
Designation: E3080 − 23 An American National Standard

Standard Practice for

Regression Analysis with a Single Predictor Variable1

This standard is issued under the fixed designation E3080; the number immediately following the designation indicates the year of

original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A

superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers regression analysis of a set of data

to define the statistical relationship between two numerical

variables for use in predicting one variable from the other.

1.2 The regression analysis provides graphical and calcula-

tional procedures for selecting the best statistical model that

describes the relationship and for evaluation of the fit of the

data to the selected model.

1.3 The resulting regression model can be useful for devel-

oping process knowledge through description of the variable

relationship, in making predictions of future values, in relating

the precision of a test method to the value of the characteristic

being measured, and in developing control methods for the

process generating values of the variables.

1.4 The system of units for this practice is not specified.

Dimensional quantities in the practice are presented only as

illustrations of calculation methods. The examples are not

binding on products or test methods treated.

1.5 This standard does not purport to address all of the

safety concerns, if any, associated with its use. It is the

responsibility of the user of this standard to establish appro-

priate safety, health, and environmental practices and deter-

mine the applicability of regulatory limitations prior to use.

1.6 This international standard was developed in accor-

dance with internationally recognized principles on standard-

ization established in the Decision on Principles for the

Development of International Standards, Guides and Recom-

mendations issued by the World Trade Organization Technical

Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:2

E178 Practice for Dealing With Outlying Observations

E456 Terminology Relating to Quality and Statistics

E2586 Practice for Calculating and Using Basic Statistics

3. Terminology

3.1 Definitions—Unless otherwise noted, terms relating to

quality and statistics are as defined in Terminology E456.

3.1.1 degrees of freedom, n—the number of independent

data points minus the number of parameters that have to be

estimated before calculating the variance. E2586

3.1.2 predictor variable, X, n—a variable used to predict a

response variable using a regression model.

3.1.2.1 Discussion—Also called an independent or explana-

tory variable.

3.1.3 regression analysis, n—a statistical procedure used to

characterize the association between two or more numerical

variables for prediction of the response variable from the

predictor variable.

3.1.3.1 Discussion—In this practice, only a single predictor

variable is considered.

3.1.4 residual, n—the observed value minus fitted value,

when a regression model is used.

3.1.5 response variable, Y, n—a variable predicted from a

regression model.

3.1.5.1 Discussion—Also called a dependent variable.

3.1.6 sample coeffıcient of determination, r2, n—square of

the sample correlation coefficient.

3.1.7 sample correlation coeffıcient, r, n—a dimensionless

measure of association between two variables estimated from

the data.

3.1.8 sample covariance, sxy, n—an estimate of the associa-

tion of the response variable and predictor variable calculated

from the data.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 intercept, β0, n—of a regression model, the value of

the response variable when the value of the predictor variable

is equal to zero.

3.2.2 regression model parameter, n—a descriptive constant

defining a regression model that is to be estimated.

3.2.3 residual standard deviation, σ, n—of a regression

model, the square root of the residual variance.

1 This practice is under the jurisdiction of ASTM Committee E11 on Quality and

Statistics and is the direct responsibility of Subcommittee E11.10 on Sampling /

Statistics.
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3.2.4 residual variance, σ2, n—of a regression model, the

variance of the residuals (see residual).

3.2.5 slope, β1, n—of a regression model, the incremental

change in the response variable due to a unit change in the

predictor variable.

3.3 Symbols:

b0 = intercept parameter estimate (5.5.1)
b1 = slope parameter estimate (5.5)
b11 = curvature parameter estimate (8.1.1.1)
β0 = intercept parameter in model (5.3.1)
β1 = slope parameter in model (5.3.1)
β11 = curvature parameter in model (5.3.3)
E = general point estimate of a parameter (5.7)
ei = residual for data point i (5.5.2)
ε = error term in model (5.4)
F = F statistic (6.5.2)
h = index for predicting any value in data range

(6.4.3)
i = index for a data point (5.2)
L = lower confidence limit (5.7.2)
λ = Box-Cox parameter (A1.5.2)
n = number of data points (5.2)
p = number of parameters in regression model (5.7)
r = correlation coefficient (6.3.2.1)
r2 = coefficient of determination (6.3.2.2)
S(b0,b1) = sum of squared deviations of Yi to the regression

line (A1.1.2)
sb1 = standard error of slope estimate (6.4.1)
sb0 = standard error of intercept estimate (6.4.2)
sE = general standard error of a point estimate (5.7)
σ = residual standard deviation (5.4.1)
s = estimate of σ (6.2.6)
σ2 = residual variance (5.4.1)
s2 = estimate of σ2 (6.2.6)
sX

