR}_{achieved}$) from previous completed I, MR chart for similar QC material may be used for the new QC batch transition techniques described in this section if either of the following conditions is met:

(1) test method published reproducibility (R_{pub}) is not dependent on the measurement level

(2) for R_{pub} expressed as a function of the measurement level, the ratio:

 $[R_{pub@\bar{1}_achieved} \ / \ R_{pub@ \ 1st \ new \ QC \ result}]$ is between 0.85 and 1.15.

where:

 $R_{pub@\bar{I}_{achieved}}$ = published method reproducibility evaluated at $\bar{I}_{achieved}$ level, and R_{pub@1st new QC result} = published evaluated

= published method reproducibility evaluated at the 1st new QC result level.

8.7.2 Procedure 1, Concurrent Testing:

8.7.2.1 Collect and prepare a new batch of QC material when the current QC material supply remaining can support no more than 20 analyses.

8.7.2.2 Concurrently test and record data for the new material each time a current QC sample is tested. The result for the new material is deemed valid if the measurement process in-control status is validated by the current QC material and control chart.

8.7.2.3 Optionally, to provide an early indication of the status of the new batch of QC material, immediately start a run chart and an *MR* plot for the new material. After five valid results become available for the new material, convert the run chart into an *I* chart with trial control limits by adding a center line based on the average of the five results and control limits using $\sigma_{achieved}$ from previous control charts in 8.7.1.1. Similarly, set trial control limits for the *MR* chart based on $\overline{MR}_{achieved}$.

8.7.2.4 After a minimum of 20 in-control data points are collected on the new material, perform an *F*-test of sample variance for the new data set $(\sigma_{newdata})^2$ versus $(\sigma_{achieved})^2$ in 8.7.1.1. If the outcome of the *F*-test is not significant, for R_{pub} expressed as a function of the measurement level, evaluate R_{pub} using the average of new results to re-confirm the ratio R_{pub@L_achieved} / R_{pub@new QC} results average</sub> is between 0.85 and 1.15. If confirmed, and if $\sigma_{achieved}$ is based on less than 100 data points, statistically pool both sample variances (Eq A1.30) and MR's (Eq A1.29). Use the square root of this new pooled variance and pooled MR as $\sigma_{R'}$ and MR for the construction of the new *I* and *MR* charts in 8.7.2.7.

8.7.2.5 If the outcome of the *F*-test in 8.7.2.4 is not significant, and the ratio $R_{pub@I_achieved} / R_{pub@new 20 QC}$ results average is between 0.85 and 1.15 for $\sigma_{achieved}$ based on more than 100 data points, the statistical pooling in 8.7.2.4 is recommended, but may be at the discretion of the user. If pooling is not performed, use $\sigma_{achieved}$ and $\overline{MR}_{achieved}$ as $\sigma_{R'}$ and \overline{MR} for the construction of the new I and MR charts in 8.7.2.7.

If the outcome of the *F*-test in 8.7.2.4 is not significant, but the ratio $R_{pub@\bar{I}_achieved} / R_{pub@new QC}$ results average is not between 0.85 and 1.15, use $\sigma_{newdata}$ and $\overline{MR}_{newdata}$ as $\sigma_{R'}$ and \overline{MR} for the construction of the new *I* and *MR* charts in 8.7.2.7.

8.7.2.6 If the outcome of the *F*-test in 8.7.2.4 is significant, investigate for assignable causes. If it is determined that this new variance is representative of current system performance under common cause variation, use $\sigma_{newdata}$ and $\overline{MR}_{newdata}$ as $\sigma_{R'}$ and \overline{MR} for the construction of the new I and MR charts in 8.7.2.7.

8.7.2.7 Complete the Stage 1 assessments as per Section 8 to 8.4.3. Construct new *I* and *MR* charts (and *EWMA* overlay for strategy 2) for this new batch of QC material as per Section 8.4.4.

8.7.2.8 Switch over to the new *I* and *MR* charts upon depletion of current QC material.

8.7.3 Procedure 2-A, Q-Procedure (see A1.9):

8.7.3.1 This procedure is designed to alleviate the need for concurrent testing of two materials. A priori knowledge of the measurement process standard deviation (σ_{known}) is required. $\sigma_{achieved}$ meeting the requirements in 8.7.1.1 can be used as σ_{known} for this purpose. A Q_r statistic is computed with the arrival of each new QC result commensurate with the 2nd result, and compared against its theoretical mean (0) and 3 sigma limits (± 3). See A1.9 for details.

