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Standard Guide for

Analysis of Calibration Data for Nuclear Instruments1

This standard is issued under the fixed designation D8537; the number immediately following the designation indicates the year of

original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A

superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide describes data analysis for efficiency calibra-

tions of nuclear instruments using radioactive sources. It

includes the calculation of the calibration parameters, evalua-

tion and use of their uncertainties and covariances, and testing

of the calibration data for outliers and overall lack of fit. It also

provides guidelines for summarizing and reporting the results

of a calibration.

1.2 The instrument counting efficiency is assumed to be

independent of the radiation emission rate.

1.3 Guidance is provided for both single-point calibrations

and calibration curves.

1.4 The guidance presumes the existence of measurement

uncertainty models to provide statistical weighting factors for

the calibration data.

1.5 This guide does not cover calibrations involving

physically-based computer simulations.

1.6 The system of units for this guide is not specified.

Dimensional quantities in the guide are presented only as

illustrations of calculation methods. The examples are not

binding on products or test methods treated.

1.7 This standard does not purport to address all of the

safety concerns, if any, associated with its use. It is the

responsibility of the user of this standard to establish appro-

priate safety, health, and environmental practices and deter-

mine the applicability of regulatory limitations prior to use.

1.8 This international standard was developed in accor-

dance with internationally recognized principles on standard-

ization established in the Decision on Principles for the

Development of International Standards, Guides and Recom-

mendations issued by the World Trade Organization Technical

Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:2

D1129 Terminology Relating to Water

D7282 Practice for Setup, Calibration, and Quality Control

of Instruments Used for Radioactivity Measurements

D7902 Terminology for Radiochemical Analyses

D8293 Guide for Evaluating and Expressing the Uncertainty

of Radiochemical Measurements

2.2 JCGM Documents:3

GUM:JCGM 100:2008 Evaluation of measurement data—

Guide to the expression of uncertainty in measurement

JCGM 102:2011 Evaluation of measurement data—

Supplement 2 to the “Guide to the expression of uncer-

tainty in measurement”—Extension to any number of

quantities

VIM:JCGM 200:2008 International vocabulary of

metrology—Basic and general concepts and associated

terms (VIM)

3. Terminology

3.1 Definitions:

3.1.1 For definitions of terms used in this practice, refer to

Terminologies D1129 and D7902, Practice D7282,

GUM:JCGM 100, JCGM 102, and VIM:JCGM 200.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 calibration curve, n—functional model that calculates

counting efficiency from the value of a predictor variable and

one or more model parameters; also known as an effıciency

curve.

3.2.1.1 Discussion—A calibration “curve” might be a linear

or nonlinear function of the predictor variable.

3.2.2 calibration parameter, n—any of the parameters in a

calibration model whose values are determined by a calibration

1 This guide is under the jurisdiction of ASTM Committee D19 on Water and is

the direct responsibility of Subcommittee D19.04 on Methods of Radiochemical

Analysis.
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and subsequently used together with observed values of the

predictor variable to calculate counting efficiencies.

3.2.3 calibration range, n—interval between the least and

greatest values of the predictor variable for which a calibration

curve is considered valid.

3.2.4 generalized weighting, n—statistical weighting of data

using both variances and covariances.

3.2.5 relative residual (%∆i), n—quotient of a residual, ei,

and the corresponding predicted value, ε̂ i, typically expressed

as a percentage.

3.2.6 residual (ei), n—difference, ε i2 ε̂ i, between a measured

value, ɛi, and the corresponding predicted value, ε̂ i.

3.2.7 simple weighting, n—statistical weighting of data

using variances but not covariances.

3.2.8 single-point, adj—relating to a calibration model in

which the instrument counting efficiency is estimated by a

single parameter with no predictor variable (a polynomial of

degree zero).

3.2.9 standardized residual (ζi), n—quotient of a residual,

ei, and its combined standard uncertainty, uc(ei).