2 = variance of X data (A1.2.1)
sY

2 = variance of Y data (A1.2.1)
SXX = sum of squares of deviations of X data from

average (6.2.3)
SXY = sum of cross products of X and Y from their

averages (6.2.3)
sXY = sample covariance of X and Y (A1.2.1)
sY

ˆ
h = standard error of Ŷh (6.4.3)

sY
ˆ

h~ind!
= standard error of future individual Y value (6.4.4)

SYY = sum of squares of deviations of Y data from

average (6.2.3)
t = Student’s t distribution (5.7)
U = upper confidence limit (5.7.2)
X = predictor variable (5.1)

X̄ = average of X data (6.2.3)

Xh = general value of X in its range (6.4.3)
Xi = value of X for data point i (5.2)
Y = response variable (5.1)

Ȳ = average of Y data (6.2.3)

Ẏ = geometric mean of Y data (A1.5.4)

Y ' = transformed Y (A1.5.2)

Ŷh~ind!
= predicted future individual Y for a value Xh (6.4.4)

Yi = value of Y for data point i (5.2)

Ŷh
= predicted value of Y for any value Xh (6.4.3)

Ŷ i
= predicted value of Y for data point i (5.5.1)

3.4 Acronyms:

3.4.1 ANOVA, n—analysis of variance

3.4.2 df, n—degrees of freedom

3.4.3 LOF, n—lack of fit

3.4.4 MS, n—mean square

3.4.5 MSE, n—mean square error

3.4.6 MSR, n—mean square regression

3.4.7 MST, n—mean square total

3.4.8 PE, n—pure error

3.4.9 SS, n—sum of squares

3.4.10 SSE, n—sum of squares error

3.4.11 SSR, n—sum of squares regression

3.4.12 SST, n—sum of squares total

4. Significance and Use

4.1 Regression analysis is a procedure that uses data to

study the statistical relationships between two or more vari-

ables (1, 2).3 This practice is restricted in scope to consider

only a single numerical response variable and a single numeri-

cal predictor variable. The objective is to obtain a regression

model for use in predicting the value of the response variable

Y for given values of the predictor variable X.

4.2 A regression model consists of: (1) a regression function

that relates the mean values of the response variable distribu-

tion to fixed values of the predictor variable, and (2) a

statistical distribution that describes the variability in the

response variable values at a fixed value of the predictor

variable.

4.2.1 The regression analysis utilizes either experimental or

observational data to estimate the parameters defining a

regression model and their precision. Diagnostic procedures

are utilized to assess the resulting model fit and can suggest

other models for improved prediction performance.

4.3 The information in this practice is arranged as follows.

4.3.1 Section 5 gives a general outline of the steps in the

regression analysis procedure. The subsequent sections cover

procedures for estimation of specific regression models.

4.3.2 Section 6 assumes a straight line relationship between

the two variables. This is also known as the simple linear

regression model or a first order model. This model should be

used as a starting point for understanding the XY relationship

and ultimately defining the best fitting model to the data.

4.3.3 Section 7 considers a proportional relationship be-

tween the variables, where the ratio of one variable to the other

is constant. The intercept is constrained to be zero. This model

is useful for single point calibration, where a reference material

is run periodically as a standard during routine testing to

correct for drift in instrument performance over a given range

of test results.

4.3.4 Section 8 discusses a regression function that consid-

ers curvature in the XY relationship, the second order polyno-

mial model.

3 The boldface numbers in parentheses refer to a list of references at the end of

this standard.
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4.3.5 Annex A1 provides supplemental information of a

more mathematical nature in regression.

4.3.6 Appendix X1 lists calculations for the curvature

model estimates and exhibits a worksheet for these calcula-

tions.

5. Regression Analysis Procedure for a Single Predictor

Variable

5.1 Choose the response variable Y and the predictor

variable X. The predictor variable X is assumed to have known

values with little or no measurement error. For given values of

X, the response variable Y has a distribution of values repre-

senting the random effect of measurement errors, and these

distributions are defined within a given range of the X values.

5.2 Obtain a data set consisting of n pairs of values

designated as (Xi, Yi), with the sample index i ranging from 1

through n. The data can arise in two different ways. Observa-

tional data consists of X and Y values measured on a set of n

random test units. Experimental data consists of Y values

measured on n test units with X values set at controlled values

in an experimental study.

5.2.1 When designing an experiment for defining the XY

association some considerations are:

(1) Range of X values.

(2) Number of distinct X values.

(3) Spacing of X values.

(4) Number of Y observations for each X value.

The answers depend on the objectives of the investigation,

whether determining the nature of the regression function,

estimating the slope or intercept of the simple linear model, or

estimating the measurement error of Y, as well as other

objectives.

5.2.1.1 The X values should cover the entire range of

interest. Extrapolation beyond the range of observed X values

may fail due to expanding estimation error outside the range

and the uncertainty of whether the model gives an adequate

description of the XY relationship outside the range. When

inference is required for the Y intercept (the value of Y when X

is zero) the range of X should extend down to zero or near zero.

