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1. Scope

1.1 This guide provides techniques that are useful for the

comparison of modeled air concentrations with observed field

data. Such comparisons provide a means for assessing a

model’s performance, for example, bias and precision or

uncertainty, relative to other candidate models. Methodologies

for such comparisons are yet evolving; hence, modifications

will occur in the statistical tests and procedures and data

analysis as work progresses in this area. Until the interested

parties agree upon standard testing protocols, differences in

approach will occur. This guide describes a framework, or

philosophical context, within which one determines whether a

model’s performance is significantly different from other

candidate models. It is suggested that the first step should be to

determine which model’s estimates are closest on average to

the observations, and the second step would then test whether

the differences seen in the performance of the other models are

significantly different from the model chosen in the first step.

An example procedure is provided in Appendix X1 to illustrate

an existing approach for a particular evaluation goal. This

example is not intended to inhibit alternative approaches or

techniques that will produce equivalent or superior results. As

discussed in Section 6, statistical evaluation of model perfor-

mance is viewed as part of a larger process that collectively is

referred to as model evaluation.

1.2 This guide has been designed with flexibility to allow

expansion to address various characterizations of atmospheric

dispersion, which might involve dose or concentration

fluctuations, to allow development of application-specific

evaluation schemes, and to allow use of various statistical

comparison metrics. No assumptions are made regarding the

manner in which the models characterize the dispersion.

1.3 The focus of this guide is on end results, that is, the

accuracy of model predictions and the discernment of whether

differences seen between models are significant, rather than

operational details such as the ease of model implementation or

the time required for model calculations to be performed.

1.4 This guide offers an organized collection of information

or a series of options and does not recommend a specific course

of action. This guide cannot replace education or experience

and should be used in conjunction with professional judgment.

Not all aspects of this guide may be applicable in all circum-

stances. This guide is not intended to represent or replace the

standard of care by which the adequacy of a given professional

service must be judged, nor should it be applied without

consideration of a project’s many unique aspects. The word

“Standard” in the title of this guide means only that the

document has been approved through the ASTM consensus

process.

1.5 This standard applies to gaussian plume models; it may

not be applicable to non-point sources, heavy gas models from

evaporation from pool (for example, liquid spills), as well as

near-field receptors.

1.6 The values stated in SI units are to be regarded as

standard. No other units of measurement are included in this

guide.

1.7 This standard does not purport to address all of the

safety concerns, if any, associated with its use. It is the

responsibility of the user of this standard to establish appro-

priate safety, health, and environmental practices and deter-

mine the applicability of regulatory limitations prior to use.

1.8 This international standard was developed in accor-

dance with internationally recognized principles on standard-

ization established in the Decision on Principles for the

Development of International Standards, Guides and Recom-

mendations issued by the World Trade Organization Technical

Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:2

D1356 Terminology Relating to Sampling and Analysis of

Atmospheres
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3. Terminology

3.1 Definitions—For definitions of terms used in this guide,

refer to Terminology D1356.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 atmospheric dispersion model, n—an idealization of

atmospheric physics and processes to calculate the magnitude

and location of pollutant concentrations based on fate,

transport, and dispersion in the atmosphere. This may take the

form of an equation, algorithm, or series of equations/

algorithms used to calculate average or time-varying concen-

tration. The model may involve numerical methods for solu-

tion.

3.2.2 dispersion, absolute, n—the characterization of the

spreading of material released into the atmosphere based on a

coordinate system fixed in space.

3.2.3 dispersion, relative, n—the characterization of the

spreading of material released into the atmosphere based on a

coordinate system that is relative to the local median position

of the dispersing material.

3.2.4 evaluation objective, n—a feature or characteristic,

which can be defined through an analysis of the observed

concentration pattern, for example, maximum centerline con-

centration or lateral extent of the average concentration pattern

as a function of downwind distance, which one desires to

assess the skill of the models to reproduce.

3.2.5 evaluation procedure, n—the analysis steps to be

taken to compute the value of the evaluation objective from the

observed and modeled patterns of concentration values.

