Designation: F899 - 23 # Standard Specification for Wrought Stainless Steels for Surgical Instruments¹ This standard is issued under the fixed designation F899; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval. This standard has been approved for use by agencies of the U.S. Department of Defense. # 1. Scope* - 1.1 This specification covers the chemistry requirements for wrought stainless steels used for the manufacture of surgical instruments. The data contained in Tables 1-4 of this specification, including typical hardness values, common heat treating cycles, and examples of selected stainless steels that have been used for surgical instruments, is provided for reference only. Mechanical property requirements, heat treating requirements, hardness requirements, and all other requirements except chemistry are governed by the appropriate material standards as referenced below or as agreed upon between the purchaser and supplier. - 1.2 The SI units in this standard are the primary units. The values stated in either primary SI units or secondary inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of each other. Combining values from the two systems may result in nonconformance with the standard. - 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. #### 2. Referenced Documents 2.1 ASTM Standards:² A276/A276M Specification for Stainless Steel Bars and Shapes A313/A313M Specification for Stainless Steel Spring Wire A314 Specification for Stainless Steel Billets and Bars for Forging A480/A480M Specification for General Requirements for Flat-Rolled Stainless and Heat-Resisting Steel Plate, Sheet, and Strip A484/A484M Specification for General Requirements for Stainless Steel Bars, Billets, Shapes, and Forgings A555/A555M Specification for General Requirements for Stainless Steel Wire and Wire Rods A564/A564M Specification for Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel Bars and Shapes A582/A582M Specification for Free-Machining Stainless Steel Bars A751 Test Methods and Practices for Chemical Analysis of Steel Products 2.2 ISO Standards:³ ISO 7153-1 Surgical Instruments—Materials—Part 1: Metals ISO 9001 Quality Management Systems—Requirements ## 3. Classification and Type - 3.1 *Classes*—Stainless steel material requirements for surgical instruments shall conform to one of the following classes, as specified: - 3.1.1 Class 3—Austenitic Stainless Steel. - 3.1.2 Class 4—Martensitic Stainless Steel. - 3.1.3 Class 5—Precipitation Hardening Stainless Steel. - 3.1.4 Class 6—Ferritic Stainless Steel. - 3.2 *Type*—Where applicable, the commercially recognized type of stainless steel is included in Tables 5 and 6. # 4. Ordering Information - 4.1 Inquiries and orders for material under this specification shall include the following information as agreed upon by the purchaser and supplier: - 4.1.1 Quantity (weight or number of pieces), - 4.1.2 Classification, optional, - 4.1.3 Type, - 4.1.4 Form, - 4.1.5 Condition (see 5.1), - 4.1.6 Finish (see 5.3), ¹ This specification is under the jurisdiction of ASTM Committee F04 on Medical and Surgical Materials and Devices and is the direct responsibility of Subcommittee F04.12 on Metallurgical Materials. Current edition approved Nov. 1, 2023. Published November 2023. Originally approved in 1984. Last previous edition approved in 2020 as F899-20. DOI: 10.1520/F0899-23. ² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website. ³ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org. TABLE 1 Typical Maximum Hardness for Selected Class 4 Martensitic Stainless Steels in the Annealed Condition^A | | Typical Maximum | | | | |-------------|-------------------------------|--|--|--| | UNS