5.2.1.2 Two X levels are necessary when the objective is to

determine if there is an effect of X on Y, and to give an estimate

of the effect (slope). Three X levels are necessary to evaluate

any curvature in the relationship. Four or more X levels give

better definition of the model shape, particularly if there is a

possible asymptote or a threshold in the relationship. The X

levels should be equally spaced. If X is transformed, such as to

logarithms, the equal spacing should be with respect to the

transformed X.

5.2.1.3 Usually the number of Y observations should be

equal at each X level. When the objective is to estimate Y

variance or evaluate variance constancy, then at least four

observations are recommended at each X level.

5.3 Choose a regression function that fits the data. A scatter

plot of the data is recommended for a visual look at the XY

relationship, and most computer packages have this as an

option. This is a plot of points on the XY plane having a value

of Y (on the vertical axis) and a value of X (on the horizontal

axis) for each data pair, where it is useful for evaluating the

quality of the data and suggesting an appropriate regression

function to define the XY relationship. Fig. 1 gives examples of

four scatter plots that illustrate different situations.

5.3.1 Fig. 1A shows a cluster of points that appear to be

elongated in a particular direction along a straight line that does

not pass through the origin (X=0, Y=0). This pattern suggests

FIG. 1 Scatter Plots
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the straight line regression function Y5β01β1X. The two

parameters for this function are the intercept β0 and the slope

β1. The slope is the amount of incremental change in Y units for

a unit change in X. The intercept is the value of Y when X = 0.

Both parameters are necessary to define this regression func-

tion.

5.3.2 Fig. 1B suggests a straight line that appears to go

through the origin, thus Y is proportional to X, and the

regression function is Y5β1X. An intercept term is not required

because the Y intercept is constrained to equal zero, that is, the

line goes through the origin.

5.3.3 Fig. 1C indicates curvature in the relationship, and

there are several regression functions that can be used. For

slight curvature, a simple model is to add a second order (X2)

term to the straight line function as Y5β01β1X1β11X
2.

5.3.4 Fig. 1D shows data with increasing variability with

larger mean values. This suggests the need for a weighted

regression procedure discussed in A1.4.3.

5.3.5 Data points appearing outside the swarm of data

(outliers) can have an adverse effect on estimation of regres-

sion function parameters. For the straight-line function, outliers

at the extremes of the X range can greatly affect the estimate of

the slope and intercept parameters, and outliers in the middle of

the range tend to affect the intercept estimate more than the

slope. Outliers can be formally identified by statistical proce-

dures (see Practice E178).

5.3.6 A special situation occurs when there are two data

swarms separated by a gap. This may indicate that there were

two sources of data with different values of a second lurking

predictor variable. Such a data set consists essentially of two

data points in cases of a large gap.

5.4 Define the regression model by adding an error term to

the regression function that describes the variation in Y through

a statistical distribution. For example, the simple linear regres-

sion model using the regression function in 5.3.1 is then stated

as Y5β01β1X1ε, where ɛ is a random error having a distribu-

tion with mean zero and standard deviation σ (variance σ2).

5.4.1 The distribution for ɛ can often be assumed to have a

normal (Gaussian) distribution with a constant standard devia-

tion over the range of X. Thus, the distribution of Y at a given

X is a normal distribution with a mean of β01β1X and a

standard deviation of σ. An example of such a linear regression

model is shown in Fig. 2 over a range of X from 0 to 40 X units.

Normal distributions of response Y with σ = 1.3 Y units are

depicted at X = 10, 20, and 30 X units.

5.4.2 Distributions other than the normal distribution may

also be considered, depending on knowledge of the application.

For example, low microbial counts may use a Poisson error

distribution.

5.5 Parameter estimation uses the data set to provide the

parameter estimates. For the simple regression functions de-

scribed above, the procedures used are given in the following

sections. In this practice, the parameters are lower-case Greek

letters and the estimates are the corresponding lower-case

Roman letters. For example, the estimate of the slope param-

eter β1 is b1.

5.5.1 The fitted values of Y, denoted Ŷ i (read Y-hat), for each

data point (Xi, Yi) are calculated from the estimated regression

function. For the straight-line model, the fitted values of Yi are

Ŷ i5b01b1X1. The right-hand function defines the regression

line, which may be shown on the scatter plot of the data to

evaluate model fit.

5.5.2 The estimates of the error term values ɛ are the

residuals ɛi, calculated as e i5Y i2Ŷ i, and these are used to

estimate the standard deviation parameter σ. Note that the

residual values are the vertical distances of the points from the

regression line.

5.6 Evaluation of the regression model is performed to

diagnose departure from model assumptions, such as model fit

to the data, constancy of variance over the range of X, and

conformance to the assumed error distribution. Residual plots

are useful for these diagnostics.

