International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEXATION OF A POPAHUSALUUR TO CTAHDAPTUSALUUPORGANISATION INTERNATIONALE DE NORMALISATION

Fire tests – Reaction to fire – Ignitability of building products

Essais au feu — Réaction au feu — Allumabilité des produits de bâtiment

First edition - 1986-12-15

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5657:1986 https://standards.iteh.ai/catalog/standards/sist/ef71f6bd-fe46-4510-9a34-974b1f3a291c/iso-5657-1986

UDC 669.81 : 691 : 620.1

SO 5657-1986 (E)

Ref. No. ISO 5657-1986 (E)

Descriptors : buildings, construction materials, tests, fire tests, flammability testing, test equipment.

5657

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

International Standard ISO 5657 was prepared by Technical Committee ISO/TC 92, Fire tests on building materials, components and structures.

Users should note that all International Standards undergo revision from time to time and that any reference made herein to any other International Standard implies its latest edition, unless otherwise stated://standards.iteh.ai/catalog/standards/sist/ef71f6bd-fe46-4510-9a34-974b1f3a291c/iso-5657-1986

© International Organization for Standardization, 1986

Printed in Switzerland

Contents	Page
0 Introduction	1
1 Scope and field of application	1
2 References	1
3 Definitions	71
4 Principles of the test	2
5 Suitability of a product for testing	2
6 Specimen construction and preparation	2
5 7 ⁴ Test apparatus	3
8 Test <u>environment6</u>	5
97401134291c/s0-5037-1986	5
10 Setting-up procedure and requirements	6
11 Calibration	7.
12 Test procedure	7
13 Expression of results	9
14 Test report	9
Annexes	
A Commentary on the text and guidance notes for operators	10
B Summary test report	13
C Applications and limitations of test	. 14
D Variability in time to sustained surface ignition	. 15
Figures	
1 Wrapping of the specimen	. 17
2 Ignitability test apparatus — General view	. 18
3a) Specimen support framework — Part sectional elevation along B-B [figure 3b)]	. 19

ij

3b)	Specimen support framework — Part sectional plan along A-A [figure 3a)]	20	•	
4a)	Specimen support framework and radiator cone	21		
4b)	Radiator cone	21		
4c)	Methods for attachment of thermocouples to heater coil	22		
(4d)	Grids of readings for irradiance distribution	23		
5	Pilot flame nozzle	24		
6a)	Pilot flame application mechanism — Pilot flame arm	25		
6b)	Pilot flame application mechanism — Baseplate	26		
6c)	Pilot flame application mechanism — Cam geometry	27		
7	Specimen insertion and location tray	28		
8	Specimen screening plate	29		
9	Extraction hood and draught screen for ignitability apparatus	30		
10	Diagrammatic arrangement of apparatus and additional equipment	31		
11	Dummy specimen board iTeh STANDARD PR	32 V	IE	W
	(standards.iteh.ai)			

ISO 5657:1986 https://standards.iteh.ai/catalog/standards/sist/ef71f6bd-fe46-4510-9a34-974b1f3a291c/iso-5657-1986

Fire tests — Reaction to fire — Ignitability of building products

0 Introduction

0.1 Fire is a complex phenomenon: its behaviour and its effects depend upon a number of interrelated factors. The behaviour of materials and products depends upon the characteristics of the fire, the method of use of the materials and the environment in which they are exposed. The philosophy of "reaction to fire" tests is explained in ISO/TR 3814.

0.2 A test such as is specified in this International Standard deals only with a simple representation of a particular aspect of the potential fire situation typified by a radiant heat source and a flame; it cannot alone provide any direct guidance on behaviour or safety in fire. A test of this type may, however, be used for comparative purposes or to ensure the existence of a certain quality of performance (in this case ignitability) considered to have a bearing on fire performance generally. It would be wrong to attach any other meaning to performance in this test.

2 References

ISO 291, Plastics — Standard atmospheres for conditioning and testing.

ISO 3261, Fire tests – Vocabulary.

ISO/TR 3814, The development of tests for measuring "reaction to fire" of building materials.

ISO 5725, Precision of test methods — Determination of repeatability and reproducibility by inter-laboratory tests.

ISO/TR 6585, Fire hazard and the design and use of fire tests.

3 Definitions

(See also clause A.1 in annex A.)

