

Designation: C1295 – 24

Standard Test Method for Gamma Energy Emission from Fission and Decay Products in Uranium Hexafluoride and Uranyl Nitrate Solution¹

This standard is issued under the fixed designation C1295; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers the measurement of gamma energy emitted from fission products in uranium hexafluoride (UF_6) and uranyl nitrate solution. This test method may also be used to measure the concentration of some uranium decay products. It is intended to provide a method for demonstrating compliance with UF₆ Specifications C787 and C996, uranyl nitrate Specification C788, and uranium ore concentrate Specification C967.

1.2 The lower limit of detection is estimated at 5000 MeV Bq/kg (MeV kg⁻¹/s⁻¹) of uranium and is the square root of the sum of the squares of the individual reporting limits of the nuclides to be measured. The limit of detection was determined on a pure, aged natural uranium (ANU) solution. The value is dependent upon the detector efficiency and background that can be achieved.

1.3 The fission product nuclides to be measured are ¹⁰⁶Ru/ ¹⁰⁶Rh, ¹⁰³Ru, ¹³⁷Cs, ¹⁴⁴Ce, ¹⁴⁴Pr, ¹⁴¹Ce, ⁹⁵Zr, ⁹⁵Nb, and ¹²⁵Sb. Among the uranium decay product nuclides that may be measured is ²³¹Pa. Other gamma energy-emitting fission and uranium decay nuclides present in the spectrum at detectable levels should be identified and quantified as required by the data quality objectives.

1.4 The values stated in SI units are to be regarded as standard. Additionally, the non-SI units of kiloelectron volts and megaelectron volts are to be regarded as standard. No other units of measurement are included in this standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:²
- C761 Test Methods for Chemical, Mass Spectrometric, Spectrochemical, Nuclear, and Radiochemical Analysis of Uranium Hexafluoride
- C787 Specification for Uranium Hexafluoride for Enrichment
- C788 Specification for Nuclear-Grade Uranyl Nitrate Solution or Crystals
- C859 Terminology Relating to Nuclear Materials
- C967 Specification for Uranium Ore Concentrate
- C996 Specification for Uranium Hexafluoride Enriched to Less Than 5 $\%^{235}$ U
- C1022 Test Methods for Chemical and Atomic Absorption Analysis of Uranium-Ore Concentrate
- D3649 Practice for High-Resolution Gamma-Ray Spectromvery of Water
- E3376 Practice for Calibration and Usage of Germanium Detectors in Radiation Metrology for Reactor Dosimetry

3. Terminology

3.1 Except as otherwise defined herein, definitions of terms are as given in Terminology C859.

4. Summary of Test Method

4.1 A solution of the uranium sample is counted on a high-resolution gamma-ray spectrometry system. The resulting spectrum is analyzed to determine the identity and activity of the gamma-ray-emitting fission and decay products. The number of counts recorded from one or more of the peaks identified with each fission nuclide is converted to disintegrations of that nuclide per second (Bq). The gamma-ray energy for a fission nuclide is calculated by multiplying the number of disintegrations per second of the nuclide by the mean gamma-ray energy

¹ This test method is under the jurisdiction of ASTM Committee C26 on Nuclear Fuel Cycle and is the direct responsibility of Subcommittee C26.05 on Methods of Test.

Current edition approved Jan. 15, 2024. Published March 2024. Originally approved in 1995. Last previous edition approved in 2015 as C1295 – 15. DOI: 10.1520/C1295-24.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

emission rate of the nuclide. The calculated gamma-ray energy emission rates for all observed fission nuclides are summed, then divided by the mass of the uranium in the sample to calculate the overall rate of gamma energy production in units of million electron volts per second per kilogram of uranium. Decay product nuclides such as ²³¹Pa will be separately quantified and reported based on specific needs.

5. Significance and Use

5.1 Specific gamma-ray emitting radionuclides in UF₆ are identified and quantified using a high-resolution gamma-ray energy analysis system, which includes a high-resolution germanium detector. This test method shall be used to meet the health and safety specifications of C787, C788, and C996 regarding applicable fission products in reprocessed uranium solutions. This test method may also be used to provide information to parties such as conversion facilities on the level of uranium decay products in such materials. Pa-231 is a specific uranium decay product that may be present in uranium ore concentrate and is amenable to analysis by gamma spectrometry.