3.2.6 fate, n—the destiny of a chemical or biological pol-

lutant after release into the environment.

3.2.7 model input value, n—characterizations that must be

estimated or provided by the model developer or user before

model calculations can be performed.

3.2.8 regime, n—a repeatable narrow range of conditions,

defined in terms of model input values, which may or may not

be explicitly employed by all models being tested, needed for

dispersion model calculations. It is envisioned that the disper-

sion observed should be similar for all cases having similar

model input values.

3.2.9 uncertainty, n—refers to a lack of knowledge about

specific factors or parameters. This includes measurement

errors, sampling errors, systematic errors, and differences

arising from simplification of real-world processes. In

principle, uncertainty can be reduced with further information

or knowledge (1).3

3.2.10 variability, n—refers to differences attributable to

true heterogeneity or diversity in atmospheric processes that

result in part from natural random processes. Variability

usually is not reducible by further increases in knowledge, but

it can in principle be better characterized (1).

4. Summary of Guide

4.1 Statistical evaluation of dispersion model performance

with field data is viewed as part of a larger process that

collectively is called model evaluation. Section 6 discusses the

components of model evaluation.

4.2 To statistically assess model performance, one must

define an overall evaluation goal or purpose. This will suggest

features (evaluation objectives) within the observed and mod-

eled concentration patterns to be compared, for example,

maximum surface concentrations, lateral extent of a dispersing

plume. The selection and definition of evaluation objectives

typically are tailored to the model’s capabilities and intended

uses. The very nature of the problem of characterizing air

quality and the way models are applied make one single or

absolute evaluation objective impossible to define that is

suitable for all purposes. The definition of the evaluation

objectives will be restricted by the limited range conditions

experienced in the available comparison data suitable for use.

For each evaluation objective, a procedure will need to be

defined that allows definition of the evaluation objective from

the available observations of concentration values.

4.3 In assessing the performance of air quality models to

characterize a particular evaluation objective, one should

consider what the models are capable of providing. As dis-

cussed in Section 7, most models attempt to characterize the

ensemble average concentration pattern. If such models should

provide favorable comparisons with observed concentration

maxima, this is resulting from happenstance, rather than skill in

the model; therefore, in this discussion, it is suggested a model

be assessed on its ability to reproduce what it was designed to

produce, for at least in these comparisons, one can be assured

that zero bias with the least amount of scatter is by definition

good model performance.

4.4 As an illustration of the principles espoused in this

guide, a procedure is provided in Appendix X1 for comparison

of observed and modeled near-centerline concentration values,

which accommodates the fact that observed concentration

values include a large component of stochastic, and possibly

deterministic, variability unaccounted for by current models.

The procedure provides an objective statistical test of whether

differences seen in model performance are significant.

5. Significance and Use

5.1 Guidance is provided on designing model evaluation

performance procedures and on the difficulties that arise in

statistical evaluation of model performance caused by the

stochastic nature of dispersion in the atmosphere. It is recog-

nized there are examples in the literature where, knowingly or

unknowingly, models were evaluated on their ability to de-

scribe something which they were never intended to charac-

terize. This guide is attempting to heighten awareness, and

thereby, to reduce the number of “unknowing” comparisons. A

goal of this guide is to stimulate development and testing of

evaluation procedures that accommodate the effects of natural

variability. A technique is illustrated to provide information

from which subsequent evaluation and standardization can be

derived.

3 The boldface numbers in parentheses refer to the list of references at the end of

this standard.
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6. Model Evaluation

6.1 Background—Air quality simulation models have been

used for many decades to characterize the transport and

dispersion of material in the atmosphere (2-4). Early evalua-

tions of model performance usually relied on linear least-

squares analyses of observed versus modeled values, using

traditional scatter plots of the values, (5-7). During the 1980s,

attempts have been made to encourage the standardization of

methods used to judge air quality model performance (8-11).

