TECHNICAL REPORT

First edition 2003-01

Fibre optic communication system design guides -

Part 7: Statistical calculation of chromatic dispersion

i Guides de conception des systèmes de communications à fibres optiques -ds.iteh.ai)

Partie 7: <u>IEC TR 61282-7:2003</u> https://**Calcul.statistigue.de**.da.dispersion.chromatique 3810db5c8421/iec-tr-61282-7-2003

Reference number IEC/TR 61282-7:2003(E)

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

- IEC Web Site (<u>www.iec.ch</u>)
- Catalogue of IEC publications

The on-line catalogue on the IEC web site (<u>http://www.iec.ch/searchpub/cur_fut.htm</u>) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information, is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

• IEC Just Published standards.iteh.ai)

This summary of recently issued publications (<u>http://www.iec.ch/online_news/justpub/jp_entry.htm</u>) is also available by email. Please contact the Customer Service Centre (see below) for further information 9c8-04a8-44d5-8101-

Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: <u>custserv@iec.ch</u> Tel: +41 22 919 02 11 Fax: +41 22 919 03 00

TECHNICAL REPORT

First edition 2003-01

Fibre optic communication system design guides -

Part 7: Statistical calculation of chromatic dispersion

Guide de conception des systèmes de communications à fibres optiques - ds.iteh.ai)

Partie 7: <u>IEC TR 61282-7:2003</u> https://**Calcul statistigue de la dispersion chromatique** 3810db5c8421/iec-tr-61282-7-2003

© IEC 2003 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

For price, see current catalogue

Μ

CONTENTS

FOF	REWORD	3	
1	Scope	4	
2	Normative references	4	
3	Characterisation of chromatic dispersion coefficient versus wavelength	5	
4	Characterisation of chromatic dispersion coefficient statistics versus wavelength	6	
5	Calculation of the concatenation statistics for a single population of optical fibres	9	
6	Generalisation of concatenation statistics for multiple populations – including components.	. 10	
Figu	Figure 1 – Distribution of dispersion parameters		
Figu	Figure 2 – Histogram of values at 1560 nm		
Figu	Figure 3 – Histogram of values at 1530 nm		
Figu	Figure 4 – Average dispersion coefficient versus wavelength		
Figu	Figure 5 – Standard deviation of dispersion coefficient versus wavelength		
Figu	Figure 6 – Fibre avera <mark>ge eh STANDARD PREVIEW</mark> 1		
Figu	Figure 7 – Fibre standard deviation and ards, itch. ai)		
Figu	ure 8 – Dispersion compensator average	. 12	
Figu	Figure 9 – Dispersion compensator standard deviation03		
Figu	ure 10 – Combined three signa limits 3810db5c8421/iec-tr-61282-7-2003	. 13	

Table 1 – Computed values at two selected wavelengths 10

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FIBRE OPTIC COMMUNICATION SYSTEM DESIGN GUIDES -

Part 7: Statistical calculation of chromatic dispersion

FOREWORD

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
- 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.
- 6) Attention is drawn to the possibility that some of the elements of this technical report may be the subject of patent rights. The IECI shall not be held responsible for identifying any of all such patent rights. 3810db5c8421/iec-tr-61282-7-2003

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC 61282-7, which is a technical report, has been prepared by subcommittee 86C: Fibre optic systems and active devices, of IEC technical committee 86: Fibre optics.

The text of this technical report is based on the following documents:

Enquiry draft	Report on voting
86C/429/DTR	86C/468/RVC

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until 2009-12. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

FIBRE OPTIC COMMUNICATION SYSTEM DESIGN GUIDES –

Part 7: Statistical calculation of chromatic dispersion

1 Scope

This part of IEC 61282 is a guideline providing methods of representing the process statistics of the chromatic dispersion of optical fibres and related components that may be combined in a link.

Chromatic dispersion (ps/nm) is the derivative, with respect to wavelength, of the group delay (ps) induced by the spectral content of light propagating through an optical element or fibre. Chromatic dispersion is normally a function of wavelength and can be either positive (group delay increasing with wavelength) or negative (group delay decreasing with wavelength).

The presence of chromatic dispersion can induce distortions in signals leading to bit errors depending on

- source spectral width;
- source chirp;
- bit period;
- distance.

iTeh STANDARD PREVIEW (standards.iteh.ai)

In addition, chromatic dispersion is interactive with the effects of non-linear optical effects and second order polarisation mode dispersion (PMD). The above system impairments are beyond the scope of this technical report. 3810db5c8421/iec-tr-61282-7-2003

When different components or fibres are combined, the chromatic dispersion of the combination is the total of the chromatic dispersion values of the individuals, on a wavelengthby-wavelength basis. A section with high chromatic dispersion will be balanced by sections with lower values. The variation in the total dispersion of links will therefore be dependent on the distributions of the products that are used in the link. This document provides methods to calculate the distribution statistics of concatenated links based on information on the distributions of different fibre or component populations.