6. Apparatus

6.1 *High-Resolution Gamma-Ray Spectrometry System*, as specified in Practice D3649. The energy response range of the spectrometry system may need to be tailored to address all the needed fission and uranium decay product nuclides that need to be analyzed for.

6.2 Sample Container with Fitted Cap—A leak-proof plastic container capable of holding the required sample volume. The dimensions must be consistent between containers used for samples and standard to keep the counting geometry constant. The greatest detection efficiency will be achieved with a low-height sample container with a diameter slightly smaller than the detector being used.

6.3 *Sample Holder*; shall be used to position the sample container such that the detector view of the sample is reproducible. To reduce the effects of coincident summing, the sample holder shall provide a minimum separation of 5 mm between the sample container and the detector end cap.

7. Calibration and Standardization of Detector

7.1 Prepare a mixed radionuclide calibration standard stock solution covering the energy range of approximately 50 keV to 2000 keV.

7.1.1 Commercial calibration standards are available which are traceable to NIST or other national standards laboratories.

7.2 Prepare a solution of ANU with a uranium concentration of 6.74 g/100 g. The uranium and its progeny's relationship must not have been altered for at least eight months.

7.3 Transfer a known, suitable activity of the mixed nuclide calibration standard stock solution (40 kBq to 50 kBq) to a container identical to that used for the sample measurement. Add ANU solution to the mixed nuclide standard so that the final volume and uranium concentration match those expected in the sample measurement. Practices D3649 and E3376 provide information on calibration of detector energy, efficiency, resolution, and other parameters.

7.4 The detector energy scale and efficiency are calibrated by placing the container with the mixed nuclide calibration standard in a sample holder that provides a reproducible geometry relative to the detector. Collect a spectrum over a period up to 1 h that includes all the gamma photopeaks in the energy range up to ~2000 keV. All counting conditions (except count duration) must be identical to those that will be used for analysis of the actual sample.

7.5 Determine the net counts under each peak of every nuclide in the mixed radionuclide standard, then divide by the count duration (live time) to determine the rate in counts per second for each radionuclide. If a background count on the detector shows any net peak area for the peaks of interest, these must be subtracted from the standard counts per second.

7.6 Divide the observed count rate determined for each gamma peak by the calculated emission rate of the gamma ray that produced the peak in the mixed calibration standard (gammas per second).

7.6.1 Calculation of the gamma emission rate for each peak from the mixed calibration standard must account for the following:

Nuclide	Half- Life	Decay Constant (λ ₁)	Measurement Peaks, MeV	Abundance Gamma/ Disintegration (G _I)	Mean Gamma Energy Disintegration, MeV Bq (E _I)
¹⁰³ Ru/ ¹⁰³ Rh	39.35d	0.01761/d	0.4971	0.889	0.484
			0.6103	0.056	
¹⁰⁶ Ru/ ¹⁰⁶ Rh	366.5d	0.001891/d	0.5119	0.207	0.209
			0.6222	0.0981	
¹⁴¹ Ce	32.55d	0.02129/d	0.1454	0.484	0.0718
¹⁴⁴ Ce/ ¹⁴⁴ Pr	284.5d	0.002436/d	0.1335	0.1110	0.0518
¹³⁷ Cs/ ¹³⁷ Ba	30.17y	0.02297/y	0.6616	0.851	0.5655
⁹⁵ Nb	34.97d	0.01982/d	0.7658	1.000	0.766
⁹⁵ Zr	63.98d	0.01083/d	0.7242	0.444	0.737
			0.7567	0.549	
¹²⁵ Sb	2.71y	0.256/y	0.4279	0.294	0.433
			0.6008	0.178	
²³¹ Pa	32760y	2.1158E-05/y	0.002736	0.103	n/a

TABLE 1 Gamma-Ray-Emitting Fission and Decay Products Found in UF₆