Further development of these proposed statistical evaluation

procedures was needed, as it was found that the rote applica-

tion of statistical metrics, such as those listed in (8), was

incapable of discerning differences in model performance (12),

whereas if the evaluation results were sorted by stability and

distance downwind, then differences in modeling skill could be

discerned (13). It was becoming increasingly evident that the

models were characterizing only a small portion of the ob-

served variations in the concentration values (14). To better

deduce the statistical significance of differences seen in model

performance in the face of large unaccounted for uncertainties

and variations, investigators began to explore the use of

bootstrap techniques (15). By the late 1980s, most of the model

performance evaluations involved the use of bootstrap tech-

niques in the comparison of maximum values of modeled and

observed cumulative frequency distributions of the concentra-

tions values (16). Even though the procedures and metrics to be

employed in describing the performance of air quality simula-

tion models are still evolving (17-19), there has been a general

acceptance that defining performance of air quality models

needs to address the large uncertainties inherent in attempting

to characterize atmospheric fate, transport and dispersion

processes. There also has been a consensus reached on the

philosophical reasons that models of earth science processes

can never be validated, in the sense of claiming that a model is

truthfully representing natural processes. No general empirical

proposition about the natural world can be certain, since there

will always remain the prospect that future observations may

call the theory in question (20). It is seen that numerical models

of air pollution are a form of a highly complex scientific

hypothesis concerning natural processes, that can be confirmed

through comparison with observations, but never validated.

6.2 Components of Model Evaluation—A model evaluation

includes science peer reviews and statistical evaluations with

field data. The completion of each of these components

assumes specific model goals and evaluation objectives (see

Section 10) have been defined.

6.3 Science Peer Reviews—Given the complexity of char-

acterizing atmospheric processes, and the inevitable necessity

of limiting model algorithms to a resolvable set, one compo-

nent of a model evaluation is to review the model’s science to

confirm that the construct is reasonable and defensible for the

defined evaluation objectives. A key part of the scientific peer

review will include the review of residual plots where modeled

and observed evaluation objectives are compared over a range

of model inputs, for example, maximum concentrations as a

function of estimated plume rise or as a function of distance

downwind.

6.4 Statistical Evaluations with Field Data—The objective

comparison of modeled concentrations with observed field data

provides a means for assessing model performance. Due to the

limited supply of evaluation data sets, there are severe practical

limits in assessing model performance. For this reason, the

conclusions reached in the science peer reviews (see 6.3) and

the supportive analyses (see 6.5) have particular relevance in

deciding whether a model can be applied for the defined model

evaluation objectives. In order to conduct a statistical

comparison, one will have to define one or more evaluation

objectives for which objective comparisons are desired (Sec-

tion 10). As discussed in 8.4.4, the process of summarizing the

overall performance of a model over the range of conditions

experienced within a field experiment typically involves deter-

mining two points for each of the model evaluation objectives:

which of the models being assessed has on average the smallest

combined bias and scatter in comparisons with observations,

and whether the differences seen in the comparisons with the

other models statistically are significant in light of the uncer-

tainties in the observations.

6.5 Other Tasks Supportive to Model Evaluation—As atmo-

spheric dispersion models become more sophisticated, it is not

easy to detect coding errors in the implementation of the model

algorithms. And as models become more complex, discerning

the sensitivity of the modeling results to input parameter

variations becomes less clear; hence, two important tasks that

support model evaluation efforts are verification of software

and sensitivity and Monte Carlo analyses.

6.5.1 Verification of Software—Often a set of modeling

algorithms will require numerical solution. An important task

supportive to a model evaluation is a review in which the

mathematics described in the technical description of the

model are compared with the numerical coding, to ensure that

the code faithfully implements the physics and mathematics.

6.5.2 Sensitivity and Monte Carlo Analyses—Sensitivity and

Monte Carlo analyses provide insight into the response of a

model to input variation. An example of this technique is to

systematically vary one or more of the model inputs to

determine the effect on the modeling results (21). Each input

should be varied over a reasonable range likely to be encoun-

tered. The traditional sensitivity studies (21) were developed to

better understand the performance of plume dispersion models

simulating the transport and dispersion of inert pollutants. For

characterization of the effects of input uncertainties on model-

ing results, Monte Carlo studies with simple random sampling

are recommended (22), especially for models simulating

chemically reactive species where there are strong nonlinear

couplings between the model input and output (23). Results

from sensitivity and Monte Carlo analyses provide useful

guidance on which inputs should be most carefully prescribed

because they account for the greatest sensitivity in the model-

ing output. These analyses also provide a view of what to

expect for model output in conditions for which data are not

available.

