INTERNATIONAL STANDARD

First edition 2005-08

Reference number IEC 60747-7-5:2005(E)

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

- IEC Web Site (<u>www.iec.ch</u>)
- Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/search.ub) enables you to search by a variety of criteria including text searches technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

IEC Just Published

This summary of recently issued publications (www.iec.ch/online_news/justpub) is also available by email. Please contact the Customer Service Centre (see below) for further information.

Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

ay0ce-0c44-4a0f-a66c-c07e16380b0c/iec-60747-7-5-2005

Empil: <u>custserv@iec.s#</u> 76I: +41 22 919.02 11 Pax: +41 22 919 03.00

INTERNATIONAL STANDARD

First edition 2005-08

© IEC 2005 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

For price, see current catalogue

U

CONTENTS

FOI	REWORD	3	
1	Scope	5	
2	Normative references		
3	Terms and definitions	5	
4	Letter symbols – Energies	6	
5			
	5.1 Ratings (limiting values)		
	5.2 Characteristics	7	
6	Measuring methods	9	
		9	
	6.2 Methods of measurement		
7		22	
	7.1 Endurance and reliability tests, and test methods.7.2 Type tests and routine tests	22	
Fia	ure 1 –Test circuit for collector current		
-	ure 2 – Test circuit for peak collector current		
	ure 3 – Test circuit for base current		
	ure 4 – Test circuit for peak base current		
Fia	are 5 – Circuit for testing the collector-base voltage V_{CBS} , V_{CBR} , V_{CBX}		
	ure 6 – Circuit for testing the collector emitter voltage V _{CES} , V _{CER} , V _{CEX}		
	ure 7 – Circuit for testing the emitter base voltages VEB		
	ure 8 – Test circuit of reverse bias safe operating area (RBSOA)		
	ure 9a – Waveforms of base current /g and collector current / _C during turn-off		
	ure 9b – RBSQA curves during turn-off		
Fig	ure 10 – Circuit for testing safe operating pulse duration at load short circuit. SOA)		
	ure $14 - Waveforms$ of base current I_B , collector current I_C and voltage V_{CE}		
duri	ing load short circuit condition SCSOA		
Fig	ure 12 – Circuit diagram for measuring turn-on intervals and energy	19	
Fig	ure 13 – Waveforms during turn-on intervals	20	
Fig	ure 14 – Waveforms during turn-off intervals	21	
Fig	ure 15a – Circuit for high temperature blocking(Method 1)	23	
Fig	ure 15b – Circuit for high temperature blocking(Method 2)	23	
Fig	ure 15 –Test circuit for high temperature blocking	23	
Fig	ure 16 – Circuit for Intermittent operating life	24	
Fig	ure 17 – Expected number of cycles versus temperature rise ΔT_{vj}	25	
Tab	le 1 – Failure defining characteristics and failure criteria	9	
Tab	le 2 – Failure-defining characteristics for endurance and reliability tests	22	
Tab	le 3 – Minimum items of type and routine tests for transistors when applicable		

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SEMICONDUCTOR DEVICES – DISCRETE DEVICES –

Part 7-5: Bipolar transistors for power switching applications

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter keferted to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee Interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as hearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, EC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an EC Publication.
- 6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or

- other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
 - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60747-7-5 has been prepared by subcommittee 47E: Discrete semiconductor devices, of IEC technical committee 47: Semiconductor devices.

The text of this standard is based on the following documents:

FDIS	Report on voting
47E/279/FDIS	47E/283/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

-2005

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

A bilingual version of this standard may be issued at a later date.

SEMICONDUCTOR DEVICES – DISCRETE DEVICES –

Part 7-5: Bipolar transistors for power switching applications

1 Scope

This part of IEC 60747 gives requirements for bipolar switching transistors used for power switching application above 1 A.

NOTE Requirements concerning bipolar transistors in general can be found in IEC 607477.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For updated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60747-7, Semiconductor devices – Part 7: Bipolar transistors

IEC 60747-1:1983, Semiconductor devices - Discrete devices and Integrated circuits - Part 1: General

Terms and definitions 3

For the purposes of this document, the following terms and definitions apply.

