Designation: D5276-19 (Reapproved 2023)

Standard Test Method for Drop Test of Loaded Containers by Free Fall ${ }^{1}$

Abstract

This standard is issued under the fixed designation D5276; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers procedures for the drop testing of loaded boxes, cylindrical containers, and bags and sacks by the free-fall method.
1.2 For containers not exceeding $110 \mathrm{lb}(50 \mathrm{~kg})$, this test method fulfills the requirements of ISO Standards 2206:1987 and 2248:1985. These ISO standards may describe procedures that do not meet the requirements for this test method.
1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards: ${ }^{2}$

D880 Test Method for Impact Testing for Shipping Containers and Systems
D996 Terminology of Packaging and Distribution Environments
D2463 Test Method for Drop Impact Resistance of BlowMolded Thermoplastic Containers
D4003 Test Methods for Programmable Horizontal Impact

[^0]Test for Shipping Containers and Systems
D4169 Practice for Performance Testing of Shipping Containers and Systems
D4332 Practice for Conditioning Containers, Packages, or Packaging Components for Testing
D6055 Test Methods for Mechanical Handling of Unitized Loads and Large Shipping Cases and Crates
D6179 Test Methods for Rough Handling of Unitized Loads and Large Shipping Cases and Crates
E122 Practice for Calculating Sample Size to Estimate, With Specified Precision, the Average for a Characteristic of a Lot or Process
E680 Test Method for Drop Weight Impact Sensitivity of Solid-Phase Hazardous Materials

2.2 ISO Standards: ${ }^{3}$

ISO 2206 Packaging-Complete Filled Transport Packages, Identification of Parts When Testing
ISO 2248 Packaging-Complete Filled Transport Packages, Vertical Impact Test by Dropping
2.3 Code of Federal Regulations:

Title 49 -Transportation (49 CFR) ${ }^{4}$
2.4 TAPPI Standards. ${ }^{5}$

T 400 Sampling and accepting a single lot of paper, paperboard, containerboard, or related product
T 550 Determination of equilibrium moisture in pulp, paper, and paperboard for chemical analysis

3. Terminology

3.1 Definitions-General terms for packaging and distribution environments are found in Terminology D996.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 cylinder-for the purposes of this test method, a cylinder includes substantially cylindrical containers such as barrels, drums, kegs, and pails (fiber, metal, plastic, or wood, or combinations thereof).

[^1]3.2.2 member-a face, corner, or edge of a rectangular container; a chime, end, or sidewall of a cylindrical container; or a face, edge, corner, or butt of a bag or sack.

4. Significance and Use

4.1 This test method is intended for use in evaluating the ability of a container to withstand the sudden shock resulting from a free fall drop impact, or to evaluate the ability of a container and its inner packing to protect its contents during the sudden shock resulting from a free fall drop impact. This test method may also be used to compare the performance of different package designs. This test method may also permit observation of the progressive failure of a container and the damage to its contents.
4.2 This test method is particularly suitable for containers that are normally handled manually during some part of their distribution cycle. Containers of such bulk or mass that they cannot be handled manually may be tested more satisfactorily in accordance with Test Method D880, Test Methods D6055, Test Methods D6179, or Test Methods D4003. See Practice D4169 for additional guidance.

5. Apparatus

5.1 Free-Fall Drop Test Equipment, conforming to the following requirements:
5.1.1 It shall be of a design and construction that supports and secures the test specimen in the intended orientation prior to release, and minimizes the effects of release dynamics on the test specimen.
5.1.2 It shall permit accurate control of the drop from specified heights.
5.1.3 It shall utilize lifting devices that will not damage the test container.
5.1.4 It shall provide a release mechanism that does not impart vertical, rotational, or sideways forces to the test container. If drop leaves are used, the apparatus shall provide a spring or other mechanism so that the leaves do not interfere with a free, unobstructed fall.
5.1.5 It shall provide an impact surface, horizontal and flat, massive enough to be immovable and rigid enough to be nondeformable under the test conditions.
5.1.5.1 The impact surface shall be of concrete, stone, or steel. If the impact surface is a steel plate, it must be at least $1 / 2 \mathrm{in}$. (13 mm) thick and must be anchored firmly to the mass described in 5.1.5.2. The length and width of the impact surface shall be the same or less than the length and width of the rigid mass.

