

Designation: B574 – 23

Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod and Bar¹

This standard is issued under the fixed designation B574; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope*

1.1 This specification² covers rod and bar of low-carbon nickel-chromium-molybdenum alloys (UNS N10276, N06022, N06035, N06044, N06455, N06058, and N06059), low-carbon nickel-molybdenum-chromium (USN N10362), low-carbon nickel-molybdenum-chromium-tantalum (UNS N06210), low-carbon nickel-chromium-molybdenum-copper alloy (UNS N06200), and low-carbon nickel-chromium-molybdenum-tungsten (UNS N06686) as shown in Table 1, for use in general corrosive service.

1.2 The following products are covered under this specification:

1.2.1 Rods and Bars $\frac{5}{16}$ in. to $\frac{3}{4}$ in. (7.94 mm to 19.05 mm), exclusive, in dimension³, solution annealed and pickled, or mechanically descaled.

1.2.2 Rods and Bars $\frac{3}{4}$ in. to $\frac{3}{2}$ in. (19.05 mm to 88.9 mm), inclusive, in dimension³, solution annealed, ground or turned.

1.2.3 Rods and Bars $\frac{1}{4}$ in. to 3 $\frac{1}{2}$ in. (6.35 mm to 88.9 mm), inclusive, in dimension³, solution annealed, cold worked, ground or turned (N06022, N06059, N06686, and N10276, see Table 2 and Table 3).

1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.

1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:⁴

- B880 Specification for General Requirements for Chemical Check Analysis Limits for Nickel, Nickel Alloys and Cobalt Alloys
- B899 Terminology Relating to Non-ferrous Metals and Alloys
- E8/E8M Test Methods for Tension Testing of Metallic Materials
- E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition
- E1473 Test Methods for Chemical Analysis of Nickel, Cobalt, and High-Temperature Alloys

3. Terminology

3.1 Definitions:

¹ This specification is under the jurisdiction of ASTM Committee B02 on Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee B02.07 on Refined Nickel and Cobalt and Their Alloys.

Current edition approved Nov. 1, 2023. Published November 2023. Originally approved in 1972. Last previous edition approved in 2018 as B574 – 18. DOI: 10.1520/B0574-23.

 $^{^2}$ For ASME Boiler and Pressure Vessel Code applications see related Specification SB-574 in Section II of that Code.

³ Dimension applies to diameter of rods, to distance between parallel surfaces of squares and hexagonals, and separately to width and thickness of rectangles.

⁴ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

		Alloy N06686	15.0-17.0 19.0-23.0	5.0	3.0-4.4	0.010	0.08	0.75		0.02	0.02-0.25	remainder	:	:	: :			
		Alloy N06210	18.0–20.0 18.0–20.0	1.0	: +	0.015	0.08	0.5	0.35	0.02	:	remainder	:	 1 E 0 0	2:3-0:1			
				Alloy N10362	21.5-23.0 13.8-15.6	1.25	:	 0.010	0.08	0.60	 0.025	0.010	:	remainder	0.50	:	: :	
		Alloy N06200	15.0–17.0 22.0–24.0	3.0		0.010	0.08	0.5	 0.025	0.010	:	remainder	0.50	9.1–9.1	: :			
Ø	%	Alloy N06058	18.5–21.0 20.0- 23.0	1.5	0.3	0.010	0.10	0.5	 0.015	0.010	:	remainder	0.40	06.0	 0.02–0.15			
(http= length le	omposition Limits,	Alloy N06059	15.0–16.5 22.0–24.0	1.5		0.010	0.10	0.5		0.010		remainder	0.1-0.4	nc.u	e	d for or reported.		
)		Alloy N06455	14.0–17.0 14.0–18.0	3.0		0.015	0.08	1.0		0.03	0.7	remainder	7]	i (V	either be analyze	
nttps://standards.iteh.ai/catalog	an	Alloy N06022	12.5–14.5 20.0–22.5	<u>A</u> 5.0-0.2	2.5–3.5 2.5–3.5	 36 0.015	B 80.0	0:20	6b 600 98:0	23 96	<u>3</u> 1-4	remainder	98 :	-8 :	ac	-000 c4d091d19d/astm- -000 ce element o o vice element -000 ce		
		Alloy N10276	15.0–17.0 14.5–16.5	4.0-7.0	3.0-4.5 2.5	0.010	0.08	1.0	0.35	0.03	:	remainder	:	:	: :	m or a range is pr aquirement and th		
		Alloy N06044	0.80-1.20 43.5-45.3	0.3	:	0.02	0.20	0.07-0.30		0.020	0.10-0.30	remainder	0.30	:	: :	able there is no really by difference.		
		Alloy N06035	7.60–9.00 32.25–34.25	2.00	0.60	0.050	0.60	0.50	0.20	0.015	:	remainder	0.40	0.30 max	: :	mums unless spec 		
		Element	Molybdenum Chromium	Iron	Tungsten	Carbon	Silicon	Manganese	Vanadium Phosohorris	Sulfur	Titanium	Nickel ^C	Aluminum	Copper Tantalum	Nitrogen	^A All values are maxi ^B Where ellipses (I ^C Nickel shall be dete		