3.1

switching times

 $t_{d(on)}, t_r, t_s \text{ and } t_f$ as described in IEC 60747-1, but here the input waveform is the base current and the output waveform is the collector current

3.2

collector-emitter sustaining voltage

Vce (sus) the collector-emitter breakdown voltage at higher values of collector current where the investigation over decreasing collector current for a specified termination between base and emitter terminals

3.3 turn-on energy (per pulse) Eon

energy dissipated in transistor during turn-on

3.4 turn-off energy (per pulse)

Eoff energy dissipated in transistor during turn-off

4 Letter symbols – Energies

See IEC 60747-7.

Name and designation	Letter symbol	Remarks
Turn-on energy	E _{on}	Energy is always per pulse
Turn-off energy	E _{off}	Energy is always per pulse

5 Essential ratings and characteristics

5.1 Ratings (limiting values)

Ratings shall be valid for the whole range of operating conditions as stated for the particular device, with reference to a curve where appropriate.

5.1.1 Temperatures

5.1.1.1 Minimum and maximum of operating temperatures, ambient or case or virtual junction (T_a or T_c or Tvj)

5.1.1.2 Minimum and maximum of storage temperatures (T_{sto})

5.1.2 Currents

The ratings must cover the operation of the device over the range of operating temperatures. Where such ratings are temperature dependent, this dependence should be indicated.

5.1.2.1 Maximum continuous collector current $(I_{\rm C})$

5.1.2.2 Where appropriate, maximum peak repetitive collector current, under

5.1.2.3 Maximum continuous base current (I_B)

- 5.1.2.4 Where appropriate, maximum peak repetitive base current, under specified conditions (V_{BRM}).
- 5.1.2.5 Where appropriate, maximum emitter current, continuous and/or peak repetitive, under specified conditions (*I*_E, *I*_{ERM}).
- 5.1.3 Voltages
- 5.1.3.1 Maximum collector-base voltage with zero emitter current (V_{CBO})
- 5.1.3.2 Maximum collector-emitter voltage, either with zero base current or with a specified emitter-base reverse voltage (V_{CEO} or V_{CEX}).
- 5.1.3.3 Maximum emitter-base voltage with zero collector current (V_{EBO}).
- 5.1.3.4 Collector-emitter sustaining voltage (V_{CEXsus}).

Maximum rated value at specified collector current and specified base-emitter (reverse) voltage

5.1.4 Power dissipation

5.1.4.1 Maximum total power dissipation (without additional cooling for ambientrated devices) up to ambient or case temperature of 25 °C (P_{tot}).

5.1.4.2 Derating factor above 25 °C or, for case-rated devices, derating curve

5.1.5 Safe operating areas

5.1.5.1 Forward biased safe operating area (FBSOA)

Diagram showing the area of collector currents ($I_{\rm C}$) and collector-emitter voltages ($V_{\rm CE}$) which the transistor will sustain simultaneously without being damaged by thermal overload or by the first or second breakdown, for d.c. and pulse operation.

Conditions to be specified:

- case temperature (T_c) ;
- pulse time (t_P);
- duty cycle (δ).

5.1.5.2 Reverse biased safe operating area (RBSOA)

Diagram showing the area of collector currents (I_C) and collector emitter voltages (V_{CE}) which the transistor will sustain simultaneously for a short period of time during turn-off without being damaged

Conditions to be specified:

- case temperature (T_c) ;
- reverse base current (B2)
- conditions in the drive circuit

5.1.5.3 Short-circuit safe operating area (SCSOA)

The SCSOA is given by a pair of values of short-circuit duration $(t_{p(SC)})$ and collector-emitter voltage (V_{CE}) that may not be exceeded under the load short circuit conditions. The device may be turned on and turned off again for shorting a voltage source without failure.

5.2 Characteristics

5.2.1 Cut-off currents

NOTE One or more of these currents should be stated.

5.2.1.1 Collector-base current (I_{CBO})

- Maximum value at 25 °C, preferably at the maximum rated value of the collector-base voltage and with the emitter open-circuited.
- Maximum value at a high operating temperature, at a voltage preferably between 65 % and 85 % of the maximum rated collector-base voltage, and with the emitter open-circuited.

5.2.1.2 Collector-emitter current (I_{CEX})

- Maximum value at 25 °C, preferably at the maximum rated value of collector-emitter voltage and under specified base-emitter bias conditions.
- Maximum value at a high operating temperature, at a voltage preferably between 65 % and 85 % of the maximum rated collector-emitter voltage and under specified base-emitter bias conditions.