Note 1-Grout (a thin mortar used to fill crevices) is recommended over the entire surface of the mass below the plate to ensure positive contact.
5.1.5.2 The impact surface shall be integral with a mass at least 50 times that of the heaviest container to be tested. For examples regarding the rigid mass see Appendix X2.
5.1.5.3 The impact surface shall be flat, such that no two points on the surface differ in level by more than $5 / 64 \mathrm{in}$. (2 mm).
5.1.5.4 The impact surface shall be rigid, such that it will not be deformed by more than 0.0039 in . $(0.1 \mathrm{~mm})$ when an
area of $0.1550 \mathrm{in}^{2}\left(100 \mathrm{~mm}^{2}\right)$ is loaded statically with 22.05 lb $(10 \mathrm{~kg})$ anywhere on the surface.
5.1.5.5 The impact surface shall be sufficiently large to ensure that the containers being tested fall entirely upon the surface.
5.1.6 A rupture hazard may be used for determining the rupture resistance of cylindrical containers or bags. Unless otherwise specified, the rupture hazard should consist of a 4 by $4-\mathrm{in}$. (102 by $102-\mathrm{mm}$) timber, of oak or other wood of equivalent hardness, approximately $4 \mathrm{ft}(1.2 \mathrm{~m})$ long, having the edges rounded to a radius of not more than $1 / 4 \mathrm{in}$. (6.35 mm).
5.1.7 For very large containers, it may be necessary to use a hoist, sling, and tripping devices, or a solenoid-operated drop test mechanism and suspension devices, such as those described in Appendix X1.
5.1.8 Conditioning Apparatus-Adequate facilities shall be provided for conditioning test specimens at the proper humidity and temperature prior to testing, in accordance with the specification covering the containers to be tested.
5.1.8.1 Conditioning-Depending on the purpose of the tests, containers may be conditioned prior to the drop test by either a different physical test, water immersion, exposure to water spray, or exposure to standard or other fixed air temperature or humidity conditions. It is recommended that special atmospheres for conditioning be selected from those given in Practice D4332. Unless otherwise specified, fiberboard or paperboard containers shall be conditioned in accordance with the preconditioning and standard conditioning atmospheres specified in Practice D4332 (see also Practice D4169 for additional guidance).
5.1.8.2 Where the moisture content of fiberboard containers is determined, it should be determined in accordance with TAPPI T 550.

6. Sampling

6.1 The test specimens and number of samples shall be chosen to permit an adequate determination of representative performance. Practice E122 is recommended. Unless otherwise specified, TAPPI T 400 shall be used for acceptance testing of fiberboard containers.
6.2 In the absence of any sampling plan, at least three representative specimens should be selected for performance evaluation.

7. Test Specimens

7.1 When the protective capability of a container is to be evaluated, it is preferable to pack the container with the actual contents for which it was designed (Note 2). When the capability of a container to withstand rough handling is to be evaluated, pack the container with either the actual contents or a load simulating the contents. Regardless of which procedure is used, close the container in the same manner that will be used in preparing it for shipment.

Note 2-Where the use of actual contents is not feasible because of excessive cost or danger, a dummy load simulating the contents with respect to dimensions, center of gravity, moment of inertia, density, flow characteristics, etc. may be used. Accelerometers or other indicating
mechanisms may be installed.
7.2 Close and seal the container in the normal manner. Dry and age sufficiently so that any adhesive, protective coatings, sealing tape, and so forth will have reached their final normal condition.