7. A Framework for Model Evaluations

7.1 This section introduces a philosophical model for ex-

plaining how and why observations of physical processes and
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model simulations of physical processes differ. It is argued that

observations are individual realizations, which in principle can

be envisioned as belonging to some ensemble. Most of the

current models attempt to characterize the average concentra-

tion for each ensemble, but there are under development

models that attempt to characterize the distribution of concen-

tration values within an ensemble. Having this framework for

describing how and why observations differ from model

simulations has important ramifications in how one assesses

and describes a model’s ability to reproduce what is seen by

way of observations. This framework provides a rigorous basis

for designing the statistical comparison of modeling results

with observations.

7.2 The concept of “natural variability” acknowledges that

the details of the stochastic concentration field resulting from

dispersion are difficult to predict. In this context, the difference

between the ensemble average and any one observed realiza-

tion (experimental observation) is ascribed to natural

variability, whose variation, σn
2, can be expressed as:

σn
2 5 ~Co 2 Co

¯ ! 2¯ (1)

where:

Co = the observed concentration (or evaluation objective,

see 10.3) seen within a realization; the overbars repre-

sent averages over all realizations within a given

ensemble, so that Co
¯ is the estimated ensemble average.

The “o” subscript indicates an observed value.

7.2.1 The ensemble in Eq 1 refers to the ideal infinite

population of all possible realizations meeting the (fixed)

characteristics associated with an ensemble. In practice, one

will have only a small sample from this ensemble.

7.2.2 Measurement uncertainty in concentration values in

most tracer experiments may be a small fraction of the

measurement threshold, and when this is true its contribution to

σn can usually be deemed negligible; however, as discussed in

9.2 and 9.4, expert judgment is needed as the reliability and

usefulness of field data will vary depending on the intended

uses being made of the data.

7.3 Defining the characteristics of the ensemble in Eq 1

using the model’s input values, α, one can view the observed

concentrations (or evaluation objective) as:

Co 5 Co~α ,β! 5 Co
¯ ~α!1c~∆c!1c~α ,β! (2)

where

β are the variables needed to describe the unresolved transport

and dispersion processes, the overbar represents an average

over all possible values of β for the specified set of model input

parameters α; c(∆c) represents the effects of measurement

uncertainty, and c(α,β) represents ignorance in β (unresolved

deterministic processes and stochastic fluctuations) (14, 24).

7.3.1 Since Co
¯ ~α! is an average over all β, it is only a

function of α, and in this context, Co
¯ ~α! represents the ensemble

average that the model ideally is attempting to characterize.

7.3.2 The modeled concentrations, Cm, can be envisioned

as:

Cm 5 Co
¯ ~α!1d~∆α!1f~α! (3)

where:

d(∆α) represents the effects of uncertainty in specifying the

model inputs, and f(α) represents the effects of errors in the

model formulations. The “m” subscript indicates a modeled

value.

7.3.3 A method for performing an evaluation of modeling

skill is to separately average the observations and modeling

results over a series of non-overlapping limited-ranges of α,

which are called “regimes.” Averaging the observations pro-

vides an empirical estimate of what most of the current models

are attempting to simulate, Co
¯ ~α!. A comparison of the respec-

tive observed and modeled averages over a series of α-groups

provides an empirical estimate of the combined deterministic

error associated with input uncertainty and formulation errors.

7.3.4 This process is not without problems. The variance in

observed concentration values due to natural variability is of

order of the magnitude of the regime averages (17, 25), hence

small sample sizes in the groups will lead to large uncertainties

in the estimates of the ensemble averages. The variance in

modeled concentration values due to input uncertainty can be

quite large (22, 23), hence small sample sizes in the groups will

lead to large uncertainties in the estimates of the deterministic

error in each group. Grouping data together for analysis

requires large data sets, of which there are few.

