INTERNATIONAL STANDARD

ISO 5799

Second edition 1991-08-01

Photography — Direct-exposing medical and dental radiographic film/process systems — Determination of ISO speed and ISO average

iTeh S'PRANEDARD PREVIEW

(standards.iteh.ai)

Photographie — Ensembles film/traitement destinés à la radiographie médicale sans égran et à la radiographie dentaire — Détermination de https://standards.it.la.sensibilité ISO.et.du-contraste-moyen ISO

02909b26b614/iso-5799-1991

Reference number ISO 5799:1991(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by a least 75% of the member EVIEW bodies casting a vote.

International Standard ISO 5799 was prepared by Technical Committee ai) ISO/TC 42, Photography.

This second edition cancels and replaces the first edition (ISO 5799:1981), which has been technically revised (2209b26b614/so-5799-1991

Annexes A, B, C and D of this International Standard are for information only.

© ISO 1991

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Introduction

This revision of ISO 5799 has been primarily necessitated by the decision to adopt the recommendation of the International Commission of Radiation Units and Measurements to use the gray as a measure of X and γ radiation in place of coulombs per kilogram of air. This has required changing the speed constant. The International Standard now includes updated references, and speed and average gradient tables compatible with the format of other radiographic film standards.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 5799:1991</u> https://standards.iteh.ai/catalog/standards/sist/167282ab-de87-4861-a6fa-02909b26b614/iso-5799-1991

iTeh STANDARD PREVIEW (Shis page Intentionally left blank

<u>ISO 5799:1991</u> https://standards.iteh.ai/catalog/standards/sist/167282ab-de87-4861-a6fa-02909b26b614/iso-5799-1991

Photography — Direct-exposing medical and dental radiographic film/process systems — Determination of ISO speed and ISO average gradient

1 Scope

This International Standard specifies methods for determining the ISO speed and ISO average gradient of the film/process combinations used in medical and dental radiography other than mammography. Sensitometric procedures are described for films exposed directly to X-rays TheR purpose of this International Standard is to provide a method for the measurement of ISO speed and ISO average gradient so that the characteristics of film/process system can be obtained the reproducibly and can also be compared with those 9:1991 of other systems.

02909b26b614/iso-57

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 5-1:1984, Photography – Density measurements - Part 1: Terms, symbols and notations.

ISO 5-2:1985, Photography – Density measurements — Part 2: Geometric conditions for transmission density.

ISO 5-3:1984, Photography – Density measurements - Part 3: Spectral conditions.

ISO 4037:1979, X and gamma reference radiations for calibrating dosemeters and dose ratemeters and for determining their response as a function of photon energy.

3 Definitions

For the purposes of this International Standard, the following definitions apply.

3.1 air kerma, K: The energy, which is transferred by ionizing radiation (for instance X-rays) to air molecules, divided by the mass of air in that volume where the energy is released.

https://standards.iteh.ai/catalog/standards/sist/ $\frac{3}{2}$? $\frac{2}{3}$? $\frac{2}{3}$? $\frac{2}{3}$? $\frac{3}{4}$ % $\frac{3}{$ 8f¹the photographic material to radiant energy for the specified conditions of exposure, processing, and image density measurement.

> 3.3 average gradient: The slope of the straight line joining two specified points on a sensitometric curve.

> **3.4 gray, Gy¹**: The absorbed dose of X and/or γ radiation in 1 kg of air which produces charged particles and imparts 1 J of initial kinetic energy to those charged particles.

4 Sampling and storage

In determining the ISO speed and ISO average gradient of a product, it is important that the samples evaluated yield the average results obtained by users. This will require evaluating several different batches periodically under conditions specified in this International Standard. Prior to evaluation, the samples shall be stored according to the manufacturers' recommendations for a length of time to simulate the average age at which the product is normally used. Several independent evaluations shall be made to ensure the proper calibration of

1) 1 Gy = 1 J/kg of air is equivalent to 114,5 R or is equivalent to 0,0295 C/kg

1

equipment and processes. The basic objective in selecting and storing samples as described above is to ensure the film characteristics are representative of those obtained by a consumer at the time of use

Method of test 5

Principle 5.1

Samples are exposed and processed as specified below. Measurements are obtained from the resultant images to produce a sensitometric curve from which values are taken and used to determine ISO speed and ISO average gradient.