ISO 5657:198For the purposes of this International Standard, the definitions https://standards.iteh.ai/catalog/standards/sigiven in ISO 3261 apply 3 together with the following :

0.3 The term "ignitability" is defined in ISO 3261 Bas the iso-5657-1986 capability of a material of being ignited. It is one of the first fire properties to be manifest and should almost always be taken into account in any assessment of fire hazard. It may not, however, be the main characteristic of the material which affects the subsequent development of fire in a building. **3.2** material should almost always be taken information of the subsequent development of the material which affects the material which affects the material which affects the material

0.4 This test does not rely upon the use of asbestos-based materials.

0.5 The attention of all users of the test is drawn to the following warning.

SAFETY WARNING — So that suitable precautions may be taken to safeguard health, the attention of all concerned in fire tests is drawn to the possibility that toxic or harmful gases may be evolved during exposure of test specimens. The advice on safety given in annex A, clause A.7 should also be noted.

1 Scope and field of application

This International Standard specifies a method for examining the ignition characteristics of the exposed surfaces of specimens of essentially flat materials, composites or assemblies not exceeding 70 mm in thickness, when placed horizontally and subjected to specified levels of thermal irradiance. **3.1 product**: Material, composite or assembly about which information is required.

3.2 material: Single substance or uniformly dispersed mixture, for example metal, stone, timber, concrete, mineral fibre, polymers.

3.3 composite: Combination of materials which are generally recognized in building construction as discrete entities, for example coated or laminated materials.

3.4 assembly: Fabrication of materials and/or composites, for example sandwich panels. This may include an air gap.

3.5 exposed surface : That surface of the product subjected to the heating conditions of the test.

3.6 specimen: Representative piece of the product which is to be tested together with any substrate or treatment. This may include an air gap.

3.7 essentially flat surface: Surface whose irregularity from a plane does not exceed ± 1 mm.

3.8 irradiance (at a point of a surface): Quotient of the radiant flux incident on an infinitesimal element of surface containing the point, by the area of that element.

3.9 sustained surface ignition: Inception of a flame on the surface of the specimen which is still present at the next application of the pilot flame.

3.10 transitory surface ignition: Inception of any flame at the surface of the specimen which is not sustained until the next application of the pilot flame.

3.11 plume ignition: Inception of any flame in the plume above the specimen, sustained or transitory.

4 Principles of the test

(See also clause A.2 in annex A.)

Specimens of the product are mounted horizontally and exposed to thermal radiation on their upper surfaces at selected levels of constant irradiance within the range 1 to 5 W/cm^2 .

A pilot flame is applied at regular intervals to a position 10 mm above the centre of each specimen to ignite any volatile gases given off. The time at which sustained surface ignition occurs is reported. Other types of ignition which occur are reported in 12.5.

Convection transfer may also make a very small contribution (not more than a few per cent) to the heating at the centre of a specimen and to the reading of the radiometer during the calibration procedure. However, the term irradiance is used throughout this International Standard as best indicating the essentially radiative mode of heat transfer.

5 Suitability of a product for testing

(See also clause A.3 in annex A.)

5.1 Surface characteristics

5.1.1 A product having one of the following properties is suitable for testing:

a) an essentially flat exposed surface;

b) a surface irregularity which is evenly distributed over the exposed surface provided that:

- at least 50 % of the surface of a representative 150 mm diameter area lies within a depth of 10 mm from a plane taken across the highest points on the exposed surface, and/or

— for surfaces containing cracks, fissures or holes not exceeding 8 mm in width nor 10 mm in depth, the total area of such cracks, fissures or holes at the surface does not exceed 30 % of a representative 150 mm diameter area of the exposed surface.

5.1.2 When an exposed surface does not meet the requirements of either 5.1.1 a) or 5.1.1 b), the product shall, if practicable, be tested in a modified form complying as nearly as possible with the requirements given in 5.1.1. The test report

shall state that the product has been tested in a modified form and clearly describe the modification (see clause 14).

5.2 Asymmetrical products

A product submitted for this test could have faces which differ or could contain laminations of different materials arranged in a different order in relation to the two faces. If either of the faces can be exposed in use within a room, cavity or void, then both faces shall be tested.

6 Specimen construction and preparation

(See also clause A.4 in annex A.)

6.1 Specimens

6.1.1 Five specimens shall be tested at each level of irradiance selected and for each different exposed surface.

6.1.2 The specimens shall be representative of the product, square, with sides measuring 165_{-5}^{0} mm.

6.1.3 Materials and composites of normal thickness 70 mm or less shall be tested using their full thickness.

6.1.4 For materials and composites of normal thickness greater than 70 mm, the requisite specimens shall be obtained by cutting away the unexposed face to reduce the thickness to

ster. <u>180,303 / 70°9</u> mm standards.iteh.ai/catalog/standards/sist/ef71f6bd-fe46-4510-9a34-

974b1f3a291c/is

6.1.5 When cutting specimens from products with irregular surfaces, the highest point on the surface shall be arranged to occur at the centre of the specimen.