7.3.5 The observations and the modeling results come from

different statistical populations, whose means are, for an

unbiased model, the same. The variance seen in the observa-

tions results from differences in realizations of averages, that

which the model is attempting to characterize, plus an addi-

tional variance caused by stochastic variations between indi-

vidual realizations, which is not accounted for in the modeling.

7.3.6 As the averaging time increases in the concentration

values and corresponding evaluation objectives, one might

expect the respective variances in the observations and the

modeling results would increasingly reflect variations in en-

semble averages. As averaging time increases, one might

expect the variance in the concentration values and correspond-

ing evaluation objectives to decrease; however, as averaging

time increases, the magnitude of the concentration values also

decreases. As averaging time increases, it is possible that the

modeling uncertainties may yet be large when compared to the

average modeled concentration values, and likewise, the unex-

plained variations in the observations yet may be large when

compared to the average observed concentration values.

7.4 It is recommended that one goal of a model evaluation

should be to assess the model’s skill in predicting what it was

intended to characterize, namely Co
¯ ~α!, which can be viewed as

the systematic (deterministic) variation of the observations

from one regime to the next. In such comparisons, there is a

basis for believing that a well-formulated model would have

zero bias for all regimes. The model with the smallest

deviations on average from the regime averages, would be the

best performing model. One always has the privilege to test the

ability of a model to simulate something it was not intended to

provide, such as the ability of a deterministic model to provide

an accurate characterization of extreme maximum values, but

then one must realize that a well-formulated model may appear

to do poorly. If one selects as the best performing model, the
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model having the least bias and scatter, when compared with

observed maxima, this may favor selection of models that

systematically overestimate the ensemble average by a com-

pensating bias to underestimate the lateral dispersion. Such a

model may provide good comparisons with short-term ob-

served maxima, but it likely will not perform well for estimat-

ing maximum impacts for longer averaging times. By assessing

performance of a model to simulate something it was not

intended to provide, there is a risk of selecting poorly-formed

models that may by happenstance perform well on the few

experiments available for testing. These are judgment deci-

sions that model users will decide based on the anticipated uses

and needs of the moment of the modeling results. This guide

has served its purpose, if users better realize the ramifications

that arise in testing a model’s performance to simulate some-

thing that it was not intended to characterize.

8. Statistical Comparison Metrics and Methods

8.1 The preceding section described a philosophical frame-

work for understanding why observations differ with model

simulation results. This section provides definitions of the

comparison metrics methods most often employed in current

air quality model evaluations. This discussion is not meant to

be exhaustive. The list of possible metrics is extensive (8), but

it has been illustrated that a few well-chosen simple-to-

understand metrics can provide adequate characterization of a

model’s performance (14). The key is not in how many metrics

are used, but is in the statistical design used when the metrics

are applied (13).

8.2 Paired Statistical Comparison Metrics—In the follow-

ing equations, Oi is used to represent the observed evaluation

objective, and Pi is used to represent the corresponding

model’s estimate of the evaluation objective, where the evalu-

ation objective, as explained in 10.3, is some feature that can

be defined through the analysis of the concentration field. In

the equations, the subscript “i” refers to paired values and the

“overbar” indicates an average.

8.2.1 Average bias, d, and standard deviation of the bias, σd,

are:

d 5 d i
¯ (4)

σd
2 5 ~d i 2 d!2¯ (5)

where:

di = (Pi – Oi).

8.2.2 Fractional bias, FB, and standard deviation of the

fractional bias, σFB, are:

FB 5 FBi
¯ (6)

σFB
2 5 ~FBi 2 FB!2¯ (7)

where FBi 5
2~P i 2O i!
~P i 1O i!

.

8.2.3 Absolute fractional bias, AFB, and standard deviation

of the absolute fractional bias, σAFB, are:

AFB 5 AFBi
¯ (8)

σAFB
2 5 ~AFBi 2 AFB!2¯ (9)

where AFBi 5
2|P i 2O i|

~P i 1O i!