Note 24—It is recommended that this standard deviation estimate be based on at least 50 data points.

8.7.3.2 When the *Q*-procedure is operational (minimum of two data points), it may be used in conjunction with a *MR* chart constructed using the observations and $\overline{MR}_{achieved}$ per 8.7.1.1 to provide QA of the measurement process.

8.7.3.3 After a minimum of 20 data points have been accrued (by the *Q*-procedure), execute the steps from 8.7.2.4 to 8.7.2.7. Because the Q-procedure is technically equivalent to the I chart procedure, the user may either construct a new I/MR control chart for the new batch of QC material as instructed in 8.7.2.7, or continue to operate the *Q*-chart and MR chart for measurement process stability and precision monitoring, respectively, using the new batch of QC material.

8.7.3.4 It is necessary to start a new Q-chart with each new batch of QC material.

8.7.3.5 A common Q-chart and MR chart may be used for pre-treated results as per Case 1 and Case 2 in 8.2. For Case 1, the standard deviation shall be the applicable standard deviation for the check standard material; for Case 2, the standard deviation is 1 since Eq 2 is a standardized normal deviate.

8.7.4 Procedure 2-B: Dynamically Updated I / EWMA Chart—This is essentially an I-chart and EWMA with varying control chart limits that are updated with the arrival of each new result, which is judged using limits computed from all previous results. The dynamic update combines the σ_{known} (see 8.7.3.1) for the individual result with the varying standard error associated with the center line computed with all previous results. This standard error (for the I-chart) steadily decreases as the number of results used for its computation increases, whilst for the EWMA, the standard error typically decrease initially and then increases towards its asymptotic value. See A1.10 for details.

NOTE 25-Procedure 2-B was formerly referred to as Q-chart Option 1.

8.7.5 Operate Procedure 2-B in conjunction with an *MR* chart per 8.7.3.2. After a minimum of 20 in control data points have been accrued, execute the steps from 8.7.2.4 to 8.7.2.7. Because Procedure 2-B is technically equivalent to the *I* chart procedure, the user may either construct a new *I/MR* control chart for the new batch of QC material as instructed in 8.7.2.7, or continue to operate Procedure 2-B and *MR* chart for measurement process stability and precision monitoring using the new batch of QC material.

8.8 *Short Run Scenario*—Procedures described in 8.7.3 and 8.7.4 may also be used to address short run situations where a single batch of QC material may provide only a limited number (less than 20) of QC test results and replacement of exactly the

same material is not feasible or possible. For these short run QC batches, since there is insufficient data to properly characterize the mean of batch, these procedures can only be used to monitor stability and precision of the measurement process.

8.9 Instrument Replacement or Post Overhaul Scenario-The procedures described in 8.7.3 and 8.7.4 may be used to address situations where an instrument is taken out of service and is replaced by another qualified instrument, or, when the primary instrument is returned to service after a major overhaul such as replacement of critical parts or factory re-calibration. For these situations, the existing system precision parameters may be used, in conjunction with the MR chart, to monitor stability and precision of the replacement or overhauled measurement process, respectively, based on the assumption that the existing system precision parameter is still valid. After sufficient data is accrued, a statistical assessment shall be performed to confirm this assumption, or update the system precision parameters accordingly. Use of the existing precision will enable the system to be immediately put into service, while providing a safeguard against the situation where the new system performance with replacement or overhauled instrument is statistically worse than the previous system performance. Use of these procedures is in addition to any steps such as calibration and running check standards needed to qualify replacement instruments.

9. Evaluation of System Performance in Terms of U211 Precision and Bias

9.1 Site Precision Estimated from Testing of QC Samples:

9.1.1 Estimate the site precision of the measurement system for material types and levels using the current active I-chart parameter estimate $\sigma_{R'}$ (see 8.6, 8.7) based on the root-mean-square (rms) formula for standard deviation.

$$\mathbf{R}' = 2.77 \times \boldsymbol{\sigma}_{\mathbf{R}},\tag{4}$$

9.1.1.1 Alternatively, in the absence of auto-correlation in the data (see A1.4), R' may be estimated as 2.46 times the average of the moving range (\overline{MR}) from the MR chart corresponding to the I-chart in 9.1.1.

$$R' = 2.46 \times \overline{MR} \tag{5}$$

Note 26—The site precision standard deviation ($\sigma_{R'}$) is estimated from the MR chart as $R'/2.77 = (\overline{MR})/1.128$.