6.1.6 Assemblies shall be tested as specified in 6.1.3 or 6.1.4 as appropriate. However, where thin materials or composites are used in the fabrication of an assembly, the presence of air or an air gap and/or the nature of any underlying construction may significantly affect the ignition characteristics of the exposed surface. The influence of the underlying layers should be understood and care taken to ensure that the test result obtained on any assembly is relevant to its use in practice (see A.4.1).

When the product is a material or composite which would normally be attached to a well-defined substrate, then it shall be tested in conjunction with that substrate using the recommended fixing technique, e.g. bonded with the appropriate adhesive or mechanically fixed.

6.2 Baseboards

6.2.1 One baseboard will be required for each test specimen. However, since it will sometimes be possible to re-use the baseboard after test, the total number required will depend on the frequency of testing and the type of product being tested.

6.2.2 The baseboards shall be square with sides measuring $165 _ \frac{9}{5}$ mm and shall be made of non-combustible insulation

board of oven-dry density 825 \pm 125 kg/m^3 and nominal thickness 6 mm.

6.2.3 Before use in a test, a baseboard shall be placed for at least 24 h in an atmosphere at a temperature of 23 \pm 2 °C and a relative humidity of (50 \pm 5) %, with free access of air to both sides.

6.3 Conditioning of specimens

(See also sub-clause A.4.3 in annex A.)

Before test the specimens shall be conditioned to constant mass¹⁾ at a temperature of 23 \pm 2 °C, and a relative humidity of (50 \pm 5) %.

6.4 Preparation

6.4.1 A conditioned specimen shall be placed on a baseboard treated according to 6.2.3 and the combination shall be wrapped in one piece of aluminium foil of nominal thickness 0,02 mm from which a circle 140 mm diameter has been previously cut (see figure 1). The circular cut-out zone shall be centrally positioned over the upper surface of the specimen. After preparation the specimen-baseboard combination shall be returned to the conditioning atmosphere until required for test.

6.4.2 Where a product will normally be backed by air (see 6.1.6), then the specimen shall, where practicable, be backed by an air gap in the test. The air gap shall be formed by in 7, cluding a spacer between the specimen and the baseboard. The spacer shall consist of a piece of non-combustible insulation board of the same size and density as the baseboard, from the centre of which a circular area 140 $_{5}^{0}$ mm in diameter has been removed. The thickness of the spacer shall correspond to the size of the air gap, if this is known, except that the total thickness of the spacer plus specimen shall not exceed 70 mm. If the size of the air gap is not known or the total thickness of the spacer which will give a total thickness for the specimen and spacer of 70 $_{3}^{0}$ mm.

The spacer and baseboard shall be placed for at least 24 h in an atmosphere at a temperature of $23 \pm 2 \,^{\circ}$ C and a relative humidity of (50 \pm 5) %, with free access of air to both sides of each. The spacer shall then be interposed between the baseboard and the specimen and the combination shall be wrapped in aluminium foil as described in 6.4.1. A clean spacer shall be used for each specimen tested. After preparation the combination shall be returned to the conditioning atmosphere until required for test.

6.4.3 Baseboards and/or spacers used to back the specimens may be re-used if they are not contaminated. Immediately before re-use, however, they should have been in the conditioning atmosphere specified in 6.2.3 and 6.4.2 for at least 24 h. If there is any doubt about the condition of a baseboard or spacer, it may be placed in a ventilated oven at a temperature of

approximately 250 °C for a period of 2 h in an attempt to remove any volatile residue. If there is still any doubt about the condition, it shall be discarded.

7 Test apparatus

7.1 General

7.1.1 All dimensions given in the following description of test apparatus are nominal unless tolerances are specified.

7.1.2 The test apparatus shall consist essentially of a support framework which clamps the test specimen horizontally between a pressing plate and a masking plate such that a defined area of the upper surface of the specimen is exposed to radiation. This radiation shall be provided by a radiator cone positioned above and supported from the specimen support framework. An automated pilot flame application mechanism shall be used to bring a test flame through the radiator cone to a position above the centre of the surface of the specimen. A specimen insertion and location tray shall be used to position the specimen accurately on the pressing plate of the specimen support framework and a screening plate shall be used to shield the surface of the specimen during its insertion into the apparatus.

in figure 2, with detailed drawings in figures 3 to 6.