or Type | Brinell Hardness ^B | | | | | 410 | 210 | | | | | 410X | 220 | | | | | 416 | 262 | | | | | 416 Mod | 262 | | | | | 420A | 220 | | | | | 420B | 235 | | | | | 420 Mod | 255 | | | | | 420X | 262 | | | | | 420C | 262 | | | | | 420F | 262 | | | | | 420F Mod | 262 | | | | | UNS S42027 | 255 | | | | | 431 | 285 | | | | | 440A | 285 | | | | | 440A Mod | 285 | | | | | 440B | 285 | | | | | 440C | 285 | | | | | 440F | 285 | | | | | UNS S42026 | 260 | | | | | UNS S42010 | 235 | | | | | UNS S44027 | 285 | | | | ^A Excludes billets and bars for forging. - 4.1.7 Mechanical properties or hardness, and - 4.1.8 Applicable dimensions, including size, thickness, width, and length (exact, random, or multiples) or drawing number. #### 5. Manufacture - 5.1 Condition—Stainless steels shall be furnished to the purchaser, as specified, in the hot-finished, cold-finished, annealed, solution-treated, solution-treated and aged, quench-hardened and tempered, or as specified by the purchaser. (Note that highly hardenable martensitic stainless billets and bars such as Types 420A, 420B, 420C, 420 Mod, 420F, 420F Mod, 440A, 440A Mod, 440B, and 440C intended for forging are commonly annealed prior to shipment and so specified in order to avoid the possibility of thermal cracking. Other hardenable martensitic grades such as Types 403, 410, 416, 416 Mod, and 431, which also may require annealing, depending on their composition and size, are furnished suitable for cold cutting when so specified on the purchase order.) Type 302PH (S17710) may be furnished as hot-rolled or hot-formed, cold drawn or cold drawn, and age-hardened. - 5.2 *Conditioning*—Billet and bar intended for forging may be conditioned by chipping, grinding, or other suitable means to remove injurious surface defects. - 5.3 Finish—Types of finish available for bar and wire products are cold-drawn, pickled, ground, ground and polished, or as specified in the purchase order. # 6. General Requirements for Delivery 6.1 In addition to the chemistry requirements of this specification, all requirements of the current editions of Specifications A276/A276M, A313/A313M, A314, A480/A480M, A484/A484M, A555/A555M, A564/A564M, A582/A582M, and Test Methods and Practices A751 shall apply where applicable, as agreed upon between the purchaser and supplier. 6.2 This specification complements the applicable ISO document covering stainless steel for surgical instruments and, by reference, includes all of the stainless grades in ISO 7153-1. ### 7. Chemical Requirements - 7.1 The heat analysis shall conform to the requirements as to chemical composition specified in Tables 5-8. - 7.2 Unified Numbering System (UNS) designations have been added to Tables 5-8 to provide an easy cross reference to a common numbering system. In order to ensure consistency in the materials used for the manufacture of surgical instruments, compositional limits tighter than typical UNS limits have been established for certain elements (as denoted by an asterisk). For example, more restrictive carbon and sulfur limits are specified in Table 7. - 7.3 The chemical composition requirements for Types 301, 303, 304, 316, 410, 420A, 420B, 420C, and 430F also meet the composition requirements in ISO 7153-1. - 7.4 Methods and practices relating to chemical analysis required by this specification shall be in accordance with Test Methods and Practices A751. - 7.5 The cobalt content of the heat analysis shall be indicated for information only on the certificate issued by the manufacturer for the materials listed in Tables 5-8. ## 8. Mechanical Requirements - 8.1 Material shall conform to the mechanical