8.2.4 As a measure of gross error resulting from both bias

and scatter, the root mean squared error, RMSE, is often used:

RMSE 5 =~P i 2 O i!
2¯ (10)

8.2.5 Another measure of gross error resulting from both

bias and scatter, the normalized mean squared error, NMSE,

often is used:

NMSE 5
~P i 2 O i!

2¯

P̄ Ō
(11)

The advantage of the NMSE over the RMSE is that the

normalization allows comparisons between experiments with

vastly different average values. The disadvantage of the NMSE

versus RMSE is that uncertainty in the observation of low

concentration values will make the value of the NMSE so

uncertain that meaningful conclusions may be precluded from

being reached.

8.2.6 For a scatter plot, where the predictions are plotted

along the horizontal x-axis and the observations are plotted

along the vertical y-axis, the linear regression (method of least

squares) slope, m, and intercept, b, between the predicted and

observed values are:

m 5
N(P iO i 2 ~(P i!~(O i!

N(P i
2 2 ~(P i!

2 (12)

b 5
~(O i!~(P i

2! 2 ~(P iO i!~(P i!
N(P i

2 2 ~(P i!
2 (13)

8.2.7 As a measure of the linear correlation between the

predicted and observed values, the Pearson correlation coeffi-

cient often is used:

r 5
(~P i 2 P̄!~O i 2 Ō!

@(~P l 2 P̄! 2

·( ~O l 2 Ō! 2#1/2 (14)

8.3 Unpaired Statistical Comparison Metrics—If the ob-

served and modeled values are sorted from highest to lowest,

there are several statistical comparisons that are commonly

employed. The focus in such comparisons usually is on

whether the maximum observed and modeled concentration

values are similar, but one can substitute for the word

“concentration,” any evaluation objective that can be expressed

numerically. As discussed in 7.3.5, the direct comparison of

individual observed realizations with modeled ensemble aver-

ages is the comparison of two different statistical populations

with different sources of variance; hence, there are fundamen-

tal philosophical problems with such comparisons. As men-

tioned in 7.4, such comparisons are going to be made, as this

may be how the modeling results will be used. At best, one can

hope that such comparisons are made by individuals that are

cognizant of the philosophical problems involved.

8.3.1 The quantile-quantile plot is constructed by plotting

the ranked concentration values against one another, for

example, highest concentration observed versus the highest

concentration modeled, etc. If the observed and modeled

concentration frequency distributions are similar, then the

plotted values will lie along the 1:1 line on the plot. By visual
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inspection, one can easily see if the respective distributions are

similar and whether the observed and modeled concentration

maximum values are similar.

8.3.2 Cumulative frequency distribution plots are con-

structed by plotting the ranked concentration values (highest to

lowest) against the plotting position frequency, f (typically in

percent), where ρ is the rank (1=highest), N is the number of

values and f is defined as (26):

f 5 100 % ~ρ 2 0.4!/N , for ρ,N/2 (15)

f 5 100 %2100 % ~N 2 ρ10.6!/N , for ρ.N/2 (16)

As with the quantile-quantile plot, a visual inspection of the

respective cumulative frequency distribution plots (observed

and modeled), usually is sufficient to suggest whether the two

distributions are similar, and whether there is a bias in the

model to over- or under-estimate the maximum concentration

values observed.

8.3.3 The Robust Highest Concentration (RHC) often is

used where comparisons are being made of the maximum

concentration values and is envisioned as a more robust test

statistic than direct comparison of maximum values. The RHC

is based on an exponential fit to the highest R-1 values of the

cumulative frequency distribution, where R typically is set to

be 26 for frequency distributions involving a year’s worth of

values (averaging times of 24 h or less) (16). The RHC is

computed as:

RHC 5 C~R!1Θ*lnS 3R 2 1

2
D (17)

where:

Θ = average of the R-1 largest values minus C(R), and
C(R) = the Rth largest value.

NOTE 1—The value of R may be set to a lower value when there are
fewer values in the distribution to work with, see (16). The RHC of the
observed and modeled cumulative frequency distributions are often
compared using a FB metric, and may or may not involve stratification of
the values by meteorological condition prior to computation of the RHC
values.