8. Procedure

8.1 Identify members as specified in Annex A1, by marking, at a minimum, Faces 1, 2, and 5 of rectangular containers; Positions 1, 3, 5, and 7 of cylindrical containers; and Faces 1, 4 , and 5 of sacks and bags.
8.2 Height of Drop-Determine the height of the drop by measuring from the bottom face, edge, or corner of the container to the impact surface.
8.3 Unless otherwise specified, establish failure criteria prior to the commencement of testing. (See Practice D4169, Acceptance Criteria.)
8.4 Test containers that have been conditioned in the conditioned atmosphere or immediately upon removal from that atmosphere.
8.5 Conduct drop test procedures by dropping the container on either one member or several different members in a prescribed sequence (cyclical testing).
8.5.1 When the container is to be dropped flat on a face, position it so that, upon impact, there is no more than a 2° angle between the plane of this face and the impact surface.
8.5.2 When a rectangular container or bag is to be dropped on an edge, position it so that, upon impact, this edge makes no more than a 2° angle with the impact surface, and the plane containing this edge and the center of gravity of the container makes no more than a 5° angle with the vertical.
8.5.3 When a rectangular container or bag is to be dropped on a corner, position it so that, upon impact, the line containing this corner and the center of gravity of the container makes no more than a 5° angle with the vertical.
8.5.4 When an elongated container or bag is to be dropped on end, it should be reported if the container was caught, including justification (safety restrictions, space interference, etc.) or if it was naturally able to fall causing a secondary impact.
8.5.5 When a cylindrical container is to be dropped on either a chime or a circumferential edge, position it so that, upon impact, a plane containing this edge and the center of gravity of the container makes no more than a 5° angle with the vertical plane perpendicular to the drop surface.
8.5.6 When determining the rupture resistance of cylindrical containers or bags, place a rupture hazard (see 5.1.6) on the target surface, and position it so that, unless otherwise specified, the center of the cylinder sidewall or face edge or butt of the bag impacts across the hazard.
8.5.7 Before each drop of a bag or sack, distribute the contents uniformly throughout the bag or sack.

9. Report

9.1 Report the following information:
9.1.1 Reference to this test method, including a statement to the effect that all tests were conducted in full compliance with the requirements of this test method, or noting any variations and their details.
9.1.2 Dimensions of the container under testing; complete structural specifications; kinds of materials; description and specifications for blocking and cushioning, if used; spacing, size, and type of fasteners; method of closing and strapping, if any; drying and aging time, if any; and tare and gross masses.
9.1.3 Description of the contents of the container under testing and, if not tested with the actual contents intended to be shipped, description of these actual contents.
9.1.4 Number of specimens tested per sample.
9.1.5 Method of conditioning the container, if any; moisture content of the wood, plywood, or fiberboard, if determined; and results of any supplementary tests of the materials from which the container is made.
9.1.6 Description of apparatus and special instrumentation, if used (see Appendix X1).
9.1.7 Method type used to determine size of rigid mass, if known.
9.1.8 Whether a 4 by 4 timber was used as a hazard. Where a hazard other than that specified in 5.1.6 is used, a description of the hazard used.
9.1.9 Details of the failure criteria used.
9.1.10 Member(s) tested (see Annex A1).
9.1.11 Description of the prescribed test sequence, if used (see A1.1).
9.1.12 Drop height(s).
9.1.13 Size of the increment, if a variable height drop test procedure is used.
9.1.14 Number of drops (at each incremental height, if applicable).
9.1.15 Detailed record of the test results for each container, including damage to the container and contents, together with any other observation that may assist in interpreting the results correctly or aid in improving the design of the container or method of packaging, blocking, or bracing.

Note 3-When an elongated container or bag is to be dropped on end, it should be reported if the container was caught and include justification (safety restrictions, space interference, etc.) or if it was naturally able to fall causing a secondary impact.
9.1.16 Where a mean failure height is determined by dropping, a statement of this mean and the estimated standard deviation and level of confidence.
9.1.17 Name and address of the testing agency, date, and signature of a responsible representative of the testing agency.

10. Precision and Bias

10.1 Precision ${ }^{6}$:

10.1.1 A precision statement is not applicable when the drop test is conducted at a specified drop height to determine conformance with established acceptance criteria.
10.1.2 When the drop test is conducted to determine the drop height to failure, the observed precision is a combination

[^2]of the precision of the test method (including apparatus, operators, etc.) and the precision of the packaged product being tested. Experience has shown that the observed precision is highly dependent on the particular packaged item being tested. Research Report D10-1004 describes an interlaboratory test program of three packaged items, establishing drop heights to failure. The mean drop heights to failure for the three types of packaging were $39,42.6$, and 47.7 in . 991,1083 , and 1212 mm). The repeatability (within laboratory) standard deviation ranged from 3 to 10 in . (75 to 250 mm) for these items. The pooled reproducibility (between laboratory) standard deviation was 2.25 in . $(57 \mathrm{~mm}$). The research report suggests that tests of some items produce data that are not distributed normally; log-normal, Weilbull, or other distributions may be applicable.
10.2 Bias-No justifiable statement can be made on the bias of this test method since a true value cannot be established by an accepted referee test method.

11. Keywords

11.1 bags; boxes; cylindrical containers; drop impact; drop test; drums; free fall; loaded containers; packaging; sacks

ANNEXES

(Mandatory Information)

A1. IDENTIFICATION OF MEMBERS

A1.1 Rectangular Containers-The procedure for identification of the members (faces, edges, and corners) of rectangular containers shall be as follows (see Fig. A1.1):

A1.1.1 Determine if the container will be tested in its intended shipping orientation or most stable orientation. The most stable orientation may be different than the intended shipping orientation.
A1.1.2 Place the container in its testing orientation with one of the smallest faces directly in front of the observer. Where applicable use the smallest side adjacent to the manufacturer's joint.

A1.1.3 Label the surface that is facing up as Face 1.
A1.1.4 Label the right surface as Face 2.

A1.1.5 Label the bottom as Face 3.

A1.1.6 Label the left surface as Face 4.
A1.1.7 Label the surface nearest the observer as Face 5.
A1.1.8 Label the surface farthest from the observer as Face 6.

A1.1.9 Identify the edges by the numbers of the two faces that form that edge; for example, 1-2 identifies the edge formed by the top and right face, and 2-5 identifies the edge formed by the right face and near face. (The 2-5 edge is the edge having a vertical manufacturer's joint, and the 2-3 edge is the edge having a horizontal manufacturer's joint in fiberboard containers.)

FIG. A1.1 Members of Rectangular Containers

Note A1.1—For test replications purposes, for boxes that do not have a corner manufacturer's joint or multiple manufacturer's joint, another external distinguishing characteristic can be noted and recorded. This could be print, die-cuts, panel glue-lap, or another external feature; or characteristics of internal packagings or items if they exhibit an identifying asymmetry.

A1.1.10 Identify the corners by the numbers of the three faces that meet to form that corner; for example, 1-2-6 identifies the comer at which the top, right face, and far face meet.

A1.2 Cylindrical Containers-The procedure for identification of the members (tops, bottoms, sidewalls, and chimes) of cylindrical containers shall be as follows (see Fig. A1.2):
A1.2.1 The ends of two perpendicular diameters on the upper surface of the cylindrical container shall be designated as $1,3,5$, and 7 ; and the other ends of lines parallel to the cylinder axis passing through these points respectively shall be designated as $2,4,6$, and 8 . If the package has one or more side seam joints, one of the joints should occupy the position of 5-6.
A1.2.2 Identify diagonal drops on chimes by designating the drop point by number, that is, drop on 1 . Where it is
desirable to drop on a midpoint between two locations on the chime, such a point can be designated using two numbers, that is, drop on 1-3.

A1.2.3 Identify flat drops on sidewalls by designating the drop point by two numbers, that is, drop on 3-4. Where it is desirable to drop on a midpoint between two locations on the sidewall, such a point can be designated using four numbers, that is, drop on 1-3-2-4.

A1.2.4 Identify flat drops on ends using the four numbers of that end, that is, 1-3-5-7 or 2-4-6-8.

A1.3 Sacks and Bags-The procedure for identification of the members (faces, sides, tops, and bottoms) of bags and sacks shall be as follows (see Fig. A1.3):

A1.3.1 Facing the front of the bag with the top up, designate the front of the bag as 1 , the right side edge as 2 , the rear side as 3 , the left side edge as 4 , the bottom as 5 , and the top as 6 . (Where a bag or sack has one or more side seams, Side 2 shall include a side seam.)

FIG. A1.2 Members of Cylindrical Containers

FIG. A1.3 Members of Sacks and Bags

A2. TEST CYCLES AND PROCEDURES

A2.1 The choice of a test cycle or specific procedure depends on the purposes of the tests. Sometimes the drop height, test cycles, and detailed procedures are prescribed in a contract, regulation, or some other standard. Other times a detailed test plan must be determined based on the engineering and business judgments of the interested parties. The drop height, package orientation, and cycle may be chosen based upon knowledge of the shipping environment, knowledge of the type and severity of drop needed to cause certain types of damage to the package or contents, or previous testing or field experience with similar packages. The test plan should also consider the type of information desired from the testing: a statement whether or not pre-established acceptance criteria was obtained; qualification of damage, determination of the drop height to failure; the number of drops to failure, etc.

Note A2.1—When an elongated container or bag is to be dropped on end, it should be reported if container was caught and include justification (safety restrictions, space interference, etc.) or if it was naturally able to fall causing a secondary impact.

A2.1.1 This annex covers some test cycles and procedures for using the drop test, but other cycles and procedures are available or may be developed.

A2.2 Constant Drop Height Procedures-These procedures consist of single or multiple drops from a constant drop height. Replicate samples should be subjected to identical procedures for comparison and for statistical analysis. Typical types of drop cycles are as follows:

A2.2.1 Single Drop-Drop the test package from an orientation and height specified.

A2.2.2 Ten Drop Cycle (Boxes)—Drop the test package on a bottom corner (for example, 2-3-5), the shortest edge radiating from that corner, the next longest edge radiating from that corner, the longest edge radiating from that corner, flat on the smallest two faces, flat on the next two largest faces, and flat on the two largest faces.
A2.2.3 Four Drop Cycle (Boxes)—Drop the test package on a corner, the shortest edge radiating from that corner, the next longest edge radiating from that corner, and the longest edge radiating from that corner.

A2.2.4 Twenty-Six Drop Cycle (Boxes)—Drop the test package on each flat face, edge, and corner.

A2.2.5 Eight Corner Drop Cycle (Boxes)—Drop the test package on each of the eight corners.

A2.2.6 Twelve Edge Drop Cycle (Boxes)—Drop the test package on each of the twelve edges.

A2.2.7 Four Rim Drop Cycle (Cylindrical Containers)Drop the test package once on each half of the top and bottom rims.

A2.2.8 Six Flat Drop Cycle-Drop the test package flat on each face for a box or each end and four sides for a bag or cylinder. With a cylinder, the four side drops shall be 90° apart.

A2.2.9 Repeated Drop Cycle—Drop the test package for a prescribed drop or drop cycle. Continue dropping on similar cycles until a specified type of damage is noted to the package or contents. This procedure determines the number of drops or cycles required to damage the package or contents.

A2.2.10 Critical Orientation-When a drop is specified for a most critical or damage-prone orientation, a single drop is required on that orientation. The determination of the critical orientation must be provided. It may be a formal study of the relationship between drop orientation and damage, other engineering analyses of that product and package, or laboratory and field experience with similar packages.

A2.2.11 Hazard Drop-Drop the test package onto a specified hazard from a specified height and orientation.

A2.3 Progressive Drop Height Procedure:

A2.3.1 Drop the test package from an initial drop height chosen to be unlikely to cause predefined damage to the package or contents. This will be in a prescibed orientation or a prescribed cycle of drops. If no damage occurs from the initial drop height, increase the drop height by a predetermined increment. Repeat the drop or drop cycle on the same package until the predefined damage has occurred. It is common to estimate the critical drop height as the midpoint between the last successful test and the test which caused damage; use of the successful test point before failure may be considered a more conservative estimate. Replicate samples should be

[^0]: ${ }^{1}$ This test method is under the jurisdiction of ASTM Committee D10 on Packaging and is the direct responsibility of Subcommittee D10.21 on Shipping Containers and Systems - Application of Performance Test Methods.

 Current edition approved Oct. 1, 2023. Published October 2023. Originally approved in 1992. Last previous edition approved in 2019 as D5276-19. DOI: 10.1520/D5276-19R23.
 ${ }^{2}$ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service @astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

[^1]: ${ }^{3}$ Available from American National Standards Institute (ANSI), 25 W .43 rd St , 4th Floor, New York, NY 10036, http://www.ansi.org.
 ${ }^{4}$ Available from U.S. Government Printing Office Superintendent of Documents, 732 N. Capitol St., NW, Mail Stop: SDE, Washington, DC 20401, http:// www.access.gpo.gov.
 ${ }^{5}$ Available from Technological Association of the Pulp and Paper Industry (TAPPI), 15 Technology Parkway South, Suite 115, Peachtree Corners, GA 30092, http://www.tappi.org.

[^2]: ${ }^{6}$ Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D10-1004. Contact ASTM Customer Service at service@astm.org.