5.6.1 A plot of the residuals against their X values (or

FIG. 2 Graphical Depiction of a Straight Line Regression Model
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equivalently, against their Ŷ i values) will detect certain depar-

tures from the assumptions. Residuals may also be plotted

against time of testing (if available) or against another known

variable. Fig. 3 shows some of these patterns and discusses

remedies for these departures. (The horizontal line on the plots

indicates a value of zero for the average of the residuals.)

(1) Plot A – the desired horizontal pattern – indicates no

model deficiencies

(2) Plot B – increasing variance with X, consider weighted

regression (see A1.4.2) or data transformations (see A1.5)

(3) Plot C – curvature in the relationship, consider adding

a quadratic term or using a nonlinear model (see Section 8)

(4) Plot D – possible effect of time order of testing or the

effect of another variable denoted as T

5.6.2 Plotting the residuals against a vertical scale of the

cumulative percentage of the normal distribution checks the

assumption of normality in the model. The fitted cumulative

normal distribution from the data is shown as a straight line on

the plot if the residuals fit a normal distribution. Computer

packages provide these plots and can also perform a more

rigorous statistical test for normality. If the plot indicates a

curve, a data transformation may be required to achieve a

normal distribution.

5.6.3 Outlier testing in regression analysis takes two forms.

Outlier testing can be performed upon any sets of multiple Y’s

collected at each unique value of X studied. Additionally,

outlier analysis can be performed on the entire set of residuals.

In the latter case, finding an outlier could indicate an issue in

either the X or Y value of the point in question or it may

indicate other issues with the regression analysis.

5.7 Use of the model for interval estimates of regression

parameters and predicted Y values.

5.7.1 The estimates of model parameters and fitted Y values

are point estimates. For example, the estimate of the slope

parameter β1 is the estimate b1 that has been calculated from

the data. To give a sense of the precision for these estimates,

interval estimates, or confidence intervals, can be provided. A

general form for the confidence interval for a general point

estimate E is:

E6tsE (1)

where sE is the standard error of the estimate and t is a

tabulated multiplier that is dependent upon the degrees of

freedom of the standard error and the desired confidence level,

stated as a percentage. Thus, we may state that the true value

of the parameter being estimated lies within the confidence

interval at a given confidence level. The degrees of freedom for

the standard error are generally n – p, where p is the number of

parameters in the regression model.

5.7.2 To calculate these interval estimates, the form of the

statistical distribution for Y is required, and the normal distri-

bution is often assumed. The widths of the interval estimates,

given here as two-sided confidence intervals, are dependent on

(1) the standard errors of the estimates, and (2) the level of

confidence. The standard errors depend on the number of data

pairs n and the values of the Xi.

The confidence level is defined as 100(1 – α) %, where α is

the probability that the confidence interval does not contain the

parameter value. For example, α = 0.05 (or a risk of 5 %

non-coverage) corresponds to a confidence level of 95 %,

which shall be used for the examples in this practice. The value

of t is the upper (1 – α/2)th quantile of the Student’s t

distribution with n – p degrees of freedom, for a confidence

level of 100(1 – α) %. Values of t are found in statistical texts

and in commercial statistical software packages.

FIG. 3 Residual Plots – Some Patterns
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5.7.3 The confidence interval can also be stated as the

interval (L, U) between lower (L) and upper (U) confidence

limits for the parameter being estimated. Practice E2586

provides discussion of confidence intervals, standard error, and

degrees of freedom.

6. Simple Linear Regression Analysis

6.1 Simple Linear Regression Model:

6.1.1 This model defines the functional relationship be-

tween X and Y as a straight line in the XY plane.

6.1.2 The regression function for the straight line relation-

ship is:

Y 5 β01β1X (2)

where the two parameters for the function are the intercept

β0 and the slope β1.

The intercept is the value of Y when X = 0, but this parameter

may not be of practical interest when the range of X is far

removed from zero. The slope is the amount of incremental

change in Y units for a unit change in X.

6.1.3 The statistical distribution for Y is usually assumed to

be a normal (Gaussian) distribution having a mean of β0

1β1X with a standard deviation σ. The simple linear regression

model is then stated as:

Y 5 β01β1X1ε (3)

where ε is a random error that is normally distributed with

mean zero and standard deviation σ (variance σ2).

6.2 Estimating Regression Model Parameters:

6.2.1 The model parameters β0, and β1, are estimated from

a sample of data consisting of n pairs of values designated as

(Xi, Yi), with the sample number i ranging from 1 through n.

The data can arise in two different ways. Observational data

consists of X and Y values measured on a set of n random

samples. Experimental data consists of Y values measured on n

experimental units with X values set at fixed values. In both

cases the Y values may have measurement error, but the X

values are assumed known with negligible measurement error.