3.3 Acronyms:

3.3.1 GLS—generalized least squares

3.3.2 LLS—linear least squares

3.3.3 LOF—lack of fit

3.3.4 MQO—measurement quality objective

3.3.5 NLLS—nonlinear least squares

3.3.6 OLS—ordinary least squares

3.3.7 STS—sample test source

3.3.8 WCS—working calibration source

3.3.9 WLS—weighted least squares

4. Summary of Guide

4.1 Calculation of an instrument counting efficiency re-

quires a mathematical model described in terms of one or more

calibration parameters. In a single-point efficiency model,

there is one parameter, which equals the efficiency itself. In all

other models there is a calibration curve, which calculates the

efficiency from a predictor variable, such as gamma-ray

energy, precipitate mass, or a quench indicator; and also one or

more calibration parameters. An efficiency calibration mea-

sures the calibration parameter(s), providing their estimated

values and uncertainties.

4.2 A calibration requires at least as many measurements as

the number of model parameters. Whenever practical, the

number of measurements should exceed the number of

parameters, resulting in extra degrees of freedom that can be

used to assess lack of fit (LOF). Additional measurements

reduce the total uncertainty of the calibration, and the lack-of-

fit test checks the consistency of the data with the efficiency

and uncertainty models.

4.3 Three types of calibrations are considered:

4.3.1 A single-point calibration involving multiple

measurements,

4.3.2 A calibration curve (or line), typically polynomial,

determined by linear least squares (LLS), and

4.3.3 A calibration curve determined by nonlinear least

squares (NLLS).

4.4 In each case, it is assumed that some number (n) of

efficiency measurements are made, producing measured effi-

ciencies ɛ1, ɛ2, ..., ɛn. It is assumed that there is a valid

uncertainty model for the measurements, providing an uncer-

tainty for each ɛi and an estimated covariance for each pair

(ɛi, ɛj). The parameter-fitting procedure statistically weights the

measured efficiencies according to their estimated variances.

Since using estimated variances instead of true variances for

this purpose can bias the results, a two-stage procedure is

employed, in which preliminary values for the calibration

parameters are obtained first and used to refine the variance

estimates and weights for the final fit.

4.5 Optimal weighting requires not only the variances,

uc
2~ε i!, but also the covariances, u~ε i,ε j!. Two options are

discussed in each case for dealing with covariances. In each

case, Option 1 (“simple weighting”) does not require explicit

calculation of u~ε i,ε j!. Option 2 (“generalized weighting”) is

the default option when Option 1 cannot be used.

4.6 Guidance is provided for calculating the calibration

parameters, their uncertainties, and (when applicable) their

correlation coefficients; for assessing LOF; and for calculating

the counting efficiency and associated uncertainty for a subse-

quent sample test source (STS) measurement.

4.7 The emphasis of this guide is not on the details of the

least-squares fitting algorithms. For more information, see

Draper and Smith (1),4 Marquardt (2), or Bevington and

Robinson (3).

5. Significance and Use

5.1 The mathematical and statistical techniques described in

this guide support implementation of the calibration require-

ments of Practice D7282 and the guidance for uncertainty

analysis given in Guide D8293. The guidance is intended for

use either by qualified specialists at a radioanalytical laboratory

or by developers of software for calibration of nuclear instru-

ments.

5.2 Applications for single-point calibrations might include:

5.2.1 Alpha-particle spectrometry,

5.2.2 Gas proportional counters used for thin sources with

negligible attenuation, and

5.2.3 Gamma-ray spectrometers used for single nuclides.

5.3 Applications for calibration curves determined by LLS

might include:

5.3.1 Mass attenuation curves for gas proportional counters

(polynomial), and

5.3.2 Quench calibration curves for liquid scintillation

counters (polynomial).

5.4 Applications for calibration curves determined by NLLS

might include:

4 The boldface numbers in parentheses refer to a list of references at the end of

this standard.
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5.4.1 Gamma-ray spectrometry across a range of gamma-

ray energies,

5.4.2 Mass attenuation curves for gas proportional counters,

and

5.4.3 Quench calibration curves for liquid scintillation

counters.

5.5 Although this guide focuses on efficiency calibrations

for nuclear instruments, the same general principles and

paradigms should apply to other types of calibrations and to

other instruments, as long as there are valid uncertainty models

for the calibration data.