9.1.1.2 For estimate of site precision standard deviation $(\sigma_{R'})$ using retain results, first obtain the standard deviation of differences by applying the root-mean-square formula below to the differences between the original and retest results for samples with same nominal property level. If measurement process precision is known to be level independent, retest results from samples with different property levels may be used. Otherwise, sample pairs with nominally similar property level (general rule is within 2R) should be used to estimate the site precision at the nominal property level. Divide the standard deviation of differences by 1.414 to obtain the estimate for site precision standard deviation. ($\sigma_{R'}$).

standard deviation of differences =

(6)

$$\sqrt{\frac{\sum (\text{individual difference} - \text{average difference})^2}{\text{total number of differences}}} \sigma_{R'} = (\text{standard deviation of differences}) \div 1.414$$
(7)

9.1.2 Compare R' to published reproducibility of the test method at the same level, if available. R' is expected to be less than or equal to the published value. Use the χ^2 test described in A1.7.

9.2 Measurement System Bias Estimated from Multiple Measurements of a Single Check Standard—If a minimum of 15 test results is obtained on a single check standard material under site precision conditions, then calculate the average of all the in-control individual differences plotted on the I chart. Perform a *t*-test (see A1.6) to determine if the average is statistically different from zero.

9.2.1 If the outcome of the t-test is that the average is not statistically different from zero, then the bias in the measurement process is negligible.

9.2.2 If the outcome of the *t*-test is that the average is statistically different from zero, then the best estimate of the measurement process bias at the level of the check standard is the average. If bias is deemed to be of practical significance by the user, investigate for root causes, and take corrective measures.

9.3 Measurement System Bias Estimated from Measurements of Multiple Check Standards—When using multiple check standards, determine if there is a relationship between the bias and the measurement level.

9.3.1 Plot the pretreated results as per Section 8 versus their corresponding ARVs. Examine the plot for patterns indicative of level-dependent bias.

9.3.2 If there is no discernible pattern, perform the *t*-test as described in 9.2 to determine if the average of all the pretreated differences plotted on the I chart is statistically different from zero.

9.3.2.1 If the outcome of the *t*-test is that the average is not statistically different from zero, then the bias in the measurement process is negligible.

9.3.2.2 If the outcome of the *t*-test is that the average is statistically different from zero, then there is evidence that the measurement system is biased. The bias may be level dependent. However, the statistical methodology for estimating the bias/level relationship is beyond the scope of this practice.

9.3.3 If there is a discernible pattern in the plot in 9.3.1, then the measurement system may exhibit a level dependent bias. The statistical methodology for estimating the bias/level relationship is beyond the scope of this practice.

9.3.4 If a bias is detected in 9.3.2.2, or if the plot in 9.3.3 exhibits discernible patterns, investigate for root cause(s).

9.3.4.1 If there is evidence of a bias versus level relationship, or, if users wish to perform a more rigorous examination of the bias versus level relationship with multiple check standards, it is recommended that the principles of Practice D6708 be employed under the guidance of qualified statistical expertise.

10. Validation of System Performance Estimates Using VA Samples

10.1 If the users decide to include VA sample testing as part of their QA program, then they should periodically evaluate the results obtained on the VA samples. The purpose of the evaluation is to establish whether the system performance estimates described in Section 9 are reasonably applicable to routinely tested samples.

10.2 VA sample test results should be evaluated independently through an internal or external audit system, or both. It is recommended that the internal audit team not be limited to the operators of the measurement system and their immediate supervisors.

10.3 Insofar as possible, analyze the results obtained on the VA samples separately and in the same manner as those from the routine QC and check standard testing program.

10.4 Using *F*- or *t*- tests, or both (see A1.8 and A1.6), statistically compare the system performance estimates obtained from the VA sample testing program to the measurement system accuracy and precision estimates from the QC sample testing program.

10.5 If the comparison reveals that the estimates of the measurement system performance using VA samples are statistically different than estimates using QC and check standards per Section 9, investigate thoroughly for the assignable cause(s) of this inconsistency. Until the causes are identified and eliminated, the estimates from Section 9 should be considered suspect.

