

Edition 2.0 2024-12

INTERNATIONAL STANDARD

AMENDMENT 1

Semiconductor devices – Standards
Part 5-4: Optoelectronic devices – Semiconductor lasers

Document Preview

IEC 60747-5-4:2022/AMD1:2024

ottps://standards.iteh.ai/catalog/standards/jec/2948b9e9-7ca3-413e-a5aa-f2a6b54b49e7/jec-60747-5-4-2022-amd1-2024

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2024 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Tel.: +41 22 919 02 11

info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Edition 2.0 2024-12

INTERNATIONAL STANDARD

AMENDMENT 1

Semiconductor devices – Standards
Part 5-4: Optoelectronic devices – Semiconductor lasers

Document Preview

IEC 60747-5-4:2022/AMD1:2024

https://standards.iteh.ai/catalog/standards/iec/2948b9e9-7ca3-413e-a5aa-f2a6b54b49e7/iec-60747-5-4-2022-amd1-2024

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 31.080.01; 31.260 ISBN 978-2-8327-0090-7

Warning! Make sure that you obtained this publication from an authorized distributor.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SEMICONDUCTOR DEVICES -

Part 5-4: Optoelectronic devices – Semiconductor lasers

AMENDMENT 1

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication. 654b49e7/icc-60747-5-4-2022-amd1-2024
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 1 to IEC 60747-5-4:2022 has been prepared by subcommittee 47E: Discrete semiconductor devices, of IEC technical committee 47: Semiconductor devices.

The text of this Amendment is based on the following documents:

Draft	Report on voting		
47E/819/CDV	47E/841/RVC		

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Amendment is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications/.

A list of all parts in the IEC 60747 series, published under the general title *Semiconductor devices*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- · reconfirmed,
- · withdrawn, or
- revised.

3.4.2 Output and current characteristics

3.4.2.1

output power, <of a semiconductor laser>

Delete the source.

3.4.3 Noise characteristics (of a semiconductor laser)

3.4.3.1

relative intensity noise RIN iteh ai/catalog/standards/iec/2948b9e9-7ca3-413e-a5aa-f2a6b54b49e7/iec-60747-5-4-2022-amd1-2024

R(f)

Replace the existing definition, formula and note with the following new definition, formula and note, and delete the source.

ratio of the radiant power mean square fluctuation to the square of the mean radiant power, normalized to a frequency band of unit width

$$R(f) = \frac{\left\langle \Delta P(f)^{2} \right\rangle}{\left\langle P \right\rangle^{2}} \cdot \frac{1}{\Delta f}$$

where Δf is the noise equivalent bandwidth

Note 1 to entry: The relative intensity noise as defined above is strictly "spectral relative intensity noise", but usually simplify referred to as RIN.

Table 1 - Electrical and optical characteristics

Replace, in Table 1, in the row for "Relative intensity noise", in the column of conditions for relative intensity noise, the existing text "P, f_0 , Δf_N specified" with the following new text "P, f_0 , Δf specified".

Characteristics	Conditions at $T_{\rm amb}$ or $T_{\rm case}$ = 25 °C, unless otherwise stated	Symbol	Specifications		
			Required	Options ^a	Requirement
Forward voltage	I_{F} or P specified	V_{F}	×		max.
Threshold current		I_{TH}	×		min. and max.
Output power at threshold	I_{TH}	P_{TH}	×		max.
Forward current above threshold	P specified	ΔI_{F}	×		max.
Forward current above threshold at $T_{\rm case}$ max	P specified, $T = T_{\text{case}}$ max	ΔI_{F}	×		max.
or T_{amb} max	or $T_{\sf amb}$ max				
Differential output power efficiency	P or ΔI_{F} specified	$\eta_{\sf d}$	×		min. and max.
Peak emission wavelength	ΔI_{F} or P specified	λ_{p}	×		min. and max.
Central wavelength	ΔI_{F} or P specified	$\lambda_{_{\mathbf{C}}}$	×		min. and max.
Spectral bandwidth	ΔI_{F} or P specified	$\Delta\lambda$	×		min. and max.
or: RMS spectral bandwidth	ΔI_{F} or P specified	$\Delta \lambda_{rms}$	×		min. and max.
or: Number of longitudinal	ΔI_{F} or P specified	n_{m}	×		min. and max.
modes within a specified bandwidth and mode spacing in the wavelength domain	Bandwidth specified	M s _m	ds*		min. and max.
Spectral linewidth	ΔI_{F} or P specified	$\Delta \lambda_{L}$	iteh.a	ai)×	max.
Side-mode suppression ratio	ΔI_{F} or P specified	SMSR	•	×	min.
Divergence angles b, c	ΔI_{F} or P specified	θσ	view	×	min.
or:	ΔI_{F} or P specified	$\theta_{1/2}$ (1) ^d	0004	×	
Half-intensity angle in two specified planes cog/standar	reference planes specified	$\theta_{1/2}$ (2) e	<u>2024</u> -f2a6b54b		max. 1747-5-4-2022
or:	ΔI_{F} or P specified	$\theta_{1/e}^{2}$ (1) ^d		×	
1/e ² -intensity angle in two specified planes ^c	reference planes specified	$\theta_{1/e}^{2}$ (2) e		×	max.
Misalignment angle	ΔI_{F} or P specified	$\Delta heta$		×	max.
Half-intensity width at the	ΔI_{F} or P specified,	D _{1/2} (x) ^d		×	min. and max.
facet of laser diode	reference axes specified	D _{1/2} (y) ^e		×	
or: $1/e^2$ -intensity width at the	ΔI_{F} or P specified,	$D_{1/e}^{2}(x)^{d}$		×	min. and max.
facet of laser diode	reference axes specified	$D_{1/e}^{2}$ (y) ^e		×	
Astigmatic difference ^f	$\Delta I_{\rm F}$ or P specified, reference axes specified	d_{A}		×	max.
Rise time and fall time	Bias conditions ($\Delta I_{\rm F}$ or ΔP) specified	t _r , t _f		×	max.
or: Turn-on time and turn-off time	Input pulse current, width and duty specified	$t_{\text{on}}, t_{\text{off}}$		×	max.
Small-signal cut-off frequency	ΔI_{F} or P specified	f_{c}		×	min.
Relative intensity noise	$P, f_0, \Delta f$ specified	R(f)		×	max.
Carrier-to-noise ratio	$P, f_{\rm o}, \Delta f, f_{\rm m}$ specified, modulation format specified	CIN		×	max.

https://standa