6. Overview

6.1 This section provides an overview of the recommended

statistical procedures. Section 7 provides additional details for

a single-point calibration. Section 8 describes procedures for

fitting a calibration curve using linear least squares, and

Section 9 describes procedures for fitting a calibration curve

using nonlinear least squares. Section 10 provides instructions

for assessing the fit in any of the three scenarios. Section 11

describes the content and organization of a calibration report.

Topic Section

Single-point calibration 7

Calibration curve—Linear least squares 8

Calibration curve—Nonlinear least squares 9

Assessing the fit 10

The calibration report 11

Estimating additional variability Appendix X1

6.2 A single-point calibration is used when the counting

efficiency is modeled as a constant, with no predictor variable.

In all other situations, a calibration curve is used, in which case

the choice of least-squares fitting techniques (linear or nonlin-

ear) is determined by whether the calibration model is linear or

nonlinear in the calibration parameters.

6.3 For illustration, it is assumed that each measured effi-

ciency ɛi is calculated with an equation such as:

ε i 5
RS i 2 RB i

A i·I i·DFi

, i 5 1,2,… ,n , (1)

where:

i = index number of the calibration source,
RS i = gross count rate,
RB i = background count rate,
Ai = activity of the calibration source at its reference date,
Ii = radiation emission probability, and
DFi = decay factor.

NOTE 1—Eq 1 is only an example. Other equations are possible.

6.4 Given the efficiency equation, one uses uncertainty

propagation to write equations for the combined variances

uc
2~ε i! and covariances u~ε i,ε j!, as described in Guide D8293.

For example, when using Eq 1,

uc
2~ε i! 5

RS i ⁄ tS i1RB i ⁄ tB i

~A i·I i·DFi!
2 1ε i

2S u2~A i!
A i

2 1
u2~I i!

I i
2 1φCS

2 D (2)

and:

u~ε i,ε j! 5
u~RB i,RB j!

~A i·I i·DFi!~A j·I j·DFj!

1ε iε jS u~A i,A j!
A i·A j

1
u~I i,I j!

I i·I j

D (3)

where:

i, j = index numbers of two different calibration sources,
tS i = source count time,
tB i = background count time, and
φCS = relative standard uncertainty due to variability of the

calibration sources and possibly to model error.

6.4.1 This guide assumes a constant value for the factor φCS,

which accounts for variations in counting geometry and

imperfections of the mathematical model, although in principle

its value might vary with that of the predictor variable.

6.5 In Eq 3, u~RB i,RB j!5u2~RB! if the same measured back-

ground RB is used for both ɛi and ɛj. Otherwise, u~RB i,RB j! may

be 0.

6.6 If u~RB i,RB j! is always zero or negligible, and if each of

the relative covariances, u~A i,A j! ⁄ ~A i·A j! and u~I i,I j! ⁄ ~I i·I j!, is

the same for all i ≠ j, one may use Option 1, which requires

only simple weights, not a full weighting matrix. For example,

suppose Ii = I for each i, and each source activity Ai is

calculated as:

A i 5 AC·V i·Y i (4)

where:

AC = activity concentration (or massic activity) of the cali-

bration reference material,
Vi = volume (or mass) of the reference material used in the

source, and
Yi = chemical yield (for a working calibration source,

WCS).

If all the yields, Yi, are determined using the same yield

tracer or carrier solution, with activity or mass concentration,

cT, and if u~V i,V j!'0 and u~RB i,RB j!'0, then:

u~A i,A j!
A i·A j

5
u2~AC!

AC2 1
u2~cT!

cT
2 (5)

u~V i,V j!
V i·V j

'0 (6)

u~I i,I j!
I i·I j

5
u2~I!

I2 (7)

Since all the relative covariance terms are equal, Option 1

may be used. In this case, φε
2 will denote the sum of the shared

relative variance/covariance components. For example,

φε
2 5

u2~AC!
AC2 1

u2~cT!
cT

2 1
u2~I!

I2 (8)

Note that u~ε i,ε j!5ε iε jφε
2 for i ≠ j.