11. Calculation of UAL and LAL

11.1 It is possible to calculate the upper (UAL) and lower agreement limits (LAL) for the signed difference (Δ) between

two single results, each obtained under site precision conditions from a different analytical system located in the same laboratory executing the same test method on the same sample, provided there are active control chart statistics for both systems using the same control (QC) material and both systems are in a state of statistical control. The UAL and LAL is the 97.5 and 2.5 percentile estimate of the distribution of Δ . These estimates are calculated using the current control chart System Expected Value (SEV) and standard deviation ($\sigma_{R'}$) from each measurement system for the same QC material.

$$\Delta = \begin{pmatrix} x_a - x_b \end{pmatrix} \tag{8}$$

$$UAL = [SEV_A - SEV_B] + 2\sigma_\Delta$$
(9)

$$LAL = \left[SEV_A - SEV_B\right] - 2\sigma_\Delta \tag{10}$$

$$\sigma_{\Delta} = \sqrt{\left[\sigma_{A}^{2} + \sigma_{B}^{2}\right]} \tag{11}$$

where:

- x_a = single result for an unknown sample U from system A,
- x_b = single result for an unknown sample U from system B,
- SEV_A = current center line from System A control chart for control material Q,
- SEV_B = current center line from System B control chart for control material Q,
- σ_A = current std dev estimate from System A control chart for control material Q, and
- σ_B = current std dev estimate from System B control chart for control material Q.

See A1.11 for an example.

11.2 The signed difference (Δ) in 11.1 is expected to be less than the LAL or greater than the UAL about 5 % of the time.

https://standards.iteh.ai/catalog/standards/sist/af030449-9d8a-4d4a-9f68-0069bbb8dff1/astm-d6299-23

ANNEX

(Mandatory Information)

A1. STATISTICAL QUALITY CONTROL TOOLS

A1.1 Purpose of this Annex

A1.1.1 The purpose of this annex is to provide guidance to practitioners, including worked examples, for the proper execution of the statistical procedures described in this practice. See Tables A1.1-A1.14 and Figs. A1.1-A1.16.

Note A1.1—For some examples in this annex, 15 data points are used to illustrate calculation and plotting methodologies; it is not the intention of this annex to override the mandatory requirement of 20 minimum data points (see 8.4). Work is underway to revise the annex examples to use 20 data points for all examples.

A1.2 Pretreatment of Test Results (8.1 to 8.2.3)

A1.2.1 Throughout this annex, $\{Y_i:i=1, ...,n\}$ denotes a sequence of as measured test results. $\{I_i:i=1, ...,n\}$ will signify a sequence of test results after pretreatment, if necessary.

A1.2.2 If $\{Y_i: i=1...n\}$ is a sequence of results from a single QC sample, then

 I_i

$$=Y_i \tag{A1.1}$$

with no pretreatment being required.

A1.2.2.1 An example of a sequence of results, Y_i , from a single QC sample is given in Columns 2 and 4 of Table A1.3.

A1.2.3 If $\{Y_i:i=1...n\}$ is a sequence of results from a single check standard, from multiple check standards having nominally the same ARV, or from multiple check standards having different ARVs where the precision of the measurement system does not vary with level, and if $\{X_i:i=1...n\}$ is the sequence of corresponding ARVs, then

$$I_i = Y_i - X_i \tag{A1.2}$$

The site precision (R') of the measurement process must be essentially the same for all values $\{X_i\}$.

A1.2.3.1 An example of a sequence of results from a single check standard is given in Table A1.4. The preprocessed result, I_i , is given in Column 4 of Table A1.4.

A1.2.4 If $\{Y_i\}$ is a sequence of results from different check standards, and if the reproducibility varies with the level of the accepted reference values, $\{X_i\}$, then

$$I_i = (Y_i - X_i)/\sigma_i \tag{A1.3}$$

where σ_i are estimates of the standard deviation under site precision conditions of the measurement process at levels $\{X_i\}$.

A1.2.4.1 Table A1.5 shows an example of results for multiple check standards where the precision of the measurement system is level dependent.