5.2.1.3 Collector-emitter current (*I*_{CES})

- Maximum value at 25 °C, preferably at the maximum rated value of the collector-emitter voltage and with the base short-circuited to the emitter.
- Maximum value at a high operating temperature, at a voltage preferably between 65 % and 85 % of the maximum rated collector-emitter voltage and with the base short-circuited to the emitter.

5.2.1.4 Collector-emitter current (*I*_{CER})

- Maximum value at 25 °C, preferably at the maximum rated collector-emitter voltage and with a specified base-emitter resistance.
- Maximum value at a high operating temperature, at a voltage preferably between 65 % and 85 % of the maximum rated collector-emitter voltage and with a specified base-emitter resistance.

5.2.1.5 Emitter-base current (*I*_{EBO})

- Maximum value at 25 °C at a specified high value of the emitter-base voltage and with the collector open-circuited.
- Maximum value at a high operating temperature and at a specified emitter-base voltage, and with the collector open-circuited.

5.2.2 Static value of common-emitter forward current transfer ratio (h_{FE})

Minimum value at 25 °C, at specified collector current and collector-emitter voltage.

5.2.3 Collector-emitter saturation voltage (VGEsat)

Maximum value at 25 °C, for at least one specified collector current and specified base current

5.2.4 Base-emitter saturation voltage (V_{BEsat})

Maximum value at 25 °C, at specified collector and base currents.

5.2.5 Turn-on energy (E_{on})

Maximum value per pulse with inductive load under specified conditions of T_a or T_c or T_{vj} , high V_{CE} , high I_C and I_B .

5.2.6 Turn-off energy (E_{off})

Maximum value per pulse with inductive load under specified conditions of T_a or T_c or T_{vj} , high V_{CE} , high I_C and I_B .

5.2.7 Switching times

5.2.7.1 Turn-on delay time $(t_{d(on)})$

Maximum value for resistive load under specified conditions.

5.2.7.2 Rise time (*t*_r)

Maximum value, at nominal values of collector current ($I_{\rm C}$) and base forward current ($I_{\rm B1}$).

5.2.7.3 Turn-on time (t_{on})

Maximum value, at nominal values of collector current ($I_{\rm C}$), base forward current ($I_{\rm B1}$) and base-emitter voltage ($V_{\rm BE}$) prior to turn-on pulse.

5.2.7.4 Storage time (t_s)

Maximum value, at nominal values of collector current ($I_{\rm C}$) and base forward and reverse currents ($I_{\rm B1}$ and $I_{\rm B2}$).

5.2.7.5 Fall time (*t*_f)

Maximum value for resistive load under specified conditions.

5.2.7.6 Turn-off time (t_{off})

Maximum value, at nominal values of collector current $(I_{\rm C})$ and base forward and reverse currents $(I_{\rm B1} \text{ and } I_{\rm B2})$.

5.2.8 Thermal resistance junction to case $(R_{th(j-c)})$

Maximum value for case-rated transistors.

5.2.9 Thermal resistance junction to ambient $(R_{th(j/a)})$

Maximum value for ambient-rated transistors

5.2.10 Transient thermal impedance junction to case $(Z_{th(i-c)})$

For case-rated transistors, diagram showing the maximum value against the time which has elapsed after a step change in power dissipation.

5.2.11 Transient thermal impedance junction to ambient $(Z_{th(i-a)})$

For ambient-rated transistors, diagram showing the maximum value against the time which has elapsed after a step change in power dissipation.

6 Measuring methods

6.1 Verification of ratings (limiting values)

Table 7 – Failure defining characteristics and failure criteria

Failure-defining Characteristics	Failure criteria	Measurement conditions			
I _{CES}	I _{CES} > USL	Specified V _{CE}			
V _{CEsat}	V _{CEsat} >USL	$I_{\rm C}$ specified for $V_{\rm CEsat}$			
USL: upper specified limit.					

6.1.1 Voltages and currents

6.1.1.1 Collector current (*I*_C)

6.1.1.1.1 Purpose

To verify that the collector current capability of a transistor is not less than the maximum rated value $I_{\rm C}$ under specified conditions.