∰ B574 – 23

∰ B574 – 23

TABLE 2 Permissible Variations in Dimension and Out-of-Roundness of As Cold-Worked and Bars

		Permissible Variations, in. (mn	ו)
Specified Dimension, in. (mm)	Dimer	nsion ^A	- Out of Boundhoss max
	+	-	Out of Houndhess, max
1/4 –7/16 (6.35–11.11), incl	0.012 (0.30)	0.012 (0.30)	0.018 (0.46)
Over 7/16 –5/8 (11.11–15.87), incl	0.014 (0.36)	0.014 (0.36)	0.020 (0.51)
Over 5/8 -3/4 (15.87-19.05), excl	0.016 (0.41)	0.016 (0.41)	0.024 (0.61)
³ / ₄ -3 ¹ / ₂ (19.05-88.9), incl	0.010 (0.25)	0.010 (0.25)	0.010 (0.25)

^A Dimension applies to diameter of rods, to distance between parallel surfaces of squares and hexagonals, and separately to width and thickness of rectangles.

TABLE 3 Mechanical Property Requirements for Cold-Worked Rods and Bars

Alloy	Grade	Tensile Strength, min, psi (MPa)	Yield Strength (0.2 % Offset), min, psi (MPa)	Elongation in 2 in. (50.8 mm) or 4 <i>D</i> ^A min, %
N06059	1	120 (827)	85 (586)	20
	2	135 (931)	125 (862)	20
	3	160 (1103)	150 (1034)	15
N06686	1	120 (827)	85 (586)	20
	2	135 (931)	125 (862)	20
	3	160 (1103)	150 (1034)	20
N06022 ^B		120 000 (825)	80 000 (550)	25
N10276 ^B		120 000 (825)	80 000 (550)	25

^A D refers to the diameter of the tension specimen.

^B Up to 2.5 in. (63 mm) thickness.

TABLE 4 Permissible Variations in Dimension and Out-of-Roundness of Hot or Cold Finished, Solution Annealed Rods and Bars

		Permissible Variations, in. (mm	ו)				
Specified Dimension, in. (mm)	Dim	Dimension ^A					
		<u> </u>					
	5/16 Hot-Finished, Annealed, and Des	caled Rods					
⁵ /16 – ⁷ /16 (7.94–11.11), incl	0.012 (0.30)	0.012 (0.30)	0.018 (0.46)				
Over 7/16 –5/8 (11.11–15.87), incl	0.014 (0.36)	0.014 (0.36)	0.020 (0.51)				
Over 5/8 –3/4 (15.87–19.05), excl	0.016 (0.41)	0.016 (0.41)	0.024 (0.61)				
Hot-Finished, Annealed, and Ground or Turned Rods							
³ ⁄ ₄ –3 ¹ ⁄ ₂ (19.05–88.9), incl	0.010 (0.25)	0	0.008 (0.20)				

^A Dimension applies to diameter of rods, to distance between parallel surfaces of squares and hexagonals, and separately to width and thickness of rectangles.

TABLE 5 Mechanical Property Requirements for Hot or Cold Finished, Solution Annealed Rods and Bars

https://standa Alloy	Tensile Strength, min, psi (MPa)	Yield Strength (0.2 % Offset), min, psi (MPa)	/aSUM Elongation in 2 in. (50.8 mm) or 4 <i>D</i> ⁴ min, %
N10276	100 000 (690)	41 000 (283)	40
N06022	100 000 (690)	45 000 (310)	45
N06035	85 000 (586)	35 000 (241)	30
N06044	100 000 (690)	41 000 (280)	30
N06455	100 000 (690)	40 000 (276)	40
N06058	110 000 (760)	52 000 (360)	40
N06059	100 000 (690)	45 000 (310)	45
N06200	100 000 (690)	45 000 (310)	45
N10362	105 000 (725)	45 000 (310)	40
N06686	100 000 (690)	45 000 (310)	45
N06210	100 000 (690)	45 000 (310)	45

^A D refers to the diameter of the tension specimen.

3.1.1 For definitions of terms used in this specification, refer to Terminology B899.

4. Ordering Information

4.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Examples of such requirements include, but are not limited to the following:

4.1.1 Quantity (mass length, or number of pieces);

4.1.2 Name of material;

4.1.3 ASTM specification designation and year date to which the product is to be furnished and be certified as meeting;

4.1.4 Condition, (hot rolled, cold drawn, annealed, heat treated);

4.1.5 Grade designation;

4.1.6 *Dimensions*—Nominal diameter and length. The shortest usable multiple length should be specified (Table 4).

4.1.7 Shape and finish characteristics (surface finish, type of edge required).