A1.2.4.2 *Discussion*—Site precision (R') estimates at ARV values that are significantly different from those in the site's historical database may also be estimated proportionally using the published R at the ARV level. Calculate the fraction of R' and R at the ARV level with known R' and multiply this fraction by R at the new ARV level with unknown R' to arrive at the estimated R' at the new ARV level. This approach is based on the assumption that the fraction of R' and R is constant among different ARV levels. Users are cautioned that this assumption may not be valid if the published precision has different functional forms between r and R. Note that this fraction is the inverse of TPI (Test Performance Index) as defined in Practice D6792.

Example:

R' of site (calculated from actual QC data) at sulfur level 10 ppm = 2 ppm (published R at sulfur level of 10 ppm = 3 ppm).

Fraction of R'/R at 10 ppm = 2/3

Estimated R' of site at sulfur level at 15 ppm is estimated as: (2/3)* (published R at sulfur level of 15 ppm).

A1.3 The Run Chart

A1.3.1 A run chart is a plot of results in chronological order that may be used to screen data for unusual patterns. Preferably, pretreated results are plotted. Use a run chart to screen data for unusual patterns such as continuous trending in either direction, unusual clustering, and cycles. Several non-random patterns are described in control chart literature. When control parameters have been added to a run chart, it becomes a control chart of individual values (*I* chart).

A1.3.2 Plot results on the chart. Plot the first result at the left, and plot each subsequent point one increment to the right of its predecessor. The points may be connected in sequence to facilitate interpretation of the run chart.

A1.3.3 Allow sufficient space in the *x*-axis direction to accommodate as many results as should be obtained from a consistent batch of material. Allow enough space in the *y*-axis direction to accommodate the expected minimum and maximum of the data.

A1.3.4 *Example of a Run Chart for QC Results*—The first 15 results from Column 2 of Table A1.3 are plotted in sequence as they are collected as shown in Fig. A1.1. The data would be examined for unusual patterns.

A1.3.5 *Example of a Run Chart for Multiple Results from a Single Check Standard*—The first 15 preprocessed results (differences) from Column 4 of Table A1.4 are plotted in sequence as they are collected as shown in Fig. A1.2. The data would be examined for unusual patterns.

A1.3.6 *Example of a Run Chart for Results from Multiple Check Standards*—The first 15 preprocessed results (differences scaled by σ_i) from Table A1.5 are plotted in sequence as they are collected as shown in Fig. A1.3. The data would be examined for unusual patterns.

A1.4 Normality, Data Independence, and Resolution Adequacy Checks

A1.4.1 A normal probability plot (a special case of a q-q plot) is used to visually assess the validity of the assumption that the observations are normally distributed. Since the control chart and limits prescribed in this practice are based on the assumption that the data behavior is adequately modeled by the normal distribution, it is recommended that a test of this normality assumption be conducted.

A1.4.1.1 To construct a normal probability plot:

(1) Create a column of the observations sorted in ascending order.

(2) Select the appropriate column from Fig. A1.4, based on the number of observations (*n*).

(3) Plot each observation in the sorted column (y-value) against its corresponding value from Fig. A1.4 (z-value).

A1.4.1.2 Visually inspect the plot for an approximately linear relationship. If the results are normally distributed, the plot should be approximately linear. Major deviations from linearity are an indication of nonnormal distributions of the differences.

Note A1.2—The assessment methodology of the normal probability plot advocated in this practice is strictly visual due to its simplicity. For statistically more rigorous assessment techniques, users are advised to use the Anderson-Darling technique described below, and consult a statistician.

A1.4.2 Anderson-Darling Statistic—The Anderson-Darling (A-D) statistic is used to objectively test for normality, data independence, and adequacy of measurement resolution relative to the overall variation in the dataset. Two A-D statistics (A-D_{rms}, A-D_{MR}) are calculated using the identical procedure outlined as follows, where A-D_{rms}, A-D_{MR} are the A-D statistic calculated using numerical estimates of the sample standard deviation(*s*) as per the *rms* (root-mean-square) and the *MR*-(moving range of 2) techniques, respectively. The calculation steps are as follows:

A1.4.2.1 Order the non-outlying results such that $x_1 \le x_2 \le .$... x_n

A1.4.2.2 Obtain standardized variate from the x_i values as follows:

 $w_i = (x_i - \bar{x})/s \tag{A1.4}$

for (i=1...n), where s is sample standard deviation of the results using either the *rms* or *MR* technique, and \bar{x} is the average of the results.

Note A1.3—One standard deviation estimate ~ $0.89 \times [average MR]$ of the dataset.