8.4 Bootstrap Resampling—Bootstrap sampling can be used

to generate estimates of the sampling error in the statistical

metric computed (15, 16, 27). The distribution of some

statistical metrics, for example, RMSE and RHC, are not

necessarily easily transformed to a normal distribution, which

is desirable when performing statistical tests to see if there are

statistically significant differences in values computed, for

example, in the comparison of RHC values computed from the

8760 values of 1 h observed and modeled concentration values

for a year.

8.4.1 Following the description provided by (27), suppose

one is analyzing a data set x1,x2,...xn, which for convenience is

denoted by the vector x=(x1,x2,...xn). A bootstrap sample

x*=(x1*,x2*,...xn*) is obtained by randomly sampling n times,

with replacement, from the original data points x=(x1,x2,...xn).

For instance, with n=7 one might obtain x*=(x5,x7,x5,x4,x7,x3,

x1). From each bootstrap sample one can compute some

statistics (say the median, average, RHC, etc.). By creating a

number of bootstrap samples, B, one can compute the mean, s̄,

and standard deviation, σs, of the statistic of interest. For

estimation of standard errors, B typically is on the order of 50

to 500.

8.4.2 The bootstrap resampling procedure often can be

improved by blocking the data into two or more blocks or sets,

with each block containing data having similar characteristics.

This prevents the possibility of creating an unrealistic bootstrap

sample where all the members are the same value (15).

8.4.3 When performing model performance evaluations, for

each hour there is not only the observed concentration values,

but also the modeling results from all the models being tested.

In such cases, the individual members, xi, in the vector

x=(x1,x2,...xn) are in themselves vectors, composed of the

observed value and its associated modeling results (from all

models, if there are more than one); thus the selection of the

observed concentration x2 also includes each model’s estimate

for this case. This is called “concurrent sampling.” The purpose

of concurrent sampling is to preserve correlations inherent in

the data (16). These temporal and spatial correlations affect the

statistical properties of the data samples. One of the consider-

ations in devising a bootstrap sampling procedure is to address

how best to preserve inherent correlations that might exist

within the data.

8.4.4 For assessing differences in model performance, one

often wishes to test whether the differences seen in a perfor-

mance metric computed between Model No. 1 and the obser-

vations (say the RMSE1), is significantly different when

compared to that computed for another model (say Model No.

2, RMSE2) using the same observations. For testing whether

the difference between statistical metrics is significant, the

following procedure is recommended. Let each bootstrap

sample be denoted, x*b, where * indicates this is a bootstrap

sample (8.4.1) and b indicates this is sample “b” of a series of

bootstrap samples (where the total number of bootstrap

samples is B). From each bootstrap sample, x*b, one computes

the respective values for RMSE1
b and RMSE2

b. The difference

∆*b = RMSE1*b – RMSE2*b then can be computed. Once all B

samples have been processed, compute from the set of B values

of ∆* = (∆*1, ∆*2,...∆* B), the average and standard deviation,

∆̄ and σ∆. The null hypothesis is that ∆̄ is greater than zero with

a stated level of confidence, η, and the t-value for use in a

Student’s-t test is:

t 5
∆̄

σ∆

(18)

For illustration purposes, assume the level of confidence is

90 % (η = 0.1). Then, for large values of B, if the t-value from

Eq 19 is larger than Student’s-tη/2 equal to 1.645, it can be

concluded with 90 % confidence that ∆̄ is not equal to zero, and

hence, there is a significant difference in the RMSE values for

the two models being tested.

9. Considerations in Performing Statistical Evaluations

9.1 Evaluation of the performance of a model mostly is

constrained by the amount and quality of observational data
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available for comparison with modeling results. The simulation

models are capable of providing estimates of a larger set of

conditions than for which there is observational data.

Furthermore, most models do not provide estimates of directly

measurable quantities. For instance, even if a model provides

an estimate of the concentration at a specific location, it is most

likely an estimate of an ensemble average result which has an

implied averaging time, and for grid models represents an

average over some volume of air, for example, grid average;

hence, in establishing what abilities of the model are to be

tested, one must first consider whether there is sufficient

observational data available that can provide, either directly or

through analysis, observations of what is being modeled.