6.2.2 The regression line parameters β0, and β1 are esti-

mated by the method of least squares, which finds their

corresponding estimates b0 and b1 that minimize the sum of the

squares of the vertical distances between the Yi values and their

respective line values at Xi. (For a further discussion of the

least squares method, see A1.1.2.)

6.2.3 Calculate the following statistics from the X and Y

values in the data set.

6.2.3.1 Calculate the averages of X and Y:

X̄ 5
(
i51

n

X i

n
(4)

Ȳ 5
(
i51

n

Y i

n
(5)

6.2.3.2 Calculate the sums of squared deviations SXX and

SYY of X and Y from their respective averages and the sum of

cross products SXY of the X and Y deviations from their

averages:

SXX 5 (
i51

n

~X i 2 X̄! 2

(6)

SYY 5 (
i51

n

~Y i 2 Ȳ! 2

(7)

SXY 5 (
i51

n

~X i 2 X̄!~Y i 2 Ȳ! (8)

SXX is a known fixed constant. SYY and SXY are random

variables.

6.2.3.3 The least squares solution gives the parameter esti-

mates:

b1 5 SXY ⁄ SXX (9)

b0 5 Ȳ 2 b1X̄ (10)

6.2.4 The fitted values Ŷ i for each data point Yi are calcu-

lated from the estimated regression function as:

Ŷ i 5 b01b1X i (11)

6.2.5 The residual ei is the difference between the response

data point Yi and its fitted value Ŷ i:

e i 5 Y i 2 Ŷ i (12)

Residuals are graphically the vertical distances on the scatter

plot between the response data points Yi and the estimated

regression line.

6.2.6 The estimates s2 of the variance σ2 and s of the

standard deviation σ of the Y distribution are calculated as the

sum of the squared residuals divided by their degrees of

freedom:

s2 5
(
i51

n

e i
2

~n 2 2!
5

(
i21

n

~Y i 2 Ŷ i
! 2

~n 2 2!
(13)

s 5 =s2 (14)

These estimates have n – 2 degrees of freedom because of

prior estimation of two parameters, the slope and intercept of

the line, which removed two degrees of freedom from the data

set of n data points prior to calculation of the residuals.

6.2.7 Example—A data set from Duncan, Ref. (3) lists

measurements of shear strength (inch-pounds) and weld diam-

eter (mils) measured on 10 random test specimens, so this is an

observational data set with n = 10 pairs. Regression analysis

will be used to investigate the relationship between weld

diameter and shear strength, with the objective of predicting

shear strength Y from weld diameter X. The weld diameters are

considered to be measured with small error. The data are listed

in Table 1.

6.2.7.1 The scatter plot for this example is shown in Fig. 4.

The shear strength appears to be increasing in a linear fashion

with weld diameter. There is some scatter but no apparent

outlying data points.

6.2.7.2 The calculations, with equation numbers for each

calculation, are shown in Table 1. The averages of X and Y are

respectively 233.9 mils and 975.0 inch-pounds. The deviations

of X and Y from their averages are listed for each observation,

and these are used to calculate values of the statistics SXX, SYY,
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and SXY. The least squares estimates of the slope and intercept

are calculated, resulting in the estimated model equation giving

fitted values Ŷ i5-569.4716.898 X i, and these values are listed for

each observation. The residuals e i5Y i5Ŷ i are also listed for

each observation. Estimates of the variance and standard

deviation of the Y distribution are calculated from squares of

the residuals. The estimated standard deviation is 99.90 inch-

pounds.

6.2.7.3 The least squares straight line is depicted with the

scatter plot in Fig. 4, and indicates that a straight line model

appears to give a reasonable fit to this data set. Some additional

comments from Table 1 are:

(1) The least squares estimated model equation is Y =

–569.47 + 6.898 X. Clearly the negative intercept is not a

plausible value for shear strength. This is apparently due to the

fact that the data are so far removed from the origin (0, 0) that

the estimate is poorly defined. It is also possible that there is

some nonlinear behavior in the relationship approaching the

origin.

(2) The averages of the deviations of X and Y from their

averages are zero, and the average of the residuals are zero.

These results follow from the property that sums of deviations

from averages are zero.

(3) The average of the fitted values, Ŷ i, is the same as the

average of the Y data.

6.3 Evaluation of the Model:

6.3.1 This section discusses model evaluation through mea-

sures of association and plots of the residuals to check for

departures from the model assumptions and the presence of

data outliers.

6.3.2 Measures of Association Between X and Y:

6.3.2.1 The sample correlation coeffıcient is a dimensionless

statistic intended to measure the strength of a linear relation-

ship between two variables. The estimated correlation

coefficient, r, from a set of paired data (Xi, Yi) is calculated

from three statistics, SXX, SYY, and SXY:

r 5
SXY

=SXXSYY

(15)

The value of the correlation coefficient ranges between –1

and +1. The sign of r is the same as the sign of slope estimate

b1. Values of r near 0 indicate a weak or nonexistent straight

line relationship. An r value closer to either +1 or –1 indicates

that a straight line provides an ever stronger explanation of the

relationship. Fig. 5 shows examples of scatter plots that appear

for selected values of r.