6.7 It might also be possible to decompose the variances

u2(Vi) into components due to random and fixed effects and to
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include the latter component in φε
2.

6.8 Option 2 should be used if the conditions required for

Option 1 are not met. Option 2 statistically weights the data

using the full covariance matrix of the measured efficiencies.

6.9 Option 1—Simple Weighting without Covariances:

6.9.1 Option 1 uses partial variance estimates, denoted by

ucP
2 ~ε i!, to calculate weighting factors. The relative variance

terms that contribute to φε
2 above are omitted from ucP

2 ~ε i!. So,

ucP
2 ~ε i! 5 u2~ε i! 2 ε i

2φε
2 (9)

For example, if Eq 8 is used, then:

ucP
2 ~ε i! 5

RS i ⁄ tS i1RB i ⁄ tB i

~A i·I ·DFi!
2 1ε i

2S ucP
2 ~A i!
A i

2 1φCS
2 D (10)

where ucP
2 ~A i! denotes a partial variance of Ai calculated

without the relative variance terms u2(AC) / AC2 and u2(cT)/cT
2

from Eq 5.

6.9.2 The preliminary weights w̃1,w̃2,… ,w̃n are given by:

w̃ i 5
1

ucP
2 ~ε i!

(11)

These weights are used for the preliminary fit as described

below for each calibration scenario. For calculations with

matrices, the weights are used to construct the preliminary

weighting matrix, W̃.

W̃ 5 diag~w̃1,w̃2,… ,w̃n! 5 1
w̃1 0 … 0

0 w̃2 … 0

¡ ¡ ¢ ¡

0 0 … w̃n

2 (12)

NOTE 2—Throughout this guide, a tilde (~) over a symbol denotes a
preliminary estimate or value, which will be recalculated and replaced
later.

6.9.3 Preliminary estimates of the calibration parameters, β̃ j,

are found and used to calculate preliminary values for the

predicted efficiencies, ε̃ i. These values are then used to refine

the variance estimates, u
p

2~ε i!. For example,

u
p

2~ε i! 5
ε̃ i·A i·I ·DFi ⁄ tS i1RB i~1 ⁄ tS i11 ⁄ tB i!

~A i·I ·DFi!
2

1 ε̃ i
2S ucP

2 ~A i!
A i

2 1φCS
2 D (13)

6.9.4 The refined weights w1, w2, …, wn are then given by:

w i 5
1

u
p

2~ε i!
(14)

These weights are used for the final fit as described below for

each scenario. For calculations with matrices, the weights are

used to construct the final weighting matrix, W.

W 5 diag~w1,w2,… ,wn! 5 1
w1 0 … 0

0 w2 … 0

¡ ¡ ¢ ¡

0 0 … wn

2 (15)

6.9.5 After the final fit is obtained, the predicted efficiencies,

ε̂ i, and their (partial) variances, u
p

2~ ε̂ i!, are calculated. The fit is

assessed, and an outlier test might be performed. If the results

are acceptable, the total combined standard uncertainties and

covariances of the calibration parameters are calculated.

6.10 Option 2—Generalized Weighting with Covariance

Matrix:

6.10.1 Uncertainty propagation is used to estimate the total

combined variance, uc
2~ε i!, and covariance u~ε i,ε j!, as described

in 6.4. See Eq 2 and Eq 3 for examples.

6.10.2 The preliminary measurement covariance matrix ŨƐ

is constructed and inverted to obtain the preliminary weighting

matrix, W̃.

W̃ 5 ŨƐ
21 (16)

where:

ŨƐ 5 1
uc

2~ε1! u~ε1,ε2! … u~ε1,εn!
u~ε2,ε1! uc

2~ε2! … u~ε2,εn!
¡ ¡ ¢ ¡

u~εn,ε1! u~εn,ε2! … uc
2~εn!

2 (17)

6.10.3 Preliminary estimates of the calibration parameters,

β̃ j, are found and used to calculate preliminary values for the

predicted efficiencies, ε̃ i. These values are then used to refine

the estimates of variance, u
p

2~ε i!, and covariance, u
p
~ε i,ε j!. For

example,

u
p

2~ε i! 5
ε̃ i·A i·I i·DFi ⁄ tS i1RB i~1 ⁄ tS i11 ⁄ tB i!