property requirements cited in the appropriate ASTM standards (see 2.1) or shall meet the mechanical property requirements specified by the purchaser. - 8.2 When desired, Brinell hardness number (HB), Rockwell hardness B scale (HRB), or Rockwell hardness C scale (HRC) limits may be specified. Typical hardness values for selected Class 4 martensitic stainless steels in the annealed condition are listed in Table 1. These typical hardness values are provided for reference only. # 9. Heat Treatment - 9.1 Material shall be heat treated per the applicable referenced ASTM standard (see 2.1) for the selected stainless steel. - 9.2 Typical hardness values for selected Class 4 martensitic stainless steels are listed in Table 2 and are provided for reference only. - 9.3 Heat treating guidelines for Class 5 precipitation hardening stainless steels are included in Specification A564/A564M. - 9.4 Specifying a hardness requirement appropriate for the selected alloy and intended application is the responsibility of the purchaser. ## 10. Special Information 10.1 Some examples of selected stainless steels that have been used for various surgical instrument applications are listed in Table 3 and Table 4 for information purposes. Note 1-Re-sulphurized free-machining grades can exhibit lower ^B Or equivalent Rockwell hardness. TABLE 2 Typical Heat Treating Cycles and Resultant Hardness Values for Selected Class 4 Martensitic Stainless Steels | UNS or Type | Typical Hardening ^A Temperature | Typical Hardness at Indicated Tempering Temperature ^B | | | UNS or Type | Typical Hardening ^A Temperature | Typical Hardness at Indicated
Tempering Temperature ^B | | | |-------------|--|--|-------------------|----------|-----------------|--|---|-------------------|----------| | | remperature | °C | °F | (HRC) | | remperature | °C | °F | (HRC) | | 410 | 1010 °C [1850 °F] | 260 | 500 | 43 | 420F | 1038 °C [1900 °F] | 149 | 300 | 52 | | | | 371 | 700 | 43 | | | 204 | 400 | 52 | | | | 482 | 900 ^C | 42 | | | 260 | 500 | 50 | | | | 538 | 1000 ^C | 30 | | | 315 | 600 | 50 | | | | 593 | 1100 | 24 | | | 371 | 700 | 49 | | 410X | 1024 °C [1875 °F] | 260 | 500 | 46 | | | 427 | 800 ^D | 49 | | 4107 | 1024 0 [1075 1] | 371 | 700 | 46/47 | 420F Mod | 1030 °C [1000 °E] | 149 | 300 | 53 | | | | 482 | 900 ^C | | 420F IVIOU | 1038 °C [1900 °F] | 204 | | 50 | | | | | | 48 | | | | 400 | | | | | 538 | 1000 ^C | 44 | | | 260 | 500 | 48 | | | | 593 | 1100 | 31 | | | 315 | 600 | 48 | | 416 Mod | 982 °C [1800 °F] | 149 | 300 | 38 | | | 371 | 700 | 48 | | | | 260 | 500 | 37 | | | 427 | 800 ^D | 48 | | | | 371 | 700 | 37 | UNS S42026 | 1050 °C [1920 °F] | 204 | 400 | 56 | | | | 482 | 900 ^C | 35 | | | 260 | 500 | 54/55 | | | | 538 | 1000 ^C | 30 | | | 315 | 600 | 53/54 | | | | 593 | 1100 | 22 | 431 | 1038 °C [1900 °F] | 260 | 500 | 42 | | 416 | 982 °C [1800 °F] | 149 | 300 | 41 | | | 371 | 700 | 42 | | | 002 0 [.000 .] | 260 | 500 | 39 | | | 482 | 900 ^C | 45 | | | | 371 | 700 | 41 | | | 593 | 1100 ^C | 34 | | | | 482 | 900 ^C | 36 | 440A | 1030 °C [1000 °E] | 149 | 300 | 56/57 | | | | | | | 440A | 1038 °C [1900 °F] | | | | | | | 538 | 1000 ^C | 31 | | | 204 | 400 | 56 | | | | 593 | 1100 | 26 | | | 260 | 500 | 54 | | 420A | 1010 °C [1850 °F] | 149 | 300 | 53 | | | 315 | 600 | 51/52 | | | | 204 | 400 | 50 | | | 371 | 700 | 51 | | | | 260 | 500 | 48 | | | 427 | 800 ^D | 50 | | | | 315 | 600 | 48 | 440A Mod | 1080 °C [1976 °F] | 149 | 300 | 58 | | | | 371 | 700 | 48 | | | 204 | 400 | 54 | | | | 427 | 800 ^D | 48 | | | 260 | 500 | 53/54 | | 420B | 1038 °C [1900 °F] | 149 | 300 | 52 | 1 1 | | 315 | 600 | 53 | | ILOD | 1000 0 [1000 1] | 204 | 400 | 52 | ndard | | 371 | 700 | 