7.2 Specimen support framework, masking plate and pressing plate

7.2.1 The specimen support framework and the other parts of the system to hold the specimen in position shall be constructed from stainless steel. It shall consist of a rectangular base-frame made from 25 mm \times 25 mm square tube of 1,5 mm wall thickness and shall have overall dimensions of 275 mm \times 230 mm. A horizontal masking plate, 220 mm square and 4 mm thick, shall be mounted centrally and 260 mm above the top of the base-frame on four 16 mm diameter legs positioned at the corners of the masking plate. A 150 mm diameter circular opening shall be cut centrally in the masking plate, the edges of the hole being chamfered on the top surface of the plate at an angle of 45° and to a horizontal width of 4 mm.

7.2.2 Two vertical guide rods not less than 355 mm long of 20 mm diameter steel shall be mounted on the base-frame, one at the mid-length of each of the short sides of the frame. A horizontal adjustable bar 25 mm \times 25 mm which can slide on the rods and be locked in position by bolts capable of being tightened by hand shall be mounted below the masking plate and between the vertical guide rods. A vertical central hole and sleeve in the adjustable bar shall be used to locate a sliding vertical rod of 12 mm diameter and 148 mm long, surmounted by a 180 mm square pressing plate 4 mm thick. The pressing plate shall be pushed upwards against the underside of the masking

¹⁾ Constant mass is considered to be reached when two successive weighing operations, carried out at an interval of 24 h, do not differ by more than 0,1 % of the mass of the test piece or 0,1 g, whichever is the greater.

plate by the counterweighted pivot arm which shall be mounted below the adjustable horizontal bar and shall press against the bottom of the sliding vertical rod. This can be achieved by an arm about 320 mm long.

It shall contain at one end a roller which shall bear against a boss on the bottom of the sliding vertical rod and at the other end an adjustable counterweight.

The counterweight shall be capable of compensating for different masses of specimens and of maintaining a force of approximately 20 N between the upper surface of the specimen and the masking plate. A counterweight of about 3 kg has been found to be suitable. An adjustable stop shall be provided to limit upward movement of the pressing plate, due to collapse, softening or melting of the specimen during its exposure, to 5 mm. Alternatively spacing blocks between the pressing plate and the masking plate may be used.

7.2.3 Figure 3 shows details of the specimen support framework.

7.3 Radiator cone

7.3.1 The radiator cone shall consist of a heating element, of nominal rating 3 kW, contained within a stainless steel tube, approximately 3 500 mm in length and 8,5 mm in diameter, coiled into the shape of a truncated cone and fitted into a shade. The shade shall have an overall height of 75 \pm 1 mm, an internal diameter of 66 \pm 1 mm and an internal base diameter of 200 \pm 3 mm. It shall consist of two layers of 1 mm thick stainless steel with a 10 mm thickness of ceramic fibre insulation of nominal density 100 kg/m³ sandwiched between them. The heating element shall be fastened to the insulation of the shade by steel pins. Clamps shall be used to prevent ad-

The upper turn of the heating element shall not obstruct the area of the top aperture of the shade by more than 10 % when projected vertically.

7.3.2 The radiator cone shall be capable of providing irradiance in the range 1 to 5 W/cm² at the centre of the aperture in the masking plate and in a reference plane coinciding with the underside of the masking plate, when measured as described in 11.2. The distribution of irradiance provided by the cone at the reference plane shall be such that the variation of irradiance within a circle of 50 mm diameter, drawn from the centre of the masking plate aperture, shall be not more than ± 3 % of that at the centre; the variation of irradiance within a circle of 100 mm diameter shall be not more than ± 5 % of that at the centre.

The distribution of irradiance shall be determined from readings at the centres of 10 mm squares forming the grids shown in figure 4d). The tolerances given shall apply to the readings within the grid comprising all the squares shown in figure 4d).

For these measurements, the opening in the masking plate shall be completely filled; it is necessary to employ a number of calibration boards of special horizontal shapes and sizes. **7.3.3** The radiator cone shall be located and secured from the vertical guide rods of the specimen support framework by clamps which position the lower rim of the radiator cone shade 22 ± 1 mm above the upper surface of the masking plate.

7.3.4 Details of the radiator cone are shown in figure 4b).

7.3.5 The temperature of the radiator cone shall be controlled by reference to the reading of a thermocouple (primary thermocouple) (9.1) in close and stable thermal contact with the heater element tube. A second thermocouple (secondary thermocouple) shall be attached similarly, mounted in a diametrically opposite position. The thermocouples shall have a speed of response not worse than that of a thermocouple with insulated hot junction in a stainless steel sheath 1 mm in diameter. Each thermocouple shall be attached to a coil of the heater element tube which places them between one-third and half way down from the top of the radiator cone. At least 8 mm of the end of the thermocouple shall lie in a region of approximately uniform temperature.

A description of methods of attaching thermocouples which have been found satisfactory in practice is given in annex A (clause A.5.1).