~A i·I i·DFi!
2

1 ε̃ i
2S u2~A i!

A i
2 1

u2~I i!
I i

2 1φCS
2 D (18)

and:

u
p
~ε i,ε j! 5

u~RB i,RB j!
~A i·I i·DFi!~A j·I j·DFj!

1 ε̃ iε̃ jS u~A i,A j!
A i·A j

1
u~I i,I j!

I i·I j

D (19)

6.10.4 The refined covariance matrix UƐ
p is constructed and

inverted to obtain the refined weighting matrix, W.

W 5 UƐ
p 21 (20)

where:

UƐ
p 5 1

u
p

2~ε1! u
p
~ε1,ε2! … u

p
~ε1,εn!

u
p
~ε2,ε1! u

p

2~ε2! … u
p
~ε2,εn!

¡ ¡ ¢ ¡

u
p
~εn,ε1! u

p
~εn,ε2! … u

p

2~εn!
2 (21)

The weighting matrix W is used for the final fit as described

below for each scenario.

6.10.5 After the final fit is obtained, the predicted

efficiencies, ε̂ i, and their variances, u
p

2~ ε̂ i!, are calculated. The fit

is assessed and an outlier test might be performed. If the results

are acceptable, the total combined standard uncertainties and

covariances of the calibration parameters are calculated.

6.11 Both Options:

6.11.1 For a multi-parameter calibration curve, the correla-

tion coefficient for each unordered pair of calibration param-

eters is calculated.

6.11.2 The efficiency, ɛSTS, for a subsequent sample test

source measurement and its combined standard uncertainty,

uc(ɛSTS), are calculated. The uncertainty includes a component

φSTS·εSTS accounting for the variability of sample test sources,

and in the case of a calibration curve, also for model error.
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7. Single-Point Calibration—Average Value

7.1 Assume a single-point efficiency is measured n times

(n > 1). Let the measured efficiencies be denoted by

ε1, ε2, …, εn. The calibration parameter will be calculated as a

weighted or simple average of these values. See Section 6 to

choose Option 1 or 2.

7.2 Option 1—Weighted Average without Covariances:

7.2.1 Use uncertainty propagation to estimate a partial

variance ucP
2 ~ε i! for each measured efficiency, as described in

6.9.1. See Eq 10 for example.

7.2.2 Calculate the preliminary estimate of the efficiency, ε̃,

as a weighted average.

ε̃ 5
(
i51

n ε i

ucP
2 ~ε i!

(
i51

n 1

ucP
2 ~ε i!

(22)

Alternatively, and especially if all the partial variances are

roughly equal, use the arithmetic mean, ε‾ , for the preliminary

estimate.

ε̃ 5 ε‾ 5
1

n (
i51

n

ε i (23)

The predicted efficiency ε̃ i has the same value, ε̃, for each i.

7.2.3 Calculate a refined estimate of each variance, u
p

2~ε i!, as

described in 6.9.3. See Eq 13 for example.

7.2.4 Calculate the final efficiency estimate as a weighted

average, ε̂.

ε̂ 5
(
i51

n ε i

u
p

2~ε i!

(
i51

n 1

u
p

2~ε i!

(24)

The predicted efficiency ε̂ i has the same value, ε̂, for each i.

7.2.5 Calculate its variance.

u
p

2~ ε̂! 5 S(
i51

n 1

u
p

2~ε i!
D 21

(25)

7.2.6 Assess the fit as described in Section 10 (with m = 1

and with each ε̂ i5 ε̂).

7.2.7 Calculate the combined standard uncertainty of ε̂ as:

uc~ ε̂! 5 =u
p

2~ ε̂!1 ε̂2φε
2 (26)

where φε
2 is the sum of the previously omitted relative

variance terms described in 6.6 and 6.9.1.

7.2.8 Continue at 7.4.

7.3 Option 2—Generalized Weighted Average with Covari-

ance Matrix:

7.3.1 Use uncertainty propagation to estimate the total

combined variances, uc
2~ε i!, and covariances, u(εi, εj), as de-

scribed in 6.4. See Eq 2 and Eq 3 for examples.

