This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Standard Specification for Compact Round Concentric-Lay-Stranded Aluminum 1350 Conductors¹

This standard is issued under the fixed designation B400/B400M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers aluminum 1350-H19 (extra hard), 1350-H16 or -H26 ($(\underline{n}_{4}-\underline{hard}), \underline{hard}, \underline{1350}$ -H14 or -H24 ($\frac{1}{2}$ hard) and 1350-H142 or -H242 ($\frac{1}{2}$ hard) bare compact-round concentric-lay-stranded conductors made from round or shaped wires for use as uninsulated electrical conductors or in covered or insulated electrical conductors. These conductors shall be composed of a central core surrounded by one or more roller or die compacted layers of helically applied wires (Explanatory Note 1 and Note 2).

1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

NOTE 1—Prior to 1975, aluminum 1350 was designated as EC aluminum.

NOTE 2—The aluminum and temper designations conform to ANSI Standard H35.1. Aluminum 1350 corresponds to Unified Numbering System A91350 in accordance with Practice E527.

1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

B230/B230M Specification for Aluminum 1350–H19 Wire for Electrical Purposes
B231/B231M Specification for Concentric-Lay-Stranded Aluminum 1350 Conductors
B263 Test Method for Determination of Cross-Sectional Area of Stranded Conductors
B354 Terminology Relating to Uninsulated Metallic Electrical Conductors
B609/B609M Specification for Aluminum 1350 Round Wire, Annealed and Intermediate Tempers, for Electrical Purposes
E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

¹ This specification is under the jurisdiction of ASTM Committee B01 on Electrical Conductors and is the direct responsibility of Subcommittee B01.07 on Conductors of Light Metals.

Current edition approved March 1, 2019Oct. 1, 2023. Published March 2019October 2023. Originally approved in 1963. Last previous edition approved in $\frac{20142019}{10.1520/B0400_B0400M-19}$ as $\frac{B400/B400M-14}{B400/B400M-19}$. DOI: $\frac{10.1520/B0400_B0400M-19}{10.1520/B0400_B0400M-23}$.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

2.2 Other Documents: ANSI H35.1/H35.1(M) Alloy and Temper Designation Systems for Aluminum³ NBS Handbook 100-Copper Wire Tables, of the National Bureau of Standards⁴

3. Classification

3.1 For the purpose of this specification, conductors are classified as follows:

3.1.1 Class AA-For bare conductors usually used in overhead lines.

3.1.2 *Class A*—For conductors to be covered with weather-resistant materials, and for bare conductors where greater flexibility than is afforded by Class AA is required. Conductors indicated for further fabrication into tree wire or to be insulated and laid helically with or around aluminum or ACSR messengers, shall be regarded as Class A conductors with respect to direction of lay only (see 6.36.4).

3.1.3 *Class B*—For conductors to be insulated with various materials such as rubber, paper, varnished cloth, and so forth, and for the conductors indicated under Class A where greater flexibility is required.

4. Ordering Information

4.1 Orders for material under this specification shall include the following information:

4.1.1 Quantity of each size and class (Table 1),

4.1.2 Conductor size; circular-mil area or AWG (Section 7),

- 4.1.3 Class (Section 3),
- 4.1.4 Temper (Section 13),

4.1.5 Lay direction if nonstandard Details of special purpose lays, when required (see 6.3 and 6.4), reversed or unidirectional (see through 6.4) or special (see 6.56.6),

4.1.6 Special tension test, if required (see 17.2), ASTM B400/B400M-23

4.1.7 Place of inspection (Section 18), and

4.1.8 Packaging and Package Marking (Section 19).

5. Joints

5.1 1350-H19 Single Conductors for Use in Bare or Covered Conductor Overhead Lines:

5.1.1 Joints may be made in the six outer wires of seven-strand conductors by cold-pressure welding or by electric-butt, cold-upset welding, but not by electric-butt welding. Joints are not permitted in the finished center wire of seven-stranded conductors.

5.1.2 Joints may be made in any of the wires in conductors of 18 or more wires by electric-butt welding, cold-pressure welding, or electric butt, cold-upset welding.

5.1.3 The minimum distance between a wire joint and another joint either in the same wire or in other wires of the completed conductor shall be 50 ft [15 m].

5.2 Conductors of All Tempers to Be Insulated or Covered, and Not Used as a Tension Member Conductor in Overhead Lines:

5.2.1 Joints may be made in any of the wires of any stranding by electric-butt welding, cold-pressure welding, or electric-butt, cold-upset welding.

³ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

⁴ Available from National Technical Information Service (NTIS), 5285 Port Royal Rd., Springfield, VA 22161, http://www.ntis.gov.

TABLE 1 Construction of Compact-Round Concentric-Lay-Stranded, Aluminum Conductors

NOTE 1-Metric values listed below represent a soft conversion and as such they may not be the same as those metric values which are calculated from the basic metric density.

Conductor Size			Class	Number of	Nominal Compact Conductor Diameter		Nominal Mass per	Nominal Mass per Kilometer,	Nominal DC Resistance at 20°C 20 °C	
Circular Mils	AWG	mm ²		wires -	in.	mm	1000 ft, lb	kg ^A	Ω/1000 ft	Ω/km
1 500 000		760	В	91 ^{<i>B</i>,<i>C</i>}	1.299	33.0	1406	2092	0.0116	0.0380
1 250 000		633	В	91 ^{<i>B</i>,<i>C</i>}	1.184	30.1	1172	1744	0.0138	0.0453
1 100 000		557	В	91 ^{<i>B</i>,<i>C</i>}	1.112	28.2	1031	1534	0.0158	0.0518
1 000 000		507	В	61 ^D	1.060	26.9	937	1394	0.0173	0.0563
900 000		456	В	61 ^D	0.999	25.4	844	1257	0.0193	0.0632
800 000		405	В	61 ^D	0.938	23.8	750	1116	0.0217	0.0712
750 000		380	В	61 ^D	0.908	23.1	703	1046	0.0231	0.0759
700 000		355	В	61 ^D	0.877	22.3	656	976	0.0248	0.0813
650 000		329	В	61 ^D	0.845	21.5	609	906	0.0267	0.0875
600 000		304	B	61 ^D	0.813	20.7	563	838	0.0289	0.0948
556 500		282	AA	19 ^E	0 780	19.8	521	775	0.0312	0 102
550 000		279	В	61 ^D	0.775	19.7	516	768	0.0315	0.103
500 000		253	B	37 ^F	0.736	18.7	468	696	0.0347	0.114
500 000		253	AA	19 ^E	0 736	18.7	468	696	0.0347	0 114
477 000		242	AA	19 ^E	0 722	18.3	447	665	0.0364	0 119
450 000		228	B	37 ^F	0 700	17.8	422	628	0.0385	0 126
400 000		203	B	37 ^F	0.659	16.7	375	558	0.0434	0.120
397 500		200		19 ^E	0.659	16.7	372	554	0.0436	0.142
350 000		177	B	37 ^F	0.616	15.6	328	488	0.0495	0.162
350 000		177	Δ	19 ^E	0.616	15.6	328	488	0.0495	0.162
336 400		170	Δ	10 ^E	0.603	15.0	315	460	0.0400	0.160
336 400		170	ΔΔ	7	0.003	15.3	315	403	0.0516	0.169
300 000		152	B	37F	0.000	14.5	281	403	0.0578	0.105
300 000		152	Δ	10 ^E	0.570	14.5	281	/18	0.0578	0.100
300 000		152	ΔΔ	7	0.570	14.5	201	410	0.0578	0.190
266 800		135		10	0.570	13.6	250	372	0.0570	0.130
200 800		135	~	19	0.537	13.0	250	372	0.0050	0.213
200 000		100		27 ^F	0.537	13.0	230	3/2	0.0000	0.213
250 000		127	Δ	10 ^E	0.520	13.2	234	348	0.0094	0.220
250 000		127		7	0.520	13.2	234	348	0.0034	0.220
211 600	0000	107	B	10 ^E	0.520	10.2	109	205	0.0034	0.220
211 600	0000	107		7	0.475	12.1	109	205	0.0020	0.203
167 900	0000	95.0		105	0.473	10.7	157	233	0.0020	0.203
167 800	000	85.0		7	0.423	10.7	157	234	0.103	0.330
133 100	000	67.4	AA, A B	10 ^E	0.423	9.55	107	186	0.103	0.338
133 100	00	67.4		7	0.376	9.55	125	186	0.130	0.428
105 600	00	53.5	, B		0.370	1001/853	98.0	1/7	0.164	0.420
105 600	0	53.5		7	0.330	9.53	90.9	147	0.104	0.539
82 600	indards ite	h ai / 12 1	o/stancards	sist/10E629	0.330	0-43 7 50	8ab- 79 4	015047/25	0.104	-h40069023
83 600	1	12.4		7	0.239	7.59	78 /	117	0.2070	0.680
66 360	2	44.4		7	0.239	6.01	62.2	92.6	0.207	0.000
52 620	2	26.7		7	0.200	6.05	10 2	73.3	0.201	1.08
11 740	3	20.7		7	0.200	5.05	49.0	73.3	0.330	1.00
41 740	4	12.2	A, D A B	7	0.213	0.41 4 00	39.1 24 F	00.∠ 26.6	0.410	0.17
16 510	0	10.0		7	0.109	4.29	24.0 15 F	22.1	1 05	2.17
10 510	0	0.37	А, D	1	0.134	5.40	15.5	23.1	1.05	0.44