5.2 Safelights

To eliminate the possibility of safelight illumination affecting the sensitometric results, all films shall be handled in complete darkness during exposing and processing.

5.3 Exposure

5.3.1 Film holders

(without lead screens).

iTeh STANDAlight in mass as possivered at the standard of the

(standards.iteh.ai) 5.3.5 Modulation

Films shall be exposed in holders which provide less than 2 % absorption of the radiation specified $\frac{1SO 57}{T}$

Dental films shall be exposed in the original packet or a wrapping of equivalent absorption.

https://standards.i

5.3.2 Sampling conditions

The sample shall be at a temperature of 23 °C \pm 5 °C and be equilibrated with air at a relative humidity of (50 ± 20) % during exposure.

If the film packet contains two films, the film towards the side with the radiation source shall be used. If the packet contains lead backing, the backing shall be away from the radiation source.

5.3.3 Radiant energy quality

The tungsten target X-ray tube shall fulfil all reproduction conditions for radiation as specified in ISO 4037. Inherent filtration of the tube plus an additional aluminium²⁾ filter located as close to the

The film shall be given a graduated series of expo-.ai/catalog/stan sures such as will result in a series of densities 02909b26b61 above base plus fog from 0,2 to 2,3. The exposure over the useful area of each exposure step shall be uniform to within 3 %. The log_{10} of the exposure increments shall not exceed 0,15. Each exposure shall be measured, in grays, by using an ionization chamber calibrated for the radiant energy quality and intensity used for exposing the film⁴). A separate sample of the film shall be left unexposed for measuring inherent base plus fog density.

Processing 5.4

5.4.1 Conditioning of samples

In the time interval between exposure and processing, the samples shall be kept at 23 °C + 5 °C and be equilibrated with air at a relative humidity of (50 ± 20) %. The processing shall be started between 30 min and 8 h after exposure.

target as possible shall provide a total filtration equivalent to 7,0 mm \pm 0,5 mm of aluminium.

The kilovoltage³⁾ of the X-ray tube shall be adjusted until the half value in aluminium is 3.0 mm + 0.2 mm, i.e. the exposure rate of the X-ray beam with a total filtration equivalent to 10.0 mm aluminium shall be one-half the value obtained with the total filtration equivalent to 7.0 mm of aluminium. The 3.0 mm aluminium half-value layer absorber shall be placed at a maximum from the target of one-half the distance between the X-ray target and the ion chamber.

5.3.4 Scattered radiation

To minimize scattered radiation when exposing test films, X-ray beams shall be collimated to as small a size as will permit a uniform exposure field for the films (and the measuring device, if included). The amount of scattered radiation reaching the film and measuring device shall be no greater than 5 % of the primary radiation. Constructing the supports for the film, filters, and ion chamber from low atomic number materials and making such structures as light in mass as possible will minimize scattered

²⁾ Any grade in table 1 of ISO 209-1:1989, Wrought aluminium and aluminium alloys - Chemical composition and forms of products - Part 1: Chemical composition, may be used (the ISO symbols are Al 99,0 - Al 99,5 - Al 99,7 - Al 99,8).

³⁾ In constant potential equipment, a value between 50 kV and 55 kV is required. In equipment without electrical smoothing, approximately 60 kV is satisfactory.

⁴⁾ If the instrument can be calibrated only at certain half-value layers close to but not identical with those specified in 5.3.3, then interpolation at the specified half-value layer from a plot of the calibrations over a bracketing range of half-value layers is permissible. Annex A lists suitable radiant energy.