7.3.2 Construct the preliminary measurement covariance

matrix, ŨƐ, and calculate the preliminary weighting matrix, W̃,

as described in 6.10.2. See Eq 16 and Eq 17.

7.3.3 Calculate the preliminary efficiency estimate as a

generalized weighted average, ε̃.

ε̃ 5
(i51

n
ε i(j51

n
W̃ ij

(i51

n (j51

n
W̃ ij

(27)

where W̃ ij denotes the ijth entry of W̃. Alternatively, use the

arithmetic mean ε̃5ε‾ . See Eq 23.

7.3.4 Calculate refined estimates of the variances, u
p

2~ε i! and

covariances, u
p
(εi, εj), as described in 6.10.3 (with each ε̃ i5 ε̃).

See Eq 18 and Eq 19 for examples.

7.3.5 Construct the refined covariance matrix, Uε
p, and

weighting matrix, W, as described in 6.10.4. See Eq 20 and Eq

21.

7.3.6 Calculate the final efficiency estimate as a generalized

weighted average, ε̂:

ε̂ 5
(i51

n
ε i(j51

n
W ij

(i51

n (j51

n
W ij

(28)

where Wij denotes the ijth entry of W.

7.3.7 Calculate the estimated variance of the weighted

average ε̂.

u
p

2~ ε̂! 5 S(
i51

n

(
j51

n

W ijD 21

(29)

7.3.8 Assess the fit as described in Section 10 (with m = 1

and with each ε̂ i5 ε̂).

7.3.9 Calculate the combined standard uncertainty of ε̂.

uc~ ε̂! 5 =u
p

2~ ε̂! (30)

7.4 Both Options—Single-Point Calibration:

7.4.1 The laboratory may establish an upper limit for the

acceptable relative combined standard uncertainty, uc~ ε̂! ⁄ ε̂,

based on the uncertainty requirements of the measurement

method or other measurement quality objectives (MQOs).

7.4.2 Record the estimated efficiency, ε̂, and its combined

standard uncertainty, uc~ ε̂!.

7.4.3 The efficiency for a subsequent measurement of a

sample test source, ɛSTS, is estimated by:

εSTS 5 ε̂ (31)

and its combined standard uncertainty is:

uc~εSTS! 5 =uc
2~ ε̂!1 ε̂2φSTS

2 (32)

where:

φSTS = relative standard uncertainty due to variations among

individual sample test sources.

The relative uncertainty component φSTS may equal φCS,

especially when the calibration is performed with working

calibration sources (WCSs) prepared in the laboratory.

8. Calibration Curve—Linear Least Squares

8.1 Assume the calibration model has the functional form:

ε 5 β1X11β2X21 · · ·1βmXm (33)
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where m denotes the number of calibration parameters (m ≥

1), each Xj is a specified function of the predictor variable, and

the coefficients βj are calibration parameters. It is assumed that

the uncertainty of each Xj is negligible. Typically, the efficiency

function is a polynomial in some predictor variable X, and Xj is

a power of X. For example,

ε 5 β11β2X1β3X21 · · ·1βmXm21 (34)

8.2 Make n measurements of the efficiency (n > m) across

the required range of the predictor variable, obtaining mea-

sured results ε1, ε2, …, εn. Let Xi1, Xi2, …, Xim denote the values

of X1, X2, …, Xm for the ith measurement. Let X denote the

n × m design matrix, given by:

X 5 1
X11 X12 … X1m

X21 X22 … X2m

¡ ¡ ¢ ¡

Xn1 Xn2 … Xnm

2 (35)

Let Ɛ denote the n × 1 column vector of measured efficien-

cies:

Ɛ 5 ~ε1 ε2 … εn !T
(36)

8.3 See Section 6 to choose Option 1 or 2. The fitting

technique for Option 1 is weighted least squares (WLS). The

fitting technique for Option 2 is generalized least squares

(GLS).