9.2 Understanding Observed Concentrations:

9.2.1 It is not necessary for a user of concentration obser-

vations to know or understand all details of how the observa-

tions were made, but some fundamental understanding of the

sampler limitations (operational range), background concentra-

tion value(s), and stochastic nature of the atmosphere is

necessary for developing effective evaluation procedures.

9.2.2 All samplers have a detection threshold below which

observed values either are not provided, or are considered

suspect. It is possible that there is a natural background of the

tracer, which either has been subtracted from the observations,

or needs to be considered in using the observations. Data

collected under a quality assurance program following consen-

sus standards are more credible in most settings than data

whose quality cannot be objectively documented. Some sam-

plers have a saturation point which limits the maximum value

that can be observed. The user of concentration observations

should address these, as needed, in designing the evaluation

procedures

9.2.3 Atmospheric transport and dispersion processes in-

clude stochastic components. The transport downwind follows

a serpentine path, being influenced by both random and

periodic wind oscillations, composed of both large and small

scale eddies in the wind field. Fig. 1 illustrates the observed

concentrations seen along a sampling arc at 50 m downwind

and centered on a near-surface point-source release of sulfur-

dioxide during Project Prairie Grass (28). Fig. 1 is a summary

over all 70 experiments. For each experiment the crosswind

receptor positions, y, relative to the observed center of mass

along the arc have been divided by σy, which is the second-

moment of the concentration values seen along each arc, that

is, the lateral dispersion which is a measure of the lateral extent

of the plume. The observed concentration values have been

divided by Cmax5CY/~σy
=2π! , where CY is the crosswind

integrated concentration along the arc. The crosswind inte-

grated concentration is a measure of the vertical dilution the

plume has experienced in traveling to this downwind position.

To assume that the crosswind concentration distribution fol-

lows a Gaussian curve, which is implicit in the relationship

used to compute C max, is seen to be a reasonable approxima-

tion when all the experimental results are combined. As shown

by the results for Experiment 31, a Gaussian profile may not

apply that well for any one realization, where random effects

occurred, even though every attempt was made to collect data

under nearly ideal circumstances. Under less ideal conditions,

as with emissions from a large industrial power plant stack of

order 75 m in height and a buoyant plume rise of order 100 m

above the stack, it is easy to understand that the observed

lateral profile for individual experimental results might well

vary from the ideal Gaussian shape. It must be recognized that

features like double peaks, saw-tooth patterns and other irregu-

lar behavior are often observed for individual realizations.

9.3 Understanding the Models to be Evaluated:

9.3.1 As in other branches of meteorology, a complete set of

equations for the characterization of the transport and fate of

material dispersing through the atmosphere is so complex that

no unique analytical solution is known. Approximate analytical

principles, such as mass balance, are frequently combined with

other concepts to allow study of a particular situation (29).

Before evaluating a model, the user must have a sufficient

understanding of the basis for the model and its operation to

know what it was intended to characterize. The user must know

whether the model provides volume average concentration

estimates, or whether the model provides average concentra-

tion estimates for specific positions above the ground. The user

must know whether the characterizations of transport,

dispersion, formation and removal processes are expressed

using equations that provide ensemble average estimates of

concentration values, or whether the equations and relation-

ships used provide stochastic estimates of concentration val-

ues. Answers to these and like questions are necessary when

attempting to define the evaluation objectives (10.3).

9.3.2 A mass balance model tracks material entering and

leaving a particular air volume. Within this conceptual

framework, concentrations are increased by emissions that

occur within the defined volume and by transport from other

adjacent volumes. Similarly, concentrations are decreased by

transport exiting the volume, either by removal by chemical/

physical sinks within the volume, for example, wet and dry

FIG. 1 Illustration of Effects of Natural Variability on Crosswind
Profiles of a Plume Dispersing Downwind (Grouped in a Relative

Dispersion Context)
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