53 | | | | 260 | 500 | 50 | unuaru | | 427 | 800 ^D | 53 | | | | | | | 440B | 1020 °C [1000 °E] | | | | | | | 315 | 600 | 50 | 4400 | 1038 °C [1900 °F] | 149 | 300 | 58/59 | | | | 371 | 700 | 49 | 141 U2°1 | | 204 | 400 | 56/57 | | | | 427 | 800 ^D | 49 | | | 260 | 500 | 53/54 | | 420 Mod | 1010 °C [1850 °F] | 177 | 350 | 56/57 | | | 315 | 600 | 53 | | | | 204 | 400 | 55 | f Previ | | 371 | 700_ | 54 | | | | 260 | 500 | 54 | | | 427 | 800 ^D | 54 | | 420X | 1038 °C [1900 °F] | 315 | 600 | 53 | 440C | 1038 °C [1900 °F] | 149 | 300 | 60 | | | | 149 | 300 | 52 | | | 204 | 400 | 59 | | | | 204 | 400 | 52 CTM T | 2000 22 | | 260 | 500 | 57 | | | | 260 | 500 | 50 | 789 <u>9-23</u> | | 315 | 600 | 56 | | | | 315 | log/star600mds/s | 5034454 | 121 60-5 404 | | 371 | 06a/700m | 0.56.23 | | | | 371 | 700 | 49 | 131+10e5-49d | | 427 | 800 ^D | 56 | | | | 427 | 800 ^D | 49 | 440F | 1038 °C [1900 °F] | 149 | 300 | 60 | | 040040 | 1000 °C [1000 °E] | | | | 4401 | 1030 C [1900 1] | | | | | S42010 | 1038 °C [1900 °F] | 204 | 400 | 50 | | | 204 | 400 | 59 | | | | 260 | 500 | 47 | | | 260 | 500 | 57 | | | | 316 | 600 [€] | 47 | | | 315 | 600 | 56 | | | | 371 | 700 | 48 | | | 371 | 700_ | 56 | | | | 454 | 850 | 48 | | | 427 | 800 ^D | 56 | | 420C | 1038 °C [1900 °F] | 149 | 300 | 58 | S42027 | 1010 °C [1850 °F] | 149 | 300 | 58/59 | | | • | 204 | 400 | 55/56 | | • | 204 | 400 | 57/58 | | | | 260 | 500 | 53/54 | | | 260 | 500 | 57/58 | | | | 315 | 600 | 53/54 | | | 315 | 600 | 56/57 | | | | 371 | 700 | 54/55 | UNS S44027 | 1038 °C [1900 °F] | 149 | 300 | 58 | | | | | 800 ^D | | 0113 344027 | 1030 C [1800 F] | | | | | | | 427 | 800 | 55 | | | 204 | 400 | 57
54 | | | | | | | | | 260 | 500 | 54 | | | | | | | | | 315 | 600 | 53 | | | | | | | | | 371 | 700_ | 53 | | | | | | | 1 | | 427 | 800^{D} | 53 | A The temperatures listed are intended to be guides with the final heat treat cycle determined by the designer or heat treatment engineer, or both, to meet the intended use of the device. Time at temperature depends on section size. It is recommended that a controlled heat treating atmosphere be used in accordance with good commercial practice. Heat treat cycles may use air oil or gas for quench practice. Heat treat cycles may use air, oil, or gas for quench. B Temper at least 1 h at the indicated temperature and air cool. Large section sizes require longer times at temperature. ^C Tempering in the range of 399/566 °C [750/1050 °F] results in decreased impact strength and reduced corrosion resistance. D Tempering over 427 °C [800 °F] results in reduced corrosion resistance. E Tempering above 316 °C [600 °F] results in reduced toughness. TABLE 3 Examples of Selected Stainless Steels That Have Been Used for Surgical Instruments in Accordance with ISO 7153-1 | UNS or Type | Cutting Instruments | Non-Cutting Instruments | |-------------|--|---| | 303 | Chisels and gouges, bone curettes | probes | | 304 | | retractors | | 410 | | tissue, forceps, dressing forceps, retractors, probes | | 420A | Bone rongeurs, conchotomes, bone cutting forceps, chisels and gouges, bone curettes, scissors with carbide inserts | forceps, retractors, probes, forceps with bow handles, branch forceps | | 420B | bone rongeurs, scissors | | | 420C | scissors, bone rongeurs, bone cutting forceps, conchotomes, scalpels, knives, bone curettes, chisels and gouges | | | 420 Mod | bone rongeurs, conchotomes, bone cutting forceps, chisels
and gouges, bone curettes, scissors with carbide inserts,
