INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ORGANISATION INTERNATIONALE DE NORMALISATION MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ

Implants for surgery – Metallic materials –

Part 1 : Wrought stainless steel if the STANDARD PREVIEW

Implants chirurgicaux - Produits (state de métaux ds.iteh.ai)

Partie 1 : Acier à forger inoxydable

https://standards.iteh.ai/catalog/standards/sist/85807802-c8e8-4d7c-a3e8-9e974ec075bd/iso-5832-1-1987

ISO

5832-1

Second edition 1987-08-01

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

International Standard ISO 5832-1 was prepared by Technical Committee ISO/TC 150, Implants for surgery.

This second edition cancels and replaces the first edition (ISO 5832-11: 1980), of which it constitutes a technical revision ps://standards.iteh.ai/catalog/standards/sist/85807802-c8e8-4d7c-a3e8-

9e974ec075bd/iso-5832-1-1987

Users should note that all International Standards undergo revision from time to time and that any reference made herein to any other International Standard implies its latest edition, unless otherwise stated.

INTERNATIONAL STANDARD

Implants for surgery – Metallic materials – Part 1:

Wrought stainless steel

Scope and field of application 1

This part of ISO 5832 specifies the characteristics of, and the corresponding test methods for, wrought stainless steel for use in the manufacture of surgical implants.

Provision is made for two types of stainless steel based on composition (see table 1).

NOTE - The mechanical properties of a sample obtained from a finished product made of this alloy may not necessarily comply with those specified in this part of ISO 5832. standards.i

2 References

molybdenum and chromium contents shall be such that the ISO 377, Wrought steel - Selection and preparation of samples and test pieces.

ISO 404, Steel and steel products - General technical delivery requirements.

ISO 437, Steel and cast iron - Determination of total carbon content - Combustion gravimetric method.

ISO 439, Steel and cast iron - Determination of total silicon -Gravimetric method.

ISO 629, Steel and cast iron - Determination of manganese content - Spectrophotometric method.

ISO 643, Steels - Micrographic determination of the ferritic or austenitic grain size.

ISO 671, Steel and cast iron - Determination of sulphur content - Combustion titrimetric method.

ISO 2732, Steels and cast iron - Determination of phosphorus content - Phosphovanadomolybdate spectrophotometric method.

ISO 3651-2, Austenitic stainless steels - Determination of resistance to intergranular corrosion - Part 2 : Corrosion test in a sulphuric acid/copper sulphate medium in the presence of copper turnings (Monypenny Strauss test).

ISO 4967, Steel - Determination of content of non-metallic inclusions - Micrographic method using standard diagrams.

ISO 6892, Metallic materials — Tensile testing.

Chemical composition 3

Test samples 3.1

The selection of samples for analysis shall be in accordance with the provisions of ISO 377.

3.2 Cast analysis

When tested in accordance with the methods specified in clause 7, the cast analysis of the steel shall comply with the relevant chemical composition specified in table 1, and the

value obtained from the formula given below is not less than 26.

$3,3 w_{Mo} + w_{Cr}$

where

 w_{Mo} is the molybdenum content, expressed as a percentage by mass;

 w_{Cr} is the chromium content, expressed as a percentage by mass.

Table 1 — Chemical composition

Element	Compositional limits, % (m/m)		
Element	Composition D	Composition E	
Carbon	0,030 max.	0,030 max.	
Silicon	1,0 max.	1,0 max.	
Manganese	2,0 max.	2,0 max.	
Phosphorus	0,025 max.	0,025 max.	
Sulfur	0,010 max.	0,010 max.	
Nitrogen	0,10 max.	0,10 to 0,20	
Chromium	17,0 to 19,0	17,0 to 19,0	
Molybdenum	2,25 to 3,5	2,35 to 4,2	
Nickel	13,0 to 15,0	14,0 to 16,0	
Copper	0,50 max.	0,50 max.	
Iron	Balance	Balance	

4 Microstructure in fully annealed condition

4.1 Grain size

The austenitic grain size determined as specified in clause 7 shall be no coarser than grain size No. 4.

4.2 Absence of delta ferrite

The steel shall have a structure free from delta ferrite when examined as described in clause 7.

4.3 Inclusion content

The non-metallic inclusion content of the steel, determined at the billet stage, from a billet not exceeding 15 cm thickness, and as specified in clause 7, shall not exceed the limits given in table 2.

NOTE — It may be necessary to use a special manufacturing technique such as vacuum or electroslag melting to produce a steel complying with these cleanness requirements.

Table 2 — Inclusion content limits

5 Corrosion resistance

The steel, in the "as delivered" condition, shall be capable of passing the intergranular corrosion test specified in clause 7.

6 Mechanical properties

6.1 Test pieces

The selection and preparation of samples and test pieces for tensile testing shall be in accordance with the provisions of ISO 377.

6.2 Tensile test

The tensile properties of the steel in the form of bars, wires, and sheet and strip, determined as specified in clause 7, shall be in accordance with the requirements of tables 3, 4 and 5, respectively.