7.4 Pilot flame application mechanism (See also clause A.5.2 in annex A.) S.Iten.al

7.4.1 The apparatus shall be provided with a mechanism which is capable of bringing a pilot flame from a re-ignition position outside the radiator cone to the test position within the cone. The mechanism shall be capable of taking the pilot flame through the radiator cone and through the aperture in the masking plate to a maximum distance of 60 mm below the underside of the masking plate.

7.4.2 The pilot flame shall issue from a nozzle made of stainless steel as specified in figure 5, attached near the end of the pilot flame tube.

7.4.3 The normal position of the pilot flame shall be above the radiator cone and clear of the plume of smoke or decomposition products which may rise through the top of the cone. When in this position the pilot flame nozzle shall be adjacent to a secondary ignition source¹⁾ having a heat output not greater than 50 W which shall be capable of re-igniting the pilot flame should it be extinguished.

7.4.4 The normal position for the pilot flame shall be such that the flame issues horizontally over the centre point of the aperture in the masking plate and perpendicular to the plane of movement of the pilot arm, with the centre of the orifice in the nozzle positioned 10 \pm 1 mm above the underside of the masking plate.

7.4.5 The application mechanism shall automatically bring the pilot flame to the "normal test position" once every $4 + \frac{0}{0}$.4 s.

¹⁾ The secondary ignition source can be a gas flame, hot wire or spark igniter. A propane flame, 15 mm long, from a nozzle with an internal diameter of 1 to 2 mm, has a heat output of approximately 50 W.

The pilot flame shall not take longer than 0,5 s to travel from the opening at the top of the radiator shade to the test position where it shall remain for $1 \, {}^{+0,1}_{0}$ s. The time taken for the pilot flame to travel back over the same distance shall not exceed 0,5 s.

7.4.6 The mechanism shall be provided with an adjustable stop which will restrict the lowest point of travel of the pilot flame to any position within the range from 20 mm above the test position to 60 mm below. When operating within this range, the vertical force exerted on the test specimen by the pilot flame nozzle shall be between 0,1 and 0,2 N. This is to be measured as the static force exerted with the mechanism stopped.

7.4.7 A suitable pilot flame application mechanism¹⁾ is shown in figures 6a), 6b) and 6c).

7.5 Specimen insertion and location tray

7.5.1 The specimen insertion and location tray shall be used to facilitate rapid insertion of the specimen on to the pressing plate and to locate accurately the exposed area of the specimen in relation to the aperture in the masking plate.

7.5.2 It shall consist essentially of a flat metal plate having lugs on its upper surface to position and hold the specimen. Guides shall be fixed to the lower surface to locate the tray in the apparatus and a stop shall also be provided to bear against the pressing plate, thus limiting the distance of insertion. The tray should be provided with a handle to facilitate use.

7.5.3 A suitable device is shownsin figure 7ch ai/catalog/standards/s 974b1f3a291c/iso-56

7.6 Specimen screening plate

7.6.1 The screening plate shall be designed to slide over the top of the masking plate during the period of insertion of the specimen, thus shielding the specimen from radiation until commencement of the test.

7.6.2 The plate shall be made from 2 mm thick polished aluminium or stainless steel and shall have overall dimensions which allow it to cover the masking plate. It should be provided with a stop, to limit its insertion against the masking plate, and a handle.

7.6.3 A suitable design is shown in figure 8.

8 Test environment

8.1 The test shall be carried out in an environment essentially free of air currents and protected, where necessary, by a screen. The air velocity close to the test apparatus should be not more than 0,2 m/s. The operator should be protected from any products of combustion generated by the specimen. The

effluent gases shall be extracted without causing forced ventilation over the apparatus.

8.2 A suitable design for screening the apparatus from draughts and exhausting the effluent gases is shown in figure 9.

9 Additional equipment

9.1 Temperature controller

The temperature controller for the radiator cone shall be of the proportional integral and derivative type ("3-term" controller) with thyristor stack fast-cycle or phase angle (see A.5.3) control of not less than 15 A maximum rating. Capacity for adjustment of integral times between about 10 s and 150 s, and differential times between about 2 s and 30 s, shall be provided to permit reasonable matching with the response characteristics of the heater. The temperature at which the heater is to be controlled shall be set on a scale capable of being read to ± 2 °C. An input range of temperature of about 0 to 1 000 °C is suitable. (An irradiance of 5 W/cm² will be given by a heater temperature in the region of 800 °C.) Automatic cold junction compensation for the thermocouple shall be provided.

Desirable features are a meter to indicate the output to the heater and a control which, in the event of an open circuit in the thermocouple line, will cause the temperature to fall to near the bottom of its range.