5.4.2 Processing specifications

No processing specifications are described in this International Standard in recognition of the wide range of chemicals and equipment used. ISO speed and ISO average gradient data provided by the film manufacturers generally apply to the film when it is processed in accordance with their recommendations to produce the photographic characteristics specified for the process. Process information shall be available from the film manufacturers or others who quote ISO speed and ISO average gradient. This shall specify the chemicals, times, temperatures, agitation, equipment, and procedure used for each of the processing steps, and any additional information required to obtain the sensitometric results described. The values for speed and average gradient obtained using various processing procedures may differ significantly. Although different speeds and average gradients for a particular film may be achieved by varying the process, the user should be aware that other sensitometric and physical changes may also accompany the speed and average gradient changes.

iTeh STANDARD

ISO standard visual diffuse transmission density of

Densitometry

5.5

the processed images shall be measured using a

densitometer complying with the geometric requirer $S = \frac{10^{-2}}{S_{12}}$ ments specified in ISQ15₅2_{st} and spectral treguirer and sist/167282ab-dKs7-4861-a6faments specified in ISO 5-3. A minimum aperture of /iso-5799-1991

7 mm² shall be used. Reading shall be at least 1 mm from the edge of the exposure.

5.6 Evaluation

5.6.1 Sensitometric curve

The ISO standard visual diffuse transmission density values shall be plotted against the logarithm to the base 10 of the corresponding air kerma, expressed in grays, to obtain a sensitometric curve similar to that shown in figure 1.

5.6.2 Base plus fog density

The combination of base plus fog density shall be determined from an unexposed sample of the same film processed simultaneously with the sample exposed for determining the sensitometric curve.

6 **Product classification**

6.1 ISO speed determination

The exposed and processed samples used for this determination shall be measured as described in 5.5. The densities shall be plotted against the logarithm to the base 10 of the measured air kerma, in grays⁵⁾, as in figure 1. From the speed point density, 1.0 above base plus fog density, the corresponding

log kerma, $\log_{10}K_s$ shall be determined.

Raw speed values are derived from the formula

ISO speed shall be obtained directly from $\log_{10}K_s$ by use of table 1 which shows the rounding to be used.

⁵⁾ This use of SI units results in numerical values of speed which are not very different from current values. Current practice assigns an arbitrary speed of 100 to image recording systems which produce net densities of about 1,0 when exposed to 10 mR (milliroentgens). Since 10 mR = 8,732 imes 10 $^{-5}$ Gy (grays) the speed calculated for that exposure, using the formula proposed in this International Standard, yields a speed of 114,5.

Figure 1 - Method for determining ISO speed and ISO average gradient

$\log_{10}K_{s}$		ISO speed (<i>S</i>)	
From		То	130 speed (3)
- 5,05		4,96	1 000
- 4,95		4,86	800
- 4,85		4,76	640
-4,75		4,66	500
- 4,65		4,56	400
- 4,55		4,46	320
- 4,45		4,36	250
- 4,35		4,26	200
- 4,25		4,16	160
- 4,15		- 4,06	125
- 4,05		3,96	100
- 3,95		3,86	80
- 3,85		3,76	64
- 3,75		3,66	50
- 3,65	iTeh	STANDA ^{-3,56} DDEV/I	40
- 3,55		3,46	32
- 3,45		(standardssiteh.ai)	25
- 3,35		3,26	20
- 3,25		<u>ISO 5799;1091</u>	16
- 3,15	https://standards	.iteh.ai/catalog/standara/06st/167282ab-de87-	4861-a6fa- 12
- 3,05		02909b26b614/iso-5799-1991 2,96	10
- 2,95		2,86	8
- 2,85		2,76	6
2,75		2,66	5
- 2,65		2,56	4

Table 1 — ISO speed scale

6.1.1 ISO speed of a product

The ISO speed of a product, as distinguished from that of a specific sample, shall be based on the arithmetic average of the logarithms, $\log_{10}K_s$, determined from various batches of the product when selected, stored, and tested as specified above. Since ISO speed is dependent on exposure and development conditions, these should be indicated when quoting ISO speed values.

6.1.2 Dental films

The speed of dental films is calculated using the formula given in 6.1 from the average value of K_s . The speed group letter is then obtained from the use of table 2.

Table 2 - ISO speed scale

ISO speed range ¹⁾	ISO speed group letter	
7,0 to 14,0	С	
14,0 to 28,0	D	
28,0 to 56,0	E	
56,0 to 112,0	F	