scissors, scalpels, knives | tissue forceps, dressing forceps, retractors, probes, forceps, forceps with bow handles, branch forceps | | UNS S44027 | chisels, osteotomes, scalpels, and knives | drills, retractors, spreaders, and tongs | TABLE 4 Examples of Selected Stainless Steels That Have Been Used for Surgical Instruments in the United States | UNS or Type | Cutting Instruments | Non-Cutting Instruments | |-------------------------|--|--| | 302 | knives, chisels, gouges, curettes | cannula, forceps, guides, needle vents, retractors, specula, spreaders, tendor passers, springs | | 303 ^A | chisels, curettes, knives | cannula, clamps, drills, forceps, handles, hammers, mallets, needle vents, punches, retractors, rulers, screws, skin hooks, specula, spreaders, suction tubes, tendon strips, tongs, tunnelers, probes | | 304 | | cannula, clamps, forceps, holders, handles, needle vents, retractors, specula, spreaders, suction tubes, tendon passers | | 316 | | specula | | 410 | chisels, curettes, dissectors, osteotomes, reamers, scissors with inserts | clamps, clip applicators, elevators, forceps, hemostats, holders, needle holders, punches, retractors, skin hooks, sounds, spreaders, probes, dilators | | 410X | curettes, dissectors, rongeurs | clamps, forceps, hemostats, holders, punches, retractors | | 416 ^A | chisels, curettes, dissectors | clamps, punches, retractors, skin hooks, spreaders | | 420 ⁸ | chisels, curettes, cutters, bone cutting forceps, knives, scissors, rongeurs, scalpels, skin punches, conchotomes | clamps, elevators, punches, rounds, dissectors, retractors, skin hooks, needles | | 420F ^A | cutters | burrs | | 431 | | cheek retractors, insertion wrenches, orthopeadic instruments | | 440 ^C | chisels, knives, osteotomes, scalpels | drills, retractors, spreaders, tongs | | 440A Mod ^C | chisels, knives, osteotomes, reamers | drills, retractors, raspatory, tongs | | 420 Mod | chisels, curettes, cutters, bone cutting forceps,
knives, scissors, rongeurs, scalpels, skin punches,
conchotomes, ostoetomes, reamers | clamps, elevators, punches, rounds, dissectors, retractors, skin hooks, needles, cheek retractors, insertion wrenches, orthopaedic instruments, drills spreaders, tongs, screwdrivers | | 630 | reamers | | | XM-16 | scissors A STM F800 | drills, needles | | XM-13 | reamers, rasps | | | S11100 ndards
S46500 | reamers, scissors, rasps, knives //3/1/3/dd 5/dd 3 reamers, scissors, rasps, knives | clamps, punches, impactor guides, strike plates, screwdrivers, hex drivers clamps, punches, impactor guides, strike plates, screwdrivers, hex drivers | | UNS S44027 | knives and scalpels | drills | ^A It is not recommended that free-machining grades be used for critical portions of surgical instruments. Free-machining grades should only be considered for instrument applications when appropriate steps can be taken during manufacture to minimize the inherent limitations of this class of alloys (see 10.1). general corrosion resistance, lower pitting corrosion resistance, and difficulty in polishing or welding. It is suggested that these grades be utilized only for applications where the appropriate steps in manufacture can be taken in order to avoid such issues, thus resulting in satisfactory long-term performance of the device. # 11. Quality Program Requirements 11.1 The supplier shall maintain a quality program, such as defined in ISO 9001. 11.2 The purchaser may audit the supplier's quality program for conformance to the intent of ISO 9001, or other recognized program. # 12. Keywords 12.1 austenitic; ferritic; instruments; martensitic; precipitation hardenable; stainless steel; surgical ^B Types 420A, 420B, 420C, or UNS S42026 may be used depending on instrument design and application. ^C Types 440A, 440A Mod, 440B, or 440C may be used depending on instrument design and application.