98 To monitor heater temperature, particularly to show the operator when the heater has attained temperature equilibrium, heater temperature shall be indicated by a meter capable of being read to ± 2 °C. This may be incorporated in the controller or separate.

9.2 Radiometer (heat flux meter)

The radiometer shall be of the Gardon (foil) type with a design range of about 10 W/cm^2 . The target receiving radiation, and possibly to a small extent convection, shall be flat, circular, not more than 10 mm in diameter and coated with a durable matt black finish. The target shall be contained within a water-cooled body the front face of which shall be of highly polished metal, flat, coinciding with the plane of the target and circular, with a diameter of about 25 mm.

Radiation shall not pass through any window before reaching the target. The instrument shall be robust, simple to set up and use, insensitive to draughts, and stable in calibration. The instrument shall have an accuracy of within ± 3 % and a repeatability within 0,5%.

The calibration of the radiometer shall be checked whenever a recalibration of the apparatus is carried out (see 11.2), by comparison with an instrument held as a reference standard and not used for any other purpose. The reference standard instrument shall be fully calibrated at yearly intervals.

1) The pilot flame application mechanism should be constructed to a close tolerance since minor changes in the dimensions can lead to changes to the timing as specified in 7.4.5. Small changes can, however, be accommodated by slight changes in the diameter of the slave roller.

9.3 Millivolt measuring device

This shall be compatible with the output from the radiometer specified in 9.2. It shall have a full scale deflection, sensitivity and accuracy which enable the irradiance measured by the radiometer to be resolved to 0.05 W/cm².

9.4 Secondary thermocouple monitoring device

To monitor the secondary thermocouple, an instrument is required with a resolution equivalent to ± 2 °C. This may read directly in temperature or in millivolts. Allowance or automatic compensation for cold junction temperature shall be made. If a separate device is used to monitor heater temperature, this may, with a suitable switch connection, also be used to monitor the secondary thermocouple.

Timing device (timer) 9.5

This shall be capable of recording elapsed time to the nearest second and shall be accurate to within 1 s in 1 h.

9.6 Air and propane supplies

Air and propane shall be fed to the pilot flame (see 7.4) If it is necessary to meet the recommendation given in 6.4.3, regulating valves, filters (if necessary), flow meters, non-return then a ventilated oven capable of maintaining a temperature of valves, a suitable junction connection and a flame arrester as approximately 250 °C is required. shown in figure 10.

9.6.1 Gas regulating valves https://standards.iteh.ai/catalog/standards/sist/ef71f6bd-fe46-4510-9a34

These shall be capable of adjusting the pressure and flow of propane and air to the pilot flame to the levels required by 10.2.

9.6.2 Filters

Filters may need to be installed in the propane and/or air lines to avoid the readings of the flow-meters being affected by impurities (for example oil droplets) carried in the flow.

9.6.3 Flow-meters

These shall be capable of measuring the flow-rates of propane and air to the pilot flame to an accuracy of at least 5 %.

9.6.4 Non-return valves

A suitable non-return valve shall be included in both air and propane lines, sited as close to the junction point as possible.

9.6.5 Flame arrester

A flame arrester [see figure 6a)] shall be mounted at the point of entry of the propane/air mixture to the pilot flame arm.

9.6.6 Connections

All connections with flexible tubing shall be firmly attached with suitable clips.

9.7 Calibration board

The board shall be made of ceramic fibre of density 200 \pm 50 kg/m³, and shall be square, with sides measuring 165 $__{5}^{0}$ mm and of thickness not less than 20 mm.

A suitable hole or groove cut to fit closely around the radiometer shall be cut in the centre of the board. The target of the radiometer shall be in the plane of the upper surface of the board. If additional support for the radiometer is required, it shall be provided from below the calibration board.

9.8 Dummy specimen board

The dummy specimen board shall be constructed as specified in figure 11. The necessary total thickness of ceramic fibre board may be built up from a number of thinner sheets attached to each other by adhesive or long fine pins.

Extinguishing board 9.9

The extinguishing board shall be made of the same material as the baseboards (6.2) and shall have nominal dimensions of 300 mm × 185 mm × 6 mm.

9.10 Oven

ISO 5659.116 Specimen conditioning cabinet

74b1f3a291c/isTheospecimen conditioning cabinet shall be capable of maintaining a constant temperature of 23 ± 2 °C and a relative humidity of (50 ± 5) %.

9.12 Balance

The balance shall have a nominal capacity of 5 kg and shall be readable and accurate to 0,1 g.

Setting-up procedure and requirements 10

10.1 Siting the apparatus

The apparatus shall be placed in an environment essentially free of air currents (see clause 8).