TABLE 1 Data and Calculations for Straight Line Regression Model Example

Sample, i Xi Yi X i2X̄ Y i2Ȳ Ŷ i
ei Statistics Results EQ

1 190 680 –33.9 –295.0 741.2 –61.2 SXX 5268.90 Eq 6

2 200 800 –23.9 –175.0 810.1 –10.1 SYY 330550.00 Eq 7

3 209 780 –14.9 –195.0 872.2 –92.2 SXY 36345.00 Eq 8

4 215 885 –8.9 –90.0 913.6 –28.6 Slope, b1 6.8980 Eq 9

5 215 975 –8.9 0.0 913.6 61.4 Intercept, b0 –569.47 Eq 10

6 215 1025 –8.9 50.0 913.6 111.4 Variance, s2 9980.16 Eq 13

7 230 1100 6.1 125.0 1017.1 82.9 St. Dev., s 99.90 Eq 14

8 250 1030 26.1 55.0 1155.0 –125.0

9 250 1300 26.1 325.0 1155.0 145.0

10 265 1175 14.1 200.0 1258.5 –83.5

X̄ Ȳ

Average 223.9 975.0 0.0 0.0 975.0 0.0

Equation Eq 4 Eq 5 Eq 8 Eq 9

FIG. 4 Scatter Plot of Data with Fitted Linear Model

FIG. 5 Typical Scatter Plots for Selected Values of the Correlation
Coefficient, r

E3080 − 23

7

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E3080-23

https://standards.iteh.ai/catalog/standards/sist/47d9a378-4fc5-4390-b37c-699dd03ac397/astm-e3080-23

https://standards.iteh.ai/catalog/standards/sist/47d9a378-4fc5-4390-b37c-699dd03ac397/astm-e3080-23


6.3.2.2 The coeffıcient of determination is the squared value

of the correlation coefficient with symbol r2. It measures the

proportion of variation in the Y data explained by the predictor

variable X.

6.3.2.3 For the example the sample correlation coefficient

is:

r 5
36345

=~330550!~5268.9!
5 0.8709

The sample coefficient of determination for the example is r2

= 0.87092 = 0.7585. This means that approximately 76 % of the

variance in Y is explained by the straight line model (see 6.5.2).

These measures are often used as acceptance criteria for

linearity; but this usage should be discouraged, because these

statistics are not absolute measures of linearity and should be

used for comparative purposes only.

6.3.3 Residual Plots:

6.3.3.1 Plots of residuals ei are used for evaluating outliers

in the data and various model assumptions over the range of X,

including normality, constant error variance, linearity of the

regression function, and independence of the error terms.

These check for outliers in the data, constancy of Y distribution

variance, curvature of the regression function, lack of indepen-

dence of errors, and normality of the Y distribution.

6.3.3.2 The residuals dot plot is a useful diagnostic for

finding outliers, which may be harder to detect from the data

set itself. Large outliers can distort the estimate of the

regression line because the least squares procedure will tend to

move the line towards the outlier, thus masking it. Formal

outlier testing procedures can be found in Practice E178.

A residuals dot plot for the example is shown in Fig. 6. There

are no apparent outliers at each end of the plot.

Additional graphics for this purpose are histograms, “stem

and leaf” plots, and “box and whiskers” plots. (See Practice

E2586.)

The plot of residuals against X in Fig. 7 indicates no

discernable pattern, such as curvature or increasing scatter

versus X, but this is a relatively small data set.

6.3.3.3 Plotting the residuals against a vertical scale of the

cumulative percentage of the normal distribution checks the

assumption of normality in the model. The fitted cumulative

normal distribution from the data is shown as a straight line on

the plot if the residuals fit a normal distribution. Computer

packages provide these plots and can also perform a more

rigorous statistical test for normality.

For the example, the residual plot against X in Fig. 8

indicates an approximate straight line pattern for the example,

supporting a normal distribution for the residuals.

6.4 Interval Estimates of Regression Parameters and Pre-

dicted Y Values—This section shows the calculations for the

interval estimates for b0 and b1 of their respective model

parameters β0 and β1 for the simple linear model (see 5.7 for an

introduction to this concept). Also given are calculations for

certain predicted values of Y at given values of X. For these

calculations the estimate s of the standard deviation σ of the Y

distribution is required with its degrees of freedom n – 2. Also

required is the choice of the confidence level, and for these

calculations a 95 % confidence interval will be used. In the

example, the standard deviation estimate is s = 99.9 inch-

pounds with n – 2 = 10 – 2 = 8 degrees of freedom. The value

of t for a 95 % two-sided confidence interval with 8 degrees of

freedom is 2.306.