Should any of the test pieces not meet the specified requirements or break outside the gauge limits, retests shall be carried out in accordance with the provisions of ISO 404.

Type of inclusion	Inclusion cont	ent reference number	ARD PREVIEW
	Thin	Thick	
A – Sulfides	1,5	Gianua	1107 Test methods
B – Aluminates	1,5	1	
C - Silicates	1,5	1 <u>ISC</u>	5832-1 he test methods to be used for determining compliance with
D — Oxides, globular	1,5https://s	tandards.iteh.ai/catalog/s	table 6.
development of the second second		9e974ec07	5bd/1so-5837-1-1987

Condition	Steel composition	Diameter, <i>d</i> , or thickness, <i>a</i>	Tensile strength <i>R</i> _m	Proof stress of non-proportional elongation $R_{p0,2}$ min.	Percentage elongation after fracture A min.
	n an an Araba an Araba. An Araba an Araba an Araba an Araba an Araba	mm	N/mm ^{2*}	N/mm ^{2*}	%
Appealed	D	الد	$490 \le R_{\rm m} \le 690$	190	40
	E	011	$590 < R_{\rm m} < 800$	285	40
Cold worked	D and E	$d ext{ or } a \leq 19$	$860 \le R_{\rm m} \le 1\ 100^{**}$	690	12

Table 3 - Mechanical properties of bars

1 N/mm² = 1MPa

* For special implants higher strength may be required, in such cases the elongation may be correspondingly low.

Condition	Steel composition	Diameter d	Tensile strength R _m	Percentage elongation after fracture A min.
		mm	N/mm ²	%
Annealed	D and E	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$R_{\rm m} < 1\ 000$ $R_{\rm m} < 930$ $R_{\rm m} < 890$ $R_{\rm m} < 860$ $R_{\rm m} < 820$ $R_{\rm m} < 800$	30 30 35 40 40 40
Cold drawn*	D and E	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$1\ 600 < R_{\rm m} < 1\ 850$ $1\ 500 < R_{\rm m} < 1\ 750$ $1\ 400 < R_{\rm m} < 1\ 650$ $1\ 350 < R_{\rm m} < 1\ 600$	

Table 4 - Mechanical properties of wires

* Wire ordered in the cold drawn condition can be supplied to higher tensile strength levels as specified by the purchaser.

Condition	Steel composition	(Statensile acrendeth.iteh. Rm	ai) Proof stress of non-proportional elongation $R_{p0,2}$ min.	Percentage elongation after fracture A min.
	https://stando	N/mp2-1:1987	N/mm ²	%
Annealed	D	$9e^{490} < R_m < 690 - 5832 - 1 - 19$	87190	40*
Annealed	E	$600 < R_{\rm m} < 800$	300	40*
Cold	D	<i>R</i> _m > 610	300	35
finished	E	$R_{\rm m} > 650$	390	35
Cold worked	D and E	$860 < R_{\rm m} < 1\ 100$	690	12

Table 5 – Mechanical properties of sheet and strip

* For thicknesses less than 3 mm : 38 %

:1

Table 6 - Test methods

Requirement	Relevant clause or sub-clause	Test method
Chemical composition	3	
Carbon		ISO 437
Silicon		ISO 439
Manganese		ISO 629
Sulfur		ISO 671
Phosphorus		ISO 2732
Other elements		Recognized analytical procedures (ISO methods where these exist)
Grain size	4.1	ISO 643
		NOTE — It is preferred that samples for grain size determination be selected after the last annealing operation and prior to the final cold-working operation. If samples are selected after a final cold-
		working operation, transverse specimens should be prepared.
Absence of delta ferrite	4.2	 Metallographically prepare specimens in the annealed condi- tion from longitudinal and transverse sections.
		 b) Using recognized techniques, examine the specimens at X100 magnification for the presence or absence of delta ferrite.
Inclusion content	4.3	ISO 4967, Method A, Plate II
Corrosion resistance	5	ISO 3651-2
Mechanical properties Tensile strength	6	
Proof stress of non-proportional elongation Percentage elongation after fracture	Teh STANDA	RD PREVIEW

<u>ISO 5832-1:1987</u>

https://standards.iteh.ai/catalog/standards/sist/85807802-c8e8-4d7c-a3e8-9e974ec075bd/iso-5832-1-1987

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 5832-1:1987</u> https://standards.iteh.ai/catalog/standards/sist/85807802-c8e8-4d7c-a3e8-9e974ec075bd/iso-5832-1-1987

andar a second a sec A second a se

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 5832-1:1987</u> https://standards.iteh.ai/catalog/standards/sist/85807802-c8e8-4d7c-a3e8-9e974ec075bd/iso-5832-1-1987

UDC 615.465 : 669.14.018.8

Descriptors : medical equipment, surgical implants, metal products, wrought products, stainless steels, specifications, tests.

Price based on 4 pages