10.2 Pilot flame

(See also clause A.5.2 in annex A.)

The pilot flame nozzle (see 7.4) shall be fed with a mixture of propane and air which is achieved by regulating the propane flow-rate to 19 to 20 ml/min and the air flow-rate to 160 to 180 ml/min. These flow-rates shall be measured after the pressure and flow regulating valves and shall be fed directly to the pilot flame from the flow meters so that the pressure is nominally atmospheric.

10.3 Electrical requirements

10.3.1 The heating element of the radiometer cone (7.3) shall be connected to the output from the thyristor of the temperature controller as shown in figure 10. No element or wiring in this circuit shall be changed between calibration and testing. The primary thermocouple shall be connected to the temperature controller and its temperature-monitoring device. The secondary thermocouple shall be connected to its monitoring device (9.4).

10.3.2 The framework of the apparatus shall be provided with a good electrical earth.

10.4 Precautions against electrical interference

The radiometer shall be connected to the millivolt measuring device (9.3) using leads which should be screened to minimize any electrical interference to the signal. The radiometer shall be earthed back to the millivolt measuring device and by no other route (i.e. not to the earthed frame of the apparatus). All connections shall be thoroughly checked to ensure good electrical contact.

11 Calibration

iTeh STANDARD

974b1f3a291c/iso-5657-

11.1 Installation of radiometer

For calibration of the apparatus, the radiometer (9.2) shall be 7:1986 installed in the hole or groove of the calibration board (9.7) dards/sist/e

11.2 Calibration procedure

Calibration procedure shall be as follows.

a) Set up the apparatus as described in clause 10, except that the pilot flame mechanism shall be kept in the reignition position with gas supply turned off throughout the calibration procedure.

b) Place the calibration board (9.7) in the apparatus in the specimen position so that the target of the radiometer (9.2) is located centrally within the circular opening of the masking plate, in the plane of the bottom face of the masking plate.

c) Switch on the electricity supply and establish the temperature settings of the controller required to produce irradiances at the centre of the circular opening in the masking plate of 1, 2, 3, 4 and 5 W/cm². Adjustments near the final setting for heater temperature should be followed by a 5 min period without further adjustment to ensure that the remainder of the apparatus has attained sufficient temperature equilibrium.

At each full equilibrium, read and record the secondary thermocouple monitor. These readings are to enable a close and independent check to be made on the temperature of the heater during testing.

d) Carry out this procedure at least twice, the first time at settings of increasing temperature and the second time at decreasing settings.

The values should be repeatable to within $\pm 5 \,^{\circ}$ C. Repeatability values outside these limits indicate possible defects in control of monitoring equipment, or significant changes in the test environment, which shall be corrected before further calibrations are carried out.

11.3 Calibration check

The irradiance produced by the temperature setting which the initial calibration has shown to correspond to an irradiance of 3 W/cm² shall be frequently checked (at least once every 50 operating hours) and the apparatus shall be recalibrated if such a check reveals a deviation greater than 0,06 W/cm².

12 Test procedure

12.1 Initial procedure

The initial procedure shall be as follows.

Set up the apparatus as described in clause 10. a)

b) Weigh a prepared specimen-baseboard combination (6.4.1) and return to the conditioning atmosphere.

Adjust the counterweight mechanism to give a force of 20 ± 2 N between the upper surface of the specimen and the underside of the masking plate (see 7.2.2 and sub-

clauses A.6.1 and A.6.2 in annex A), when the specimenbaseboard combination is positioned on the pressing plate (standards.ite in the insertion and location tray. This adjustment may be made by the methods indicated in A.6.1 but using a dummy of the same mass as the specimen-baseboard combination instead of a prepared and conditioned specimen.

> d) Insert the dummy specimen board (9.8).

e) Adjust the temperature setting of the controller to the appropriate value established by the calibration procedure to correspond to 5 W/cm² (or other level as required).

Allow the apparatus to heat up to equilibrium. When the f) : heater has attained temperature equilibrium, as shown by the indicating meter of the temperature controller, a further 5 min should be allowed to elapse before commencing exposure of a specimen.

g) Check that the reading of the secondary thermocouple is within the equivalent of ±2 °C of the value established during the calibration procedure (11.2). A deviation outside this tolerance indicates the need for a complete recalibration.

h) Remove a prepared specimen from the conditioning cabinet (9.11) and place it on the insertion and location tray (7.5).

i) Place the specimen screening plate on top of the masking plate.

j) Start the pilot flame application mechanism (7.4).

k) Lower the pressing plate, remove the dummy specimen board and replace it with the insertion and location tray containing the specimen.