6.4.1 Confidence Interval for the Slope—The standard error

for the slope estimate is:

sb1 5 s ⁄ =SXX (16)

From the example:

sb1 5 99.9 ⁄ =5268.9 5 1.376

The confidence interval for the slope β1 is calculated as:

b1 6 tsb1 (17)

From the example, the 95 % confidence interval is:

6.898 6 ~2.306!~1.376! 5 6.898 6 3.173

or ~3.725, 10.071!

If the slope confidence interval includes zero, this supports

the assertion that there is no relationship between X and Y at the

given level of confidence. In this example, the slope confidenceFIG. 6 Dot Plot of Residuals

FIG. 7 Plot of Residuals versus X — Duncan Example

FIG. 8 Normal Probability Plot of Residuals
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interval does not include zero, thus supporting the existence of

a statistical relationship between Y and X.

6.4.2 Confidence Interval for the Intercept—The standard

error for the intercept estimate is:

sb0 5 sŒ1

n
1

X̄2

SXX

(18)

From the example:

sb0 5 99.9Œ 1

10
1

223.92

5268.9
5 309.76

The confidence interval for the intercept β0 is calculated as:

b0 6 tsb0 (19)

In this example, the 95 % confidence interval is:

-597.5 6 ~2.306!~309.76! 5 -569.5 6 714.3

or ~-1283.8, 144.8!

If the confidence interval includes zero, this technically

supports the assertion that the line may go through the origin

(0,0) at the given level of confidence. However, this use of the

confidence interval amounts to a rather large extrapolation

outside the range of the data, which explains the implausible

negative estimate mentioned in 6.2.7.3.

6.4.3 Confidence Interval for the Predicted Value of the

Mean Y at a Given X—The predicted value Ŷh for a mean

response of Y at Xh is:

Ŷh 5 b01b1Xh (20)

The index h is used instead of the index i because the

prediction is not necessarily from a value of X in the data set.

Predictions outside the range of X (extrapolation) should be

performed with caution, as the regression function may not be

valid outside this range.

The standard error for a mean Ŷh response at a value X = Xh

is:

sY
ˆ

h
5 sŒ1

n
1

~Xh 2 X̄! 2

SXX

(21)

From the example, at Xh = 215 mils, the standard error is:

sY
ˆ

h
5 99.9Œ 1

10
1

~215 2 223.9!2

5268.9
5 33.88

The confidence interval for the mean Y response at a value X

= Xh is calculated as:

Ŷh6tsY
ˆ

h
(22)

From the example, the 95 % confidence interval for the

average predicted value of 913.6 inch-pounds is:

913.6 6 ~2.306!~33.88! 5 913.6 6 78.13

or ~835.47, 991.73!

Thus the expected mean response of Y at X = 215 falls

between 835.47 and 991.73 with 95 % confidence.

6.4.4 Confidence Interval for the Predicted Value of a

Future Value Y at a Given X—The standard error for an

individual response Ŷh~ind!
at X = Xh is calculated as:

sY
ˆ

h~ind!
5 sŒ11

1

n
1

~Xh 2 X̄! 2

SXX

(23)

From the example, at Xh = 215 mils, the standard error is:

sY
ˆ

h~ind!
5 99.9Œ11

1

10
1

~215 2 223.9!2

5268.9
5 105.49 inch-pounds

The confidence interval for a future new Y response at a

value X = Xh is calculated as:

Ŷh~ind!
6tsY

ˆ
h~ind!

(24)

This is known as a prediction interval, an interval estimate in

which would contain a future observation with a given prob-

ability based on the data set. Prediction intervals are wider than

confidence intervals because a prediction interval applies to an

individual value whereas the confidence interval applies to a

mean response. In the example, the prediction interval at 95 %

confidence for the predicted value of the response at a weld

diameter of 215 mils is:

913.6 6 ~2.306!~105.49! 5 913.6 6 243.26

or ~670.34, 1156.86!

6.4.5 An array of confidence intervals and prediction inter-

vals shown as bands around the regression line is depicted in

Fig. 9 for the example. The vertical intervals are narrowest at

the centroid, ~ X̄ , Ȳ! of the data and become wider as the

distance from the center increases. These bands are valid for a

single predictions only. Multiple predictions using the same

data set are discussed in A1.1.8.1. These bands can be useful in

setting manufacturing requirements; for example, the confi-

dence interval indicates that a minimum weld diameter of

200 mils would be required to obtain an average shear strength

of 700 inch-pounds at 95 % confidence. The prediction interval

suggests that a minimum shear strength of 220 mils would be

necessary to guarantee that a single future item would have

meet that shear strength with 95 % confidence.