NOTE In the clauses that follow, examples are given for particular fibre and component types. These examples are not necessarily broadly representative.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60793-1-42: Optical fibres – Part 1-42: Measurement methods and test procedures – Chromatic dispersion

IEC 60793-2-50: Optical fibres – Part 2-50: Product specifications – Sectional specification for class B single-mode fibres

ITU-T Recommendation G.652: Characteristics of a single-mode optical fibre cable

ITU-T Recommendation G.655: Characteristics of a non-zero dispersion shifted single-mode optical fibre cable

ITU-T Recommendation G.671: Transmission characteristics of optical components and subsystems

ITU-T Recommendation G.691: Optical interfaces for single-channel STM-64, STM-256 and other SDH systems with optical amplifiers

3 Characterisation of chromatic dispersion coefficient versus wavelength

This clause outlines the characterisation of dispersion as a function of wavelength – for a given wavelength range. This function is often represented as a formula that includes parameters that can vary from fibre to fibre for a given fibre design. Characterisations of these formulas should give an indication of the wavelength range over which the formula applies. Extrapolation beyond these ranges can result in error.

For optical fibre, chromatic dispersion coefficient, *D*, can vary with wavelength, λ , according to a variety of formula types that are found in IEC 60793-1-42. The simplest is the linear representation which has just two parameters, zero-dispersion wavelength, λ_0 , and zero-dispersion slope, S_0 , as:

$$D(\lambda) = S_0(\lambda - \lambda_0) \quad (ps/nm \cdot km) \tag{1}$$

Measurements are based either on fitting differential group delays (DGD) or by fitting the integral to the measured group delay. NDARD PREVIEW

Other forms defined in 60793-1-42 are the three-term Sellmeier (Equation (2)), and the five-term Sellmeier (Equation (3)). Note that for the five-term Sellmeier, parameters, C_j , different from the zero-dispersion wavelength and slope must be fitted.

https://standards.iteh.ai/catalog/standards/sist/f2a609c8-04a8-44d5-8101-

$$3810db5c8435/jac(-tr-6(2R^2)^4-2)003$$

$$D(\lambda) = \frac{3810}{4} \left(1 - \left(\frac{2R^2}{\lambda}\right)^4-2\right)$$
(2)

$$D(\lambda) = 2C_1\lambda - 2C_2\lambda^{-3} + 4C_3\lambda^3 - 4C_4\lambda^{-5}$$
(3)

For components, similar types of expressions can be used to characterise the chromatic dispersion value, d, as a function of wavelength. For components, however, the units are most often given as ps/nm (unadjusted for length). [The use of the term "coefficient," for fibre indicates a length normalisation.]

Even for the products for which the linear representation of Equation (1) is appropriate for each individual fibre, the combination of the distributions of the zero-dispersion wavelength and slope will normally not lead to a very clear understanding of the distribution of chromatic dispersion. Figure 1 shows such a combined distribution that illustrates a correlation between the dispersion parameters.

Figure 1 – Distribution of dispersion parameters https://standards.iteh.ai/catalog/standards/sist/f2a609c8-04a8-44d5-8101-3810db5c8421/iec-tr-61282-7-2003

4 Characterisation of the chromatic dispersion coefficient statistics versus wavelength

This clause outlines the technique used to characterise the distribution of a single population of fibres. Similar approaches can be applied to components.

The fibre distribution shown in Figure 1 was intended for use in the wavelength range of 1530 nm to 1560 nm – a B4 type fibre (ITU-T G.655), see IEC 60793-2-50. The chromatic dispersion values for the lower end of this range are affected more by the variation of slope values for high zero-dispersion wavelength than for low zero dispersion wavelength. The combined contributions are therefore difficult to evaluate without some other means.

The characterisation methodology suitable for use in concatenation statistics for this distribution alone, or for combination with other distributions is to calculate the dispersion coefficient for each of the wavelengths in the range of the application – for each individual fibre. This creates a distribution of dispersion coefficient values for each wavelength. Figures 2 and 3 show these distributions at two selected wavelengths for the distribution shown in Figure 1.

Figure 3 – Histogram of values at 1530 nm

The distribution for each wavelength is characterised with an average and a standard deviation value. These statistics are then plotted versus wavelength. Figures 4 and 5 show the relationships.