8.4 Option 1—Weighted Least Squares (WLS) without Co-

variances:

8.4.1 Use uncertainty propagation to estimate a partial

variance ucP
2 ~ε i! for each measured efficiency, as described in

6.9.1. See Eq 10 for example.

8.4.2 Calculate the preliminary weights w̃1,w̃2,… ,w̃n as de-

scribed in 6.9.2. See Eq 11.

8.4.3 Use WLS with the weights w̃1,w̃2,… ,w̃n to obtain a

preliminary estimate of the parameter vector, β̃. The solution

satisfies the matrix equation:

~XTW̃X! β̃ 5 XTW̃Ɛ (37)

where W̃ is the (diagonal) weighting matrix, given by:

W̃ 5 diag~w̃1,w̃2,… ,w̃n! (38)

8.4.4 The m × m (symmetric) matrix XTW̃X and the m × 1

column vector XTW̃ε can be calculated as follows:

~XTW̃X!
jk

5 (
i51

n

w̃ iX ijX ik 5 (
i51

n X ijX ik

ucP
2 ~ε i!

(39)

~XTW̃Ɛ!
j
5 (

i51

n

w̃ iX ijε i 5 (
i51

n X ijε i

ucP
2 ~ε i!

(40)

NOTE 3—When using curve-fitting software that implements only

ordinary (unweighted) linear least squares, one can achieve the results of
WLS by dividing each measured efficiency, εi, and each coefficient, Xij, by
the uncertainty ucP(εi) before fitting the curve.

8.4.5 In general, matrix algebra is used to invert XTW̃X or to

solve for β̃ by other means. However, in the special case when

m = 2, if M̃ denotes the 2 × 2 matrix XTW̃X and g̃ denotes the

2 × 1 column vector XTW̃Ɛ, then:

β̃1 5
M̃22g̃1 2 M̃12g̃2

M̃11M̃22 2 M̃12M̃21

(41)

and:

β̃2 5
M̃11g̃2 2 M̃21g̃1

M̃11M̃22 2 M̃12M̃21

(42)

where each M̃ jk is given by Eq 39 and each g̃ j is given by Eq

40.

8.4.6 Calculate preliminary values for the predicted

efficiencies, ε̃ i.

ε̃ i 5 β̃1X i11 β̃2X i21 · · ·1 β̃mX im,

i 5 1,2,… ,n .
(43)

8.4.7 Use these preliminary values to refine the variance

estimates for the measured efficiencies εi, as described in 6.9.3.

See Eq 13 for example.

8.4.8 Calculate the refined weights w1, w2, …, wn, as de-

scribed in 6.9.4. See Eq 14.

8.4.9 Use WLS with the weights w1, w2, …, wn to solve the

equation X β̂>Ɛ for β̂. The solution satisfies the matrix equa-

tion:

~XTWX! β̂ 5 XTWƐ (44)

where:

W 5 diag~w1,w2,… ,wn! (45)

In the special case when m = 2, the solution can be obtained

in the manner described in 8.4.5. In general, matrix algebra can

be used.

8.4.10 Calculate the partial covariance matrix for β̂.

V 5 ~XTWX!21 (46)

NOTE 4—When using curve-fitting software that implements only

ordinary (unweighted) linear least squares, one can achieve the results of

WLS by dividing each measured efficiency, εi, and each matrix entry, Xij,

by the uncertainty u
p
(εi) before fitting the curve. Afterwards, given the

solution, β̂ , and covariance matrix, V, continue at 8.4.12 with the original

unmodified design matrix X.

8.4.11 In general, matrix algebra is used to invert XTWX in

Eq 46. However, in the special case when m = 2, if M denotes

the 2 × 2 matrix XTWX, then:

V11 5
M22

D
, V22 5

M11

D
, (47)

and

V12 5 V21 5
2M12

D
(48)

where D = M11M22 − M12M21.

8.4.12 Calculate the predicted efficiencies, ε̂ i.

ε̂ i 5 β̂1X i11 β̂2X i21 · · ·1 β̂mX im,

i 5 1,2,… ,n .
(49)

8.4.13 Calculate the variance, u
p

2~ ε̂ i!, of each predicted

efficiency.
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