1) Release the pressing plate.

m) When the pilot flame is at the re-ignition position, simultaneously remove the specimen screening plate and start the timer (9.5).

12.2 Time permitted for test initiation

All operations detailed in 12.1 i) to m) shall be completed within 15 s.

12.3 Conduct and termination of test

12.3.1 If sustained surface ignition of the specimen occurs (see 3.9), the timer shall be stopped. Any flames shall immediately be extinguished by placing the extinguishing board (9.9) on top of the masking plate and the pilot flame application mechanism shall be stopped. The tray and remains of the specimen shall then be quickly removed and replaced by the dummy specimen board. The extinguishing board shall then be removed as quickly as possible (see sub-clause A.6.3 in annex A).

12.3.2 If no sustained surface ignition of the specimen occurs within 15 min, the test shall be stopped by placing the extinguishing board on top of the masking plate and the pilot flame application mechanism shall be stopped. The specimen shall then be removed and replaced by the dummy specimen board. The extinguishing board shall then be removed as guickly as possible.

12.3.3 Transitory surface ignitions and/or plume ignitions should be noted as far as possible but should not cause the test at to be terminated.

12.5 Observations during test

12.5.1 For each specimen tested, the time at which sustained surface ignition occurs shall be noted (see 3.9).

12.5.2 Observations shall be made during each test of the general behaviour of the specimen and, in particular, note should be made of the following:

- a) the time, position and nature of other ignitions;
- b) glowing decomposition of the specimen;

c) melting, foaming, spalling, cracking, expansion or shrinkage of the exposed surface of the specimen.

12.6 Special procedures

ISO 5

12.6.1 Soft and softening products

12.6.1.1 For some soft products, especially low-density products such as glass- or mineral-fibre products with or without coatings, the pressure of the pressing plate may cause some compression of the edges of the specimen so that the exposed face of the specimen is not flat but convex upwards. This can occur even without heating from the radiator cone.

In order that the specimen should not be subjected to an irradiance higher than that for a flat, stable specimen, an adjustable stop should be installed and operated on the pressing plate mechanism to avoid the crushing of the aluminium foil wrapping, to maintain the surface of the specimen flat and to

https://standards.iteh.ai/catalog/stand.presetve_the nominal_thickness_of the product. Alternatively, 974b1f3a291c/spacing/blocks between the pressing plate and the masking plate may be used.

12.4 Repeat tests

12.4.1 Operations 12.1 h) to m) and 12.3 shall be repeated with four more specimens at the same irradiance after allowing sufficient time between applications to allow the apparatus to reach thermal equilibrium (see sub-clause A.6.3 in annex A).

12.4.2 If sustained surface ignition occurs with any specimen in a set of five at a given irradiance, a further set of five specimens shall be tested at the next lower level of irradiance (or at any other set lower level).

12.4.3 Operation 12.4.2 shall be repeated as necessary until a set of five specimens has been tested at each required irradiance.

12.4.4 If no sustained surface ignition occurs (see 12.3.2) with all specimens in a set of five at a given irradiance, tests shall not be carried out at lower irradiances, unless specifically required (see sub-clause A.6.2 in annex A).

12.4.5 When adjusting the heater to the next level of irradiance, sufficient time shall be allowed for the apparatus to reach thermal equilibrium following the change in temperature setting (see clause A.6.3 in annex A).

At full equilibrium the reading of the secondary thermocouple should be within $\pm 2 \,^{\circ}$ C of the value established during the calibration procedure (11.2).

12.6.1.2 For specimens which are likely to contract, soften or melt away when heated it is necessary to prevent the pressing plate (7.2.2) from unduly crushing the aluminium foil wrapping on the edge of the specimen. This can be accomplished by an adjustable stop on the pressing plate mechanism or spacing blocks between the pressing plate and the masking plate.

12.6.1.3 With certain products the pilot flame application mechanism may not act satisfactorily. For example, some materials become sticky when heated and can be drawn up in threads, some materials are or become soft enough for the pilot flame arm to bury itself, some materials intumesce and produce a foamed char "crust" having little mechanical strength. With these products it will be necessary to operate the adjustable stop on the travel of the pilot flame application mechanism to bring it close to, but not touching, the exposed surface of the specimen (see sub-clause A.6.4 in annex A).

12.6.1.4 Certain materials (e.g. PVC) may contain high concentrations of flame retardants. With these products, the copious fumes generated on irradiating can extinguish the pilot flame and prevent its re-ignition by the secondary ignition source. If this situation occurs repeatedly within 15 min, when reasonable attempts to re-light the pilot flame have been made, the results should be given as "no sustained surface ignition under these test conditions: pilot flame repeatedly extinguished by decomposition products".