FIG. 9 Regression Plot with 95 % Confidence and
Prediction Intervals
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6.5 Analysis of Variance (ANOVA) Calculations:

6.5.1 Statistical analysis packages are often used for regres-

sion analysis. The output consists of the estimates of the

regression parameters, various plots, and an ANOVA table. The

calculations for the ANOVA table are shown in Table 2. This

section discusses the ANOVA procedure and its relation to

earlier calculations.

6.5.2 ANOVA partitions the total sum of squares in the Y

data, SST, into the residual sum of squares, SSE, and the

regression sum of squares, SSR. The degrees of freedom (df)

for these sums of squares are respectively n – 1, n – 2, and 1.

SST has been previously calculated as SYY in Eq 7, and SSE has

been previously calculated as the sum of the squared residuals,

the numerator of s2 in Eq 13. SSR is the sum of squares of

deviations of the fitted values from their average Ȳ, which

represents the variation removed from the Y data due to its

estimated relationship with X. SSR may also be equivalently

calculated as:

SSR 5 Σ~ Ŷ i 2 Ȳ! 2

5 b1
2Σ~X i 2 X̄! 2

(25)

This expression enables calculation of the sums of squares

for regression and for error without first requiring calculation

of fitted values and residuals.

The mean squares are variances, each calculated as a sum of

squares divided by its degrees of freedom. The F statistic is the

ratio of the regression mean square to the residual mean square,

and is used to test the fit of the regression model, thus F =

MSR/MSE. MST is the variance of the Y data, see Eq A1.14.

The p-value is the probability of obtaining a slope estimate

as large as that obtained from the data, assuming that the true

slope is zero. Low values of p, such as p < 0.05, are used to

reject the condition that the true slope is zero, thus confirming

that a relationship that is either linear, or that has a statistically-

meaningful trend component, exists between X and Y.

6.5.3 The ANOVA table for the example is shown in Table

3. The F test indicated a high level of statistical significance for

the validity of the model with a low p value of 0.001. The

coefficient of determination r2 = SSR / SST = 250709 / 330550

= 0.7585, which agrees with the value in 6.3.2.3.

7. Zero Intercept Linear Model

7.1 An associated model often considered along with the

simple linear model is the model that constrains the intercept to

be zero. Thus Y is proportional to X throughout the range. This

model is useful in test methods where single-point calibration

is conducted periodically, due to minor instabilities in the

testing process. The regression model is:

Y 5 β1X1ε (26)

where the slope β1 is the single regression function param-

eter and ε is a random error term that is assumed to be

normally distributed with mean zero and variance σ2.

7.1.1 The slope estimate b1 is calculated as:

b1 5 (
i51

n

X iY i ⁄ (
i51

n

X i
2 (27)

7.1.2 The fitted valuesŶ i for each data point Yi are calculated

from the estimated regression function as:

Ŷ i 5 b1X i (28)

7.1.3 The residual ei is the difference between the response

data point Yi and its fitted value Ŷ i.

e i 5 Y i 2 Ŷ i (29)

7.1.4 The estimates s2 of the variance σ2 and s of the

standard deviation σ of the Y distributions are calculated as the

sum of the squared residuals divided by their degrees of

freedom.

s2 5
(
i51

n

e i
2

~n 2 1!
5

(
i51

n

~Y i 2 Ŷ i
! 2

~n 2 1!
(30)

s 5 =s2 (31)

These estimates have n – 1 degrees of freedom because of

prior estimation of the slope of the line, which removed one

degree of freedom from the data set of n data points prior to

calculation of the residuals.

7.1.5 The standard error for the slope estimate is:

Sb1 5 s ⁄ Œ(
i51

n

x i
2 (32)

The 100(1 – α)th two-sided confidence interval for the slope

β1 is calculated as:

b16tsb1 (33)

where t is the (1 – α/2)th quantile of the t distribution with

n – 1 degrees of freedom. The confidence bands for the line are

also straight lines with zero intercepts having slopes defined by

the confidence limits on the slope (see Fig. 11).

7.2 Example—An experiment was conducted to determine

an instrument response over a range of 0 mg ⁄L to 10 mg/L of

a substance dissolved in a solvent. Five solution standards at

(2, 4, 6, 8, and 10) mg/L concentrations were run in duplicate

and the results are shown in Fig. 10. A zero-intercept model

was considered because the data points appeared to lie in a

straight line that approached the origin.

TABLE 2 ANOVA Table Calculations

Source of Variation Degrees of Freedom Sum of Squares Mean Square F statistic p-value

Regression 1 SSR5ΣsŶ i 2 Ȳd2
MSR = SSR / 1 F = MSR / MSE p

Residual n – 2 SSE5ΣsŶ i 2 Ȳd2
MSE = SSE / n – 2

Total n – 1 SST5ΣsŶ i 2 Ȳd2
MST = SST / n – 1

TABLE 3 ANOVA Table for Example

Source df SS MS F P

Regression 1 250709 250709 25.12 0.001

Residual 8 79841 9980

Total 9 330550
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