^A 1 lb/1000 ft = 1.488 kg/km.

^B 85 wires minimum. ^C As agreed upon between the manufacturer and the customer, these sizes may be produced with a 61 to 58 wire construction of the appropriate wire size.

^D 58 wires minimum.

^E 18 wires minimum.

^F 35 wires minimum.

5.2.2 Joints in the individual wires in a finished conductor shall be not closer together than 1 ft [0.3 m] for conductors of 19 wires or less, or closer than 1 ft in a layer for conductors of more than 19 wires.

5.3 No joint or splice shall be made in a stranded conductor as a whole.

6. Lay

^{6.1} The length of lay <u>orof</u> each layer for Classes AA and A shall <u>be</u>-not <u>be</u> less than 11 nor more than 17.5 times the outside diameter of that layer.

∰ B400/B400M – 23

6.2 The length of lay of the outer layer for Class B shall be not less than 8 nor more than 16 times the outside diameter of the completed conductor, except that for sizes No. 2 AWG [33.6 mm²] and smaller, the maximum length of lay shall be not more than 17.5 times the outside diameter of the completed conductor.

<u>6.3</u> For Class AA and A bare conductors having multiple layers of aluminum wires, the length of lay of any aluminum layer shall not be less than the length of lay of the aluminum layer immediately beneath it.

6.4 The direction of lay of the outer layer shall be right-hand for Classes AA and A, and it shall be reversed in successive layers. For Class A stranding where the conductors are to be insulated and laid helically with or around aluminum or ACSR messengers, the stranding lay direction may be unidirectional or unilay in successive layers.

6.5 The direction of lay of the outer layer shall be left-hand for Class B, and it shall be reversed in successive layers, unidirectional, or unilay.

6.6 Other lay requirements may be furnished by special agreement between the manufacturer and the purchaser.

7. Construction

7.1 The construction of the conductors shall be as shown in Table 1 as to number of wires and cross-sectional area of the completed conductor, and the lay shall be in accordance with Section 6.

7.2 Wire used in the fabrication of conductor shall be of such dimensions as to produce a finished conductor having a nominal cross-sectional area and diameter as prescribed in Table 1.

8. Rated Strength of Conductor https://standards.iteh.ai)

8.1 The rated strength of 1350-H19 conductors shall be taken as the percentage, indicated in Table 2, of the sum of the strengths of the component wires, calculated on the basis of the nominal wire diameter for the corresponding noncompacted construction given in Specification B231/B231M and the specified minimum average tensile strength given in Specification B230/B230M for 1350-H19 wire (Explanatory Note 6).

8.2 Calculations for rated strengths of 1350-H16, -H26, -H14, -H24, -H142, and -H242 conductors shall be made on the basis of the strengths of the component wires using the nominal wire diameter for the noncompacted construction given in Specification B231/B231M and the specified maximum and minimum tensile strengths of the conductors shall be taken as the sum of the calculated minimum strengths of the component wires multiplied by the rating factor given in Table 2. The maximum rated strength of the conductors shall be taken as the sum of the calculated maximum strengths of the component wires (Explanatory Note 6).

8.3 Rated-strength and breaking-strength values shall be rounded to three significant figures, in the final value only, in accordance with the rounding method of Practice E29.

TABLE 2 Rating Factors							
Stra							
Number of Wires in Conductor	Number of Layers	Rating Factor, %					
7	1	96					
19 ^A	2	93					
37 ^{<i>B</i>}	3	91					
61 ^{<i>C</i>}	4	90					
91 ^D	5	90					

^A 18 wires minimum.

^B 35 wires minimum.

^C 58 wires